SAND2016- 3136C

Gradually porting an
in-use sparse matrix
library to use CUDA

Mark Hoemmen
Center for Computing Research
Sandia National Laboratories

@ Notonal 06 Apr 2016

Laboratories

Exceptional

service

in the

4 %, U.S. DEPARTMENT OF VYA T <<
{8JENERGY INAYSA

Sandia National Laboratori multi-program laboratory managed and operated by San d Cor p ration, a wholly owned subsidiary of Lockheed Martin
iizterect Corporatiol f the U.S. D p rtmet of Energy’s National Nuclear Security Administration under contra tDE -AC04-94AL85000. SAND NO. 2011-XXXXP

national

Outline

= Qur sparse matrix library: Tpetra (Trilinos project)

= Goal: Support MPI + X parallelism on current & future
architectures. X: threads, not just CUDA.

= Genericity (“X”) via Kokkos programming model
= Past, current, & future gradual porting timeline

= Strategies for dealing with specific hardware features

Sandia
National _
Laboratories

What is Trilinos?)

= Software project: trilinos.org, github.com/trilinos/Trilinos
= For solving large math problems using parallel computers

= Numerical simulations for science & engineering (esp. solving
partial differential equations); graph & data analysis

= Focus on creating & solving large, sparse linear systems

= For both research (algorithms, math, computer science) &
development (applications both internal & external)

= Package architecture: dozens of packages, managed
separately — can use as little or as many as you want

= Mostly C++; some C, Fortran, Python

Trilinos’ linear solvers) i,

= Sparse linear algebra (Tpetra)

= Sparse graphs, (block) sparse matrices,
dense vectors, parallel solve kernels,
parallel communication & redistribution

= [terative (Krylov) solvers (Belos)
= CG, GMRES, TFQMR, recycling methods

= Sparse direct solvers (Amesos2)

= Algebraic iterative methods (Ifpack2)
= Jacobi, SOR, polynomial, incomplete factorizations, additive Schwarz

= Shared-memory factorizations (ShyLU)
= LU, ILU(k), ILUt, IC(k), iterative ILU(k)
= Direct+iterative preconditioners

= Segregated block solvers (Teko)

= Algebraic multigrid (Muelu)

What is Tpetra?

= Tpetra implements

= Sparse graphs, (block) sparse matrices, &
dense (multi)vectors

= Parallel kernels for solving Ax=b & Ax=Ax

= Parallel communication & (re)distribution

= Key Tpetra features

= Can solve problems with over 2 billion
(1079) unknowns
= Can pick the type of values:
= Real, complex, extra precision
= Automatic differentiation
= Types for stochastic PDE discretizations

= Center of growing support for MPI + X
parallelism, for several X

Sandia
National
Laboratories

Tpetra development goals) .

= 1 implementation for all platforms & parallelism options
= Very limited developer time (1 full-time staff & some fractions)
= Requirement: scale from laptop to full supercomputer

= Easier to debug solver (convergence) & performance issues
= Maintain backwards compatibility

= Trilinos only allows breaking it at major releases (every 1-2 years)

= Must balance research, prep for future / oncoming hardware, &
support today’s apps (often running on old hardware & software)

= Both apps & other Trilinos packages use Tpetra directly & heavily
* |nterfaces (create & fill) matter for performance & parallelism

= Exploit optimized kernels but minimize library dependencies

= We need our own implementations that work everywhere

= 3rd-party libraries often ignore features needed for MPI or apps
6

Kokkos: Performance, Portability, & Productivity @ e,

- 1= ==

National

. Sandia
Kokkos programming model Lf—

= Parallel patterns: for, reduce, scan

= Custom reduction ops & types (unlike OpenMP)

= Reproducible reductions & scans (unlike OpenMP)
= Different kinds of parallelism

= Simple [O,N) range

= Hierarchical: thread teams (OpenMP 4 / CUDA) & vector

= Different memory & execution spaces
= Control where data live & code executes
= Manual “hybrid” parallelism (e.g., host + GPU)
= Write code once, run on many different back-ends

Multidimensional arrays
= Default layout optimized for the memory space (SoA / AoS)

= User-controlled layout (for library compatibility or performance) .

