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Outline

 Our sparse matrix library: Tpetra (Trilinos project)

 Goal: Support MPI + X parallelism on current & future 
architectures.  X: threads, not just CUDA.

 Genericity (“X”) via Kokkos programming model

 Past, current, & future gradual porting timeline

 Strategies for dealing with specific hardware features
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What is Trilinos?

 Software project: trilinos.org, github.com/trilinos/Trilinos

 For solving large math problems using parallel computers

 Numerical simulations for science & engineering (esp. solving 
partial differential equations); graph & data analysis
 Focus on creating & solving large, sparse linear systems

 For both research (algorithms, math, computer science) & 
development (applications both internal & external)

 Package architecture: dozens of packages, managed 
separately – can use as little or as many as you want 

 Mostly C++; some C, Fortran, Python
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Trilinos’ linear solvers
 Sparse linear algebra (Tpetra)

 Sparse graphs, (block) sparse matrices, 
dense vectors, parallel solve kernels, 
parallel communication & redistribution

 Iterative (Krylov) solvers (Belos)
 CG, GMRES, TFQMR, recycling methods
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 Sparse direct solvers (Amesos2)

 Algebraic iterative methods (Ifpack2)
 Jacobi, SOR, polynomial, incomplete factorizations, additive Schwarz

 Shared-memory factorizations (ShyLU)
 LU, ILU(k), ILUt, IC(k), iterative ILU(k)

 Direct+iterative preconditioners

 Segregated block solvers (Teko)

 Algebraic multigrid (MueLu)



What is Tpetra?

 Tpetra implements
 Sparse graphs, (block) sparse matrices, & 

dense (multi)vectors

 Parallel kernels for solving Ax=b & Ax=λx

 Parallel communication & (re)distribution

 Key Tpetra features
 Can solve problems with over 2 billion 

(10^9) unknowns

 Can pick the type of values:

 Real, complex, extra precision

 Automatic differentiation

 Types for stochastic PDE discretizations

 Center of growing support for MPI + X 
parallelism, for several X
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Tpetra development goals

 1 implementation for all platforms & parallelism options
 Very limited developer time (1 full-time staff & some fractions)

 Requirement: scale from laptop to full supercomputer

 Easier to debug solver (convergence) & performance issues

 Maintain backwards compatibility
 Trilinos only allows breaking it at major releases (every 1-2 years)

 Must balance research, prep for future / oncoming hardware, & 
support today’s apps (often running on old hardware & software)

 Both apps & other Trilinos packages use Tpetra directly & heavily

 Interfaces (create & fill) matter for performance & parallelism

 Exploit optimized kernels but minimize library dependencies
 We need our own implementations that work everywhere

 3rd-party libraries often ignore features needed for MPI or apps
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Kokkos: Performance, Portability, & Productivity
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Kokkos programming model

 Parallel patterns: for, reduce, scan
 Custom reduction ops & types (unlike OpenMP)

 Reproducible reductions & scans (unlike OpenMP)

 Different kinds of parallelism
 Simple [0,N) range

 Hierarchical: thread teams (OpenMP 4 / CUDA) & vector

 Different memory & execution spaces
 Control where data live & code executes

 Manual “hybrid” parallelism (e.g., host + GPU)

 Write code once, run on many different back-ends

 Multidimensional arrays
 Default layout optimized for the memory space (SoA / AoS)

 User-controlled layout (for library compatibility or performance)
8



Kokkos as hedge against…

 Hardware heterogeneity

 A particular shared-memory programming model
 OpenMP, OpenACC, CUDA, TBB, Pthreads, Qthreads, …

 Traditional shared memory (vs. PGAS / distributed shared)
 No coherency requirements; could use 1-sided comm for atomics

 Kokkos::View could wrap MPI_Win, Global Arrays, UPC shared, …

 Permits async parallel execution  doesn’t require fork-join

 Threads at all
 Kokkos::Serial (no threads) is a valid execution space

 Kokkos’ semantics require vectorizable (ivdep) loops

 Kokkos::View can pad for alignment, & declare it

 Many hooks for passing info (e.g., dimensions) to compiler
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Keys to gradual CUDA porting

 Abstract away memory allocation & deallocation
 Kokkos::View (multidimensional array) as building block

 Rely on C++ inlining for performant array access

 Automatic memory management avoids unnecessary deep copies

 Abstract away data-parallel loops & computational kernels
 Loops: Kokkos::parallel_{for, reduce, scan}

 I write loop body as functor or C++11 lambda (new CUDA feature)

 Kokkos semantics force me to write vectorizable & parallelizable loops

 Computational kernels: “KokkosKernels” Trilinos package

 Manage data movement between memory spaces
 Kokkos’ abstractions (host mirrors, deep_copy, DualView) let me write 

as if I’m always on an NVIDIA GPU; w/ no performance cost elsewhere

 CUDA UVM means I can port one kernel at a time
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Sparse linear algebra use pattern

 Fill: Create / modify matrix & vector data structures
 As many ways to do this as there are applications

 e.g., iterate over rows, entries, mesh points, elements (FEM), volumes 
(FVM), aggregates (AMG), …

 Software interfaces affect performance A LOT

 Setup for solve (e.g., build preconditioner)

 Solve linear system(s), eigenvalue problems, etc.
 Coarse-grained computational kernels (e.g., sparse mat-vec)

 Software interfaces affect performance less

 Repeat (nonlinear iteration, time steps, parameter study, …)
 Trilinos data structures & solvers optimized for reuse, e.g., of 

 Data structures (graph, basis vectors, allocations) &/or

 Communication patterns
11



Need thread-parallel fill

Fill Setup

Solve

 Fill & setup not free

 Some solves are cheap, so 
fill & setup time matter

 Most jobs use few nodes

 Amdahl’s Law: 
 Solves get threaded first

 But: 90% time w/ 1 thread 
50% time w/ 10 threads

 Preconditioners create 
sparse matrices, so they 
also need fill
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Thread-parallel fill options

Coarse-grained (batched)

 Pass many finite elements, 
cliques, etc. into linear 
algebra interface

 Library parallelizes inside

 Need not be thread-safe

 Doesn’t actually solve the 
problem: User still must set 
up input (e.g., do the finite 
element method) in parallel

Fine-grained

 1 item (row, elt, …) at a time

 User parallelizes outside; 
library promises no thread 
scalability issues

 Limited parallelism possible 
inside (e.g., vectorization)

 Tpetra’s choice
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A brief history of Tpetra

 2008: Interface defined

 2009: Initial thread parallelism (computational kernels only)

 2009-2010: Initial efforts at adding preconditioners

 I started at Sandia in 2010

 “Productionization” (team effort): 2011-2013
 Fix bugs & improve performance of (single-threaded) solvers & fill

 We integrated into an internal engineering numerical simulation

 Fruits of our effort in Nalu: https://github.com/spdomin/nalu

 “Kokkos refactor”: Late 2013 – present
 Stage 1 (FY14-15): Keep interface, replace data structures & kernels

 Stage 2 (FY15-now): Change interface for thread-parallel fill; finish 
kernels
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Fill in 2012 was not thread-scalable

 Dynamic memory allocation (“dynamic profile”)
 Impossible in some parallel models; slow on others

 Allocation implies synchronization (must agree on pointer)

 Better: Count, Allocate (thread collective), Fill, Compute

 Throw C++ exceptions on error / when out of space
 Either doesn’t work (CUDA) or hinders compiler optimization

 Prevents fruitful retry in (count, allocate, fill, compute)

 Better: Return success / failed count; user reduces over counts

 Unscalable reference counting implementation
 Teuchos::(Array)RCP: like std::shared_ptr but not thread safe

 Not hard to make thread safe, but updating the ref count serializes!

 Better: Use Kokkos::View’s thread-safe count; prefer unmanaged View
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Tpetra had no plan for parallel fill

 Must fill Tpetra data structures on host, sequentially
 Common way to access data: host copy (“generalized view”)

 Read-only: Host copy of device data

 Read-write: Host copy, copies back to device at ref count 0

 “Device view” was expert mode, never used outside Tpetra

 Sparse matrix data vanished into an opaque data structure; repeated 
linear solves w/ different matrix values but same structure (common 
case) required keeping a host copy

 Teuchos::{RCP, ArrayRCP} ref count not thread safe
 Tpetra stored & returned everything (e.g., Maps, CrsGraph) by RCP

 In debug mode, even Teuchos::ArrayView ref-counts

 Can’t use device buffers (ArrayRCP) in parallel kernels
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Kokkos refactor of Tpetra
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Goals of Kokkos refactor

 Make thread-parallel fill correct & fast

 Adjust familiar fill interfaces; consider new ones

 Make it easier to add thread-parallel computation kernels
 If you wanted just sparse mat-vec & AXPY, use Epetra w/ OpenMP

 Christian’s Aug 2013 sparse mat-vec performance plot encouraged me
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Refactor plan: Stage 1 (FY14-15)

 Replace all internal data structures & kernels w/ Kokkos
 Sparse matrix-vector multiply & vector ops first

 Later, we factored out local kernels into KokkosKernels

 Assume CUDA UVM but aim to remove UVM assumption

 Maintain interface backwards compatibility when possible

 For Stage 1, if you wanted thread-parallel fill, you had to fill 
into Kokkos data structures, & hand off to Tpetra