Kokkos as hedge against...) .

= Hardware heterogeneity

= A particular shared-memory programming model
= OpenMP, OpenACC, CUDA, TBB, Pthreads, Qthreads, ...

= Traditional shared memory (vs. PGAS / distributed shared)
= No coherency requirements; could use 1-sided comm for atomics
= Kokkos::View could wrap MPI_Win, Global Arrays, UPC shared, ...
= Permits async parallel execution = doesn’t require fork-join

Threads at all
= Kokkos::Serial (no threads) is a valid execution space
= Kokkos’ semantics require vectorizable (ivdep) loops
= Kokkos::View can pad for alignment, & declare it
= Many hooks for passing info (e.g., dimensions) to compiler

Sandia

Keys to gradual CUDA porting) .

= Abstract away memory allocation & deallocation
= Kokkos::View (multidimensional array) as building block
= Rely on C++ inlining for performant array access
» Automatic memory management avoids unnecessary deep copies

= Abstract away data-parallel loops & computational kernels

= Loops: Kokkos::parallel {for, reduce, scan}
= | write loop body as functor or C++11 lambda (new CUDA feature)
= Kokkos semantics force me to write vectorizable & parallelizable loops

= Computational kernels: “KokkosKernels” Trilinos package

= Manage data movement between memory spaces

= Kokkos’ abstractions (host mirrors, deep_copy, DualView) let me write
as if I’'m always on an NVIDIA GPU; w/ no performance cost elsewhere

= CUDA UVM means | can port one kernel at a time
10

Sparse linear algebra use pattern @&

= Fill: Create / modify matrix & vector data structures
= As many ways to do this as there are applications

= e.g., iterate over rows, entries, mesh points, elements (FEM), volumes
(FVM), aggregates (AMG), ...

= Software interfaces affect performance A LOT

Setup for solve (e.g., build preconditioner)

Solve linear system(s), eigenvalue problems, etc.
= Coarse-grained computational kernels (e.g., sparse mat-vec)
= Software interfaces affect performance less

Repeat (nonlinear iteration, time steps, parameter study, ...)

= Trilinos data structures & solvers optimized for reuse, e.g., of
= Data structures (graph, basis vectors, allocations) &/or

= Communication patterns
11

Need thread-parallel fill) .

Solve

Fill & setup not free

Some solves are cheap, so
fill & setup time matter

Most jobs use few nodes
Amdahl’s Law:

= Solves get threaded first
= But: 90% time w/ 1 thread =>»
50% time w/ 10 threads
Preconditioners create
sparse matrices, so they
also need fill

12

Thread-parallel fill options) .

Coarse-grained (batched) Fine-grained

= Pass many finite elements, = 1item (row, elt, ...) at a time
cliques, etc. into linear = User parallelizes outside;
algebra interface library promises no thread

= Library parallelizes inside scalability issues

= Need not be thread-safe = Limited parallelism possible

= Doesn’t actually solve the inside (e.g., vectorization)

problem: User still must set = Tpetra’s choice
up input (e.g., do the finite
element method) in parallel

13
-

A brief history of Tpetra) .

= 2008: Interface defined

= 2009: Initial thread parallelism (computational kernels only)
= 2009-2010: Initial efforts at adding preconditioners

= | started at Sandia in 2010

= “Productionization” (team effort): 2011-2013

= Fix bugs & improve performance of (single-threaded) solvers & fill
= We integrated into an internal engineering numerical simulation
" Fruits of our effort in Nalu: https://github.com/spdomin/nalu
= “Kokkos refactor”: Late 2013 — present
= Stage 1 (FY14-15): Keep interface, replace data structures & kernels

= Stage 2 (FY15-now): Change interface for thread-parallel fill; finish
kernels

14

https://github.com/spdomin/nalu
https://github.com/spdomin/nalu
https://github.com/spdomin/nalu
https://github.com/spdomin/nalu
https://github.com/spdomin/nalu
https://github.com/spdomin/nalu

Fill in 2012 was not thread-scalable [@&:.