 View semantics (shallow copy), just like Kokkos::View
 Makes thread-scalable operations w/ Tpetra objects easier

 Partial specialization let “Classic” & “Refactor” coexist

 “Classic” could build with older compilers (no need for C++11)
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Thread-parallel fill still primitive

 Stage 1 plan: “If you want thread-parallel fill, get the Kokkos
widget out of the Tpetra object, & fill into that”

 Advantages
 Preserve Tpetra interface backwards compatibility

 Let Tpetra developers work gradually

 Disadvantages
 Appears to defeat a major purpose of switching to Tpetra

 “Kokkos widget” is yet another public interface to support

 Users already complained that Tpetra was hard to use

 3 different namespaces (Tpetra, Kokkos, Teuchos)
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Stage 2 (FY15-16): Thread-safe fill

 Done for CrsMatrix & (Multi)Vector, for methods that 
 Don’t change graph structure (no “insert” yet)

 Don’t cause MPI communication (+= values for off-process rows)

 Return error code / success count; don’t throw on error

 No more internal temp array dynamic allocation

 sumInto, transform: Atomic update option
 Default: Use atomic updates if not Serial

 sumInto, replace, transform: Take Kokkos::View or raw arrays
 Avoid Teuchos::ArrayView debug mode reference count issues
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Pattern for parallel dynamic allocation

 Pattern:
1. Count / estimate allocation size; may use Kokkos parallel_scan

2. Allocate; use Kokkos::View for best data layout & first touch

3. Fill: parallel_reduce over error codes; if you run out of space, keep 
going, count how much more you need, & return to (2)

4. Compute (e.g., solve the linear system) using filled data structures

 Compare to typical sparse linear algebra use pattern:
 Fill linear system

 Setup for solve (e.g., preconditioners)

 Solve linear system

 Fortran <= 77 coders should find this familiar

 Semantics change: Running out of memory not an error!
 Generalizes to other kinds of failures, even fault tolerance
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Under development: KokkosKernels

 Local computational kernels used by Trilinos, usable outside
 Dense (BLAS 1,2,3), sparse, graph, & tensor kernels

 Local (no MPI) – Trilinos / users responsible for MPI 

 No required software dependencies other than Kokkos

 Hooks for 3rd-party libraries like cu{Blas,Sparse} if available

 Multi-year effort w/ many contributors, mostly Trilinos devs

 Provide kernels for all levels of hierarchical parallelism:
 Global: all available execution resources (e.g., whole GPU)

 Team-level: thread block / team, use shared memory

 Thread-level: single “thread” / warp, vectorization inside 

 Serial: provide elemental functions (OpenMP declare SIMD)
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Why kernels for different levels?

 How often do real applications need a 10k x 10k DGEMM?

 Many apps do many small computations in parallel
 e.g., Small dense matrix operations (BLAS & factorizations)

 PDE discretizations w/ multiple unknowns per mesh point: ~10 x 10

 Sparse matrix factorizations: ~100 x 100 (NOT square)

 Users want to write code for a single element, point, particle, …

 “Batch” interfaces lose locality when doing many ops to a single thing

 Suits fine-grained parallel fill

 To use all hardware, need to exploit all levels of parallelism

 Need reusable kernels for those small operations
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SPMV – Using Hierarchical Parallelism
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Basic Algorithm  y = Ax:

for irow in rows {                // Distribute over Threads
for j in length(irow) {         // Vectorize reduction
col = A.column(irow,j)
val = A.values(irow,j)
y(irow) += val * x(col);

}
}

Better Work Setting for better Cache Locality of x:

for set in row_sets {             // Distribute over Thread-Teams
for irow in rows(set) {         // Distribute over Threads         
for j in length(irow) {       // Vectorize Reduction        

col = column(irow,j)
val = values(irow,j)
y(irow) += val * x(col);

}
}

}



SPMV – Using Hierarchical Parallelism
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void spmv(Matrix A, Scalar alpha, XType x, Scalar beta, YType y) {
int nnz_per_team = 2048;
int conc = execution_space::concurrency();
while((conc * nnz_per_team * 4> A.nnz())&&(nnz_per_team>256)) nnz_per_team/=2;

int nnz_per_row = A.nnz()/A.numRows();
int rows_per_team = (nnz_per_team+nnz_per_row-1)/nnz_per_row;
int vector_length = GetVectorLength(A);
const int nworkset = (y.dimension_0()+rows_per_team-1)/rows_per_team;

parallel_for(TeamPolicy<Schedule<Dynamic> >(nworkset, AUTO(),vector_length),
KOKKOS_LAMBDA (const TeamPolicy<>::member_type& team) {
const int startRow = team.league_rank() * rows_per_team;
const int endRow = startRow + rows_per_team < A.numRows() ? 

startRow + rows_per_team : A.numRows()  

parallel_for(TeamThreadRange(team,startRow,endRow), [&] (const int& loop) {
const SparseRowViewConst<MatrixType,SizeType> row = A.template rowConst<SizeType>(iRow);
const int row_length = row.length;
Scalar sum = 0;

parallel_reduce(ThreadVectorRange(team,row_length), [&] (const int& iEntry, Scalar& lsum) {
const Scalar val = conjugate ?

ATV::conj (row.value(iEntry)) :
row.value(iEntry);

lsum += val * x(row.colidx(iEntry));
},sum);

single(PerThread(team), [&] () {
sum *= alpha;
y(iRow) = beta * y(iRow) + sum;

});
});

}
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>1 memory or execution spaces

 Upcoming NNSA platforms
 Trinity (KNL): 2 memory 

spaces (HBM, DDR4)

 CORAL (Sierra): 2 execution & 
memory spaces (NVIDIA GPUs, 
IBM multicore CPUs)

 Common hardware features
 2 memory spaces: “fast & 

small” vs. “slow & big”

 Can access each memory 
space from each exec space 
(acts like NUMA)

 “Fast” memory limited 
(<1GB/core); use as temp 
workspace
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 Support via some comb of 
{Kokkos, Tpetra, solvers, app}

 Use cases to support
 Gradual port (mix new & legacy)
 Concurrently use 2 exec spaces 

(e.g., MPI pack & compute)



GPU / High-Bandwidth Memory 
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Capacity

HBM

Processor

Cost Estimate (Bandwidth Bound):

Run From Main (capacity) Memory
Time = Niter * Size / BWCapacity

Run From HBM
Time = Niter * Size / BWHBM + 

Size / BWCapacity

Expect
BWHBM/BWCapacity ~ 5-20

Question: Generally need higher parallelism to achieve BWHBM vs BWCapacity

=> What about Direct Solvers?



Strategies for limited device memory 

 All app data, even whole linear system, may not fit on GPU

 Prefer algorithmic solutions over auto-magic
 Don’t want different libraries to need to arbitrate limited resource

 Painful run-dependent debugging & performance variation

 Strategy 1: Stage in individual linear systems temporarily
 Real physics is multiphysics  solve multiple linear systems at same time

 Works with block preconditioners or nonlinear (loose) coupling

 Tpetra’s current interface could support this, w/ more impl work

 Strategy 2: Domain decomposition (divide up single solves)
 Affects convergence; doesn’t work well for all linear systems

 Subdomain solvers need enough reuse to amortize data transfer

 Would take more software work to avoid e.g., data reformatting
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Tpetra objects are “DualViews”

 1 preferred execution space, 2 memory spaces (“Host” & 
“Device”)

 Tpetra may execute in another space (e.g., overlap pack & 
compute)

 User sets “modified” flags & “syncs” explicitly between spaces

 Successful use in LAMMPS (interactions btw user vs. GPU 
modules)
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“DualView” example: Vector
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Tell Tpetra to
synchronize from 

host to device

Tell Tpetra to
synchronize from 

device to host

Host & device
data are in sync

Get a host view of
the data & treat it as 

read-only

Get a device view of
the data & treat it as 

read-only

Manually mark host
as modified

Manually mark 
device as modified

Get Kokkos view of
host data & modify it

Get Kokkos view of
device data & 

modify it

Modify data through
Tpetra's interface

(host only)

If you only have one 
memory space, you can 
ignore all of this; it turns 
to no-ops.

Preferred use with two 
memory spaces:
1. Assume unsync’d
2. Sync to memory 

space where you 
want to modify it 
(free if in sync)

3. Get & modify view in 
that memory space

4. Leave the Tpetra 
object unsync’d

Tpetra objects act just like Kokkos::DualView.
Tpetra’s evolution of legacy fill interface is host only.
To fill on (CUDA) device, must use Kokkos interface.



Next steps
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Next steps

 Finish integrating new KokkosKernels into Trilinos’ solvers

 Finish refactoring BlockCrsMatrix; new fill interface

 Standardize small dense / batched BLAS / LAPACK interface

 Thread-parallel graph construction

 Solidify Tpetra’s handling of >1 memory / execution spaces

 Experiment w/ higher-level fill interfaces
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Thanks!

 Trilinos’ thread parallelism has been / still is a HUGE effort

 Dozens of colleagues & collaborators have contributed
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