= Dynamic memory allocation (“dynamic profile”)
= |mpossible in some parallel models; slow on others
= Allocation implies synchronization (must agree on pointer)
= Better: Count, Allocate (thread collective), Fill, Compute

= Throw C++ exceptions on error / when out of space
= Either doesn’t work (CUDA) or hinders compiler optimization
= Prevents fruitful retry in (count, allocate, fill, compute)
= Better: Return success / failed count; user reduces over counts

= Unscalable reference counting implementation
= Teuchos::(Array)RCP: like std::shared_ptr but not thread safe
= Not hard to make thread safe, but updating the ref count serializes!
= Better: Use Kokkos::View’s thread-safe count; prefer unmanaged View

15
-

Tpetra had no plan for parallel fill ~ @&.

= Must fill Tpetra data structures on host, sequentially

= Common way to access data: host copy (“generalized view”)

= Read-only: Host copy of device data
= Read-write: Host copy, copies back to device at ref count 0

= “Device view” was expert mode, never used outside Tpetra

= Sparse matrix data vanished into an opaque data structure; repeated
linear solves w/ different matrix values but same structure (common
case) required keeping a host copy

= Teuchos::{RCP, ArrayRCP} ref count not thread safe

= Tpetra stored & returned everything (e.g., Maps, CrsGraph) by RCP
= |n debug mode, even Teuchos::ArrayView ref-counts
= Can’t use device buffers (ArrayRCP) in parallel kernels

16

Sandia

Kokkos refactor of Tpetra

Goals of Kokkos refactor) i

= Make thread-parallel fill correct & fast
= Adjust familiar fill interfaces; consider new ones

= Make it easier to add thread-parallel computation kernels
= |f you wanted just sparse mat-vec & AXPY, use Epetra w/ OpenMP

= Christian’s Aug 2013 sparse mat-vec performance plot encouraged me

Refactor plan: Stage 1 (FY14-15) @i

= Replace all internal data structures & kernels w/ Kokkos
= Sparse matrix-vector multiply & vector ops first
= |Later, we factored out local kernels into KokkosKernels

= Assume CUDA UVM but aim to remove UVM assumption
= Maintain interface backwards compatibility when possible

= For Stage 1, if you wanted thread-parallel fill, you had to fill
into Kokkos data structures, & hand off to Tpetra

= View semantics (shallow copy), just like Kokkos::View

= Makes thread-scalable operations w/ Tpetra objects easier
= Partial specialization let “Classic” & “Refactor” coexist
= “Classic” could build with older compilers (no need for C++11)

19

Thread-parallel fill still primitive) .

= Stage 1 plan: “If you want thread-parallel fill, get the Kokkos
widget out of the Tpetra object, & fill into that”

= Advantages
= Preserve Tpetra interface backwards compatibility
= Let Tpetra developers work gradually

= Disadvantages

= Appears to defeat a major purpose of switching to Tpetra
= “Kokkos widget” is yet another public interface to support
= Users already complained that Tpetra was hard to use

= 3 different namespaces (Tpetra, Kokkos, Teuchos)

Stage 2 (FY15-16): Thread-safe fill @)

Done for CrsMatrix & (Multi)Vector, for methods that

= Don’t change graph structure (no “insert” yet)
= Don’t cause MPI communication (+= values for off-process rows)

Return error code / success count; don’t throw on error
No more internal temp array dynamic allocation
sumlinto, transform: Atomic update option

= Default: Use atomic updates if not Serial

sumlinto, replace, transform: Take Kokkos::View or raw arrays

= Avoid Teuchos::ArrayView debug mode reference count issues

Pattern for parallel dynamic allocation W=

= Pattern:
1. Count/ estimate allocation size; may use Kokkos parallel_scan
2. Allocate; use Kokkos::View for best data layout & first touch

3. Fill: parallel_reduce over error codes; if you run out of space, keep
going, count how much more you need, & return to (2)

4. Compute (e.g., solve the linear system) using filled data structures

= Compare to typical sparse linear algebra use pattern:
= Fill linear system
= Setup for solve (e.g., preconditioners)
= Solve linear system

= Fortran <= 77 coders should find this familiar
= Semantics change: Running out of memory not an error!

= Generalizes to other kinds of failures, even fault tolerance
22

Under development: KokkosKernels @

= Local computational kernels used by Trilinos, usable outside
= Dense (BLAS 1,2,3), sparse, graph, & tensor kernels
= Local (no MPI) —Trilinos / users responsible for MPI
= No required software dependencies other than Kokkos
= Hooks for 3"-party libraries like cu{Blas,Sparse} if available

= Multi-year effort w/ many contributors, mostly Trilinos devs

= Provide kernels for all levels of hierarchical parallelism:
= Global: all available execution resources (e.g., whole GPU)
= Team-level: thread block / team, use shared memory
= Thread-level: single “thread” / warp, vectorization inside
= Serial: provide elemental functions (OpenMP declare SIMD)

Why kernels for different levels?) i

= How often do real applications need a 10k x 10k DGEMM?
= Many apps do many small computations in parallel

= e.g.,, Small dense matrix operations (BLAS & factorizations)
= PDE discretizations w/ multiple unknowns per mesh point: ~10 x 10
= Sparse matrix factorizations: ~100 x 100 (NOT square)

= Users want to write code for a single element, point, particle, ...
= “Batch” interfaces lose locality when doing many ops to a single thing
= Suits fine-grained parallel fill

= To use all hardware, need to exploit all levels of parallelism

= Need reusable kernels for those small operations

Team3 Team 2 Team 1

SPMV — Using Hierarchical Parallelism) i,

Laboratories

void spmv(Matrix A, Scalar alpha, XType x, Scalar beta, YType y) {

int nnz_per_team = 2048;
int conc = execution_space::concurrency();
while((conc * nnz_per_team * 4> A.nnz())&&(nnz_per_team>256)) nnz_per_team/=2;

parallel_for(TeamPolicy<Schedule<Dynamic> >(nworkset, AUTO(),vector_length),
KOKKOS_LAMBDA (const TeamPolicy<>::member_type& team) {

parallel_for(TeamThreadRange(team,startRow,endRow), [&] (const int& loop) {
const SparseRowViewConst<MatrixType,SizeType> row = A.template rowConst<SizeType>(iRow);

parallel_reduce(ThreadVectorRange(team,row_length), [&] (const int& iEntry, Scalar& Isum) {
const Scalar val = conjugate ?
ATV::conj (row.value(iEntry)) :

single(PerThread(team), [&] () {
sum *= alpha;

: MKL vs Kokkos

SPMYV Benchmark

IS HSW 24 Threads, Matrices sorted by size, Matrices obtained from UF

A T O Y
R Y
U
AR
AT
A Ty
AT hh gy
A T T TRy
| S T TSNSy
A R T T T TR

% I R Y

o) Y

o i A R R R

=~ [A R

w Y

@ [Y

m R Y

5] A R R R R R R

> R Y

< R Y

RN

A Y

A O Y

RN

ARG

OIS

[ENEEERNINNENIRN RIS

|/ AR as_y

M A R T T

Y

Y

Y

A

A R

A s

A R R Y

A R Y

A

A R R R

A R

A

R T Y
e L w o

TSIIA/SOIOY L]

Matrices

: CuSparse vs Kokkos

SPMYV Benchmark

Matrices from UF.

?

ize

Matrices sorted by s

?

K40c Cuda 7.5

~~
[
4
oQ
e
| S—
7
Ne)
e =
~
¢
" m
Q
. u a
» Ay

-n O S
25 =

0 = D]

T < Q

o y—

BGAARA ARG AR AR LR ARG Lﬁu

E AN W

| | _ | | | _ | | | _ | | |
@\ v 02

asredSn)/SOYOY Wl],

>1 memory or execution spaces) .

= Upcoming NNSA platforms
= Trinity (KNL): 2 memory
spaces (HBM, DDR4)

= CORAL (Sierra): 2 execution &
memory spaces (NVIDIA GPUs,
IBM multicore CPUs)

Common hardware features

" 2memory spaces: “fast & = Support via some comb of
small” vs. “slow & big {Kokkos, Tpetra, solvers, app}

= Use cases to support
» Gradual port (mix new & legacy)
= Concurrently use 2 exec spaces
(e.g., MPI pack & compute)

= Can access each memory
space from each exec space
(acts like NUMA)

= “Fast” memory limited
(<1GB/core); use as temp
workspace
29

GPU / High-Bandwidth Memory @

Cost Estimate (Bandwidth Bound):

Run From Main (capacity) Memory
Time = Ny, * Size / BWypa0iy

(rm——— Run From HBM

Processor Time = N, * Size /| BW g +
Size | BW capacity

Expect
BVVHBM/ BV\/Capacity ~ 5-20

Capacity

Question: Generally need higher parallelism to achieve BW g, vs BWCapacity
=> \What about Direct Solvers?

30

Sandia

Strategies for limited device memor{f .

= All app data, even whole linear system, may not fit on GPU
= Prefer algorithmic solutions over auto-magic

= Don’t want different libraries to need to arbitrate limited resource
= Painful run-dependent debugging & performance variation

= Strategy 1: Stage in individual linear systems temporarily
= Real physics is multiphysics = solve multiple linear systems at same time
= Works with block preconditioners or nonlinear (loose) coupling
= Tpetra’s current interface could support this, w/ more impl work
= Strategy 2: Domain decomposition (divide up single solves)
= Affects convergence; doesn’t work well for all linear systems

= Subdomain solvers need enough reuse to amortize data transfer
= Would take more software work to avoid e.g., data reformatting

31

Tpetra objects are “DualViews”) .

= 1 preferred execution space, 2 memory spaces (“Host” &
“Device”)

= Tpetra may execute in another space (e.g., overlap pack &
compute)

= User sets “modified” flags & “syncs” explicitly between spaces

= Successful use in LAMMPS (interactions btw user vs. GPU
modules)

“DualView” example: Vector L

Get a device view of
the data & treat it as

read-only
Host & device Manually mark
data are in sync device as modified

Get Kokkos view of
device data &
modify it

Get a host view of
the data & treat it as
read-only

Manually mark host
- as modified
Modify c:lat.a through Get Kokkos view of
Tpetra's interface e
host data & modify it
(host only)
- Tell Tpetra to

synchronize from
host to device

Tell Tpetra to
synchronize from
device to host

Tpetra objects act just like Kokkos::DualView.
Tpetra’s evolution of legacy fill interface is host only.
To fill on (CUDA) device, must use Kokkos interface.

If you only have one
memory space, you can
ignore all of this; it turns
to no-ops.

Preferred use with two

memory spaces:

1. Assume unsync’d

2. Sync to memory
space where you
want to modify it
(free if in sync)

3. Get & modify view in
that memory space

4. Leave the Tpetra

object unsync’d

33

Next steps) o,

Next steps L

= Finish integrating new KokkosKernels into Trilinos’ solvers
= Finish refactoring BlockCrsMatrix; new fill interface

= Standardize small dense / batched BLAS / LAPACK interface
= Thread-parallel graph construction

= Solidify Tpetra’s handling of >1 memory / execution spaces

= Experiment w/ higher-level fill interfaces

Sandia
National
Laboratories

Sandia

Thanks!)

= Trilinos’ thread parallelism has been / still is a HUGE effort

= Dozens of colleagues & collaborators have contributed

