

Synthesis and Modeling of Barium Titanate Nanoparticles in a Composite to determine Dielectric Constants

Scott Tan, Kirklann Lau, Natasha Allen, Shruti Singapur,
Kaitlin Hansen, Olivia Schneble, Ashka Shah, Richard
Haskell, Albert Dato, Todd Monson

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was in part supported by the Air Force Research Laboratory, Directed Energy Directorate, High Power Microwave Division (AFRL/RDH). 1

Who we are



Todd Monson

Outline

Barium Titanate Colloidal Solutions and Composites

Composite Fabrication

Composite Dielectric Constant Measurement

Finite Element Modeling

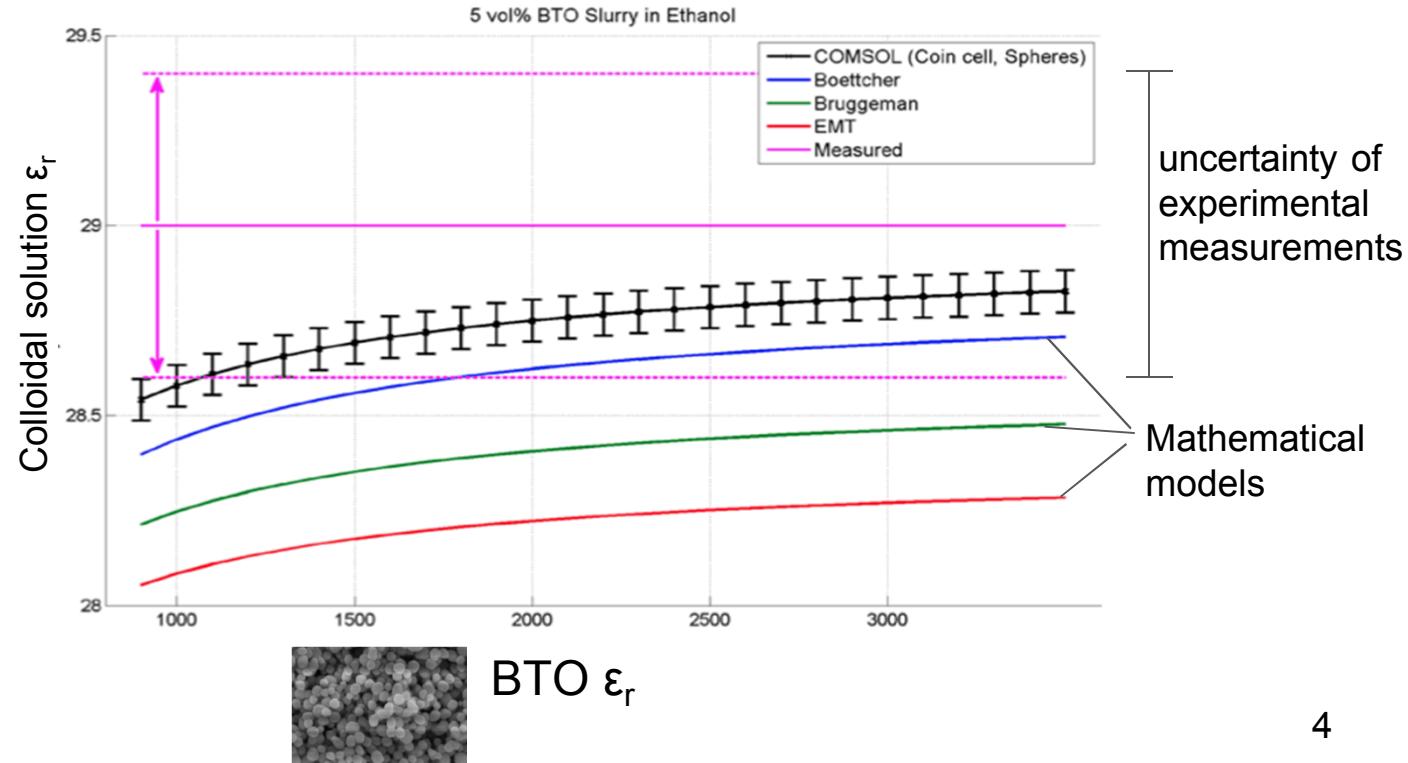
Matching Simulation with Experiment

Surface functionalized particles

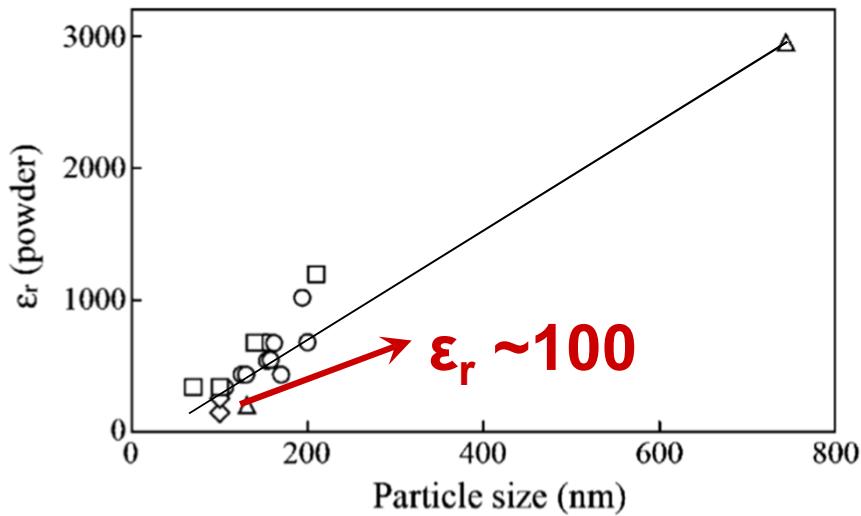
Conclusion

BTO Colloidal Solutions

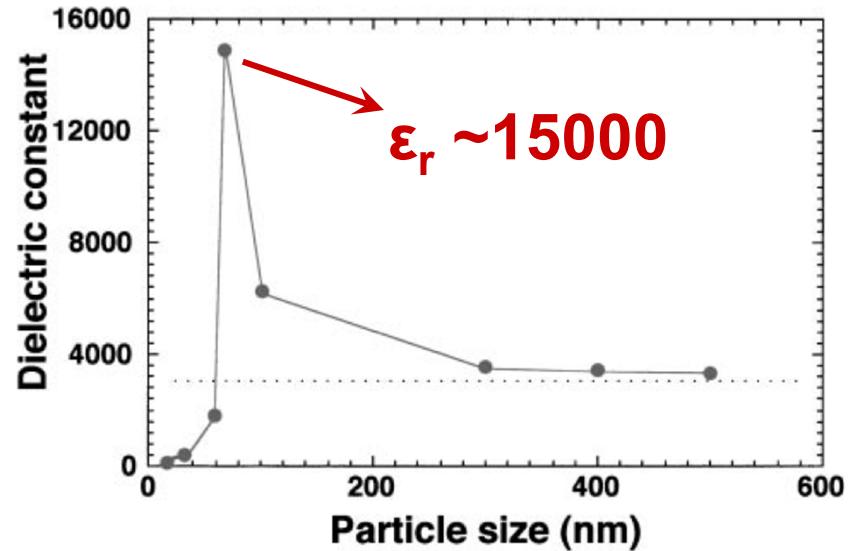
Large uncertainty when extracting BTO dielectric constant (ϵ_r) from colloidal solution ϵ_r



BTO Colloidal Solutions in Literature



Tsurumi et al. *J. Am. Ceram. Soc.*, 89 [4] 1337-1341 (2006).



Wada et al. *Jpn. J. Appl. Phys.* Vol. 42 6188-6195 (2003).

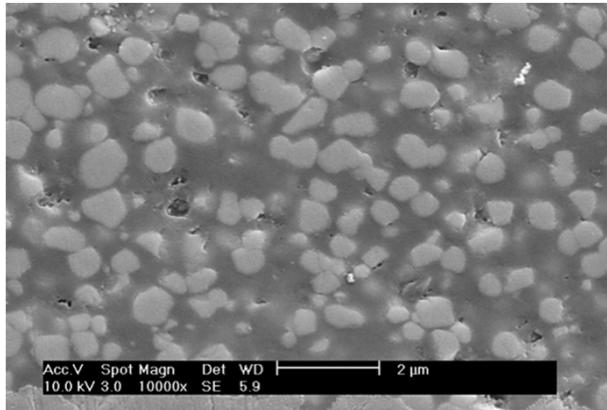
Slide 5

1 verbal thing, slide is too cluttered

KirkLann Lau,

BTO Composites

BTO/epoxy Composite Films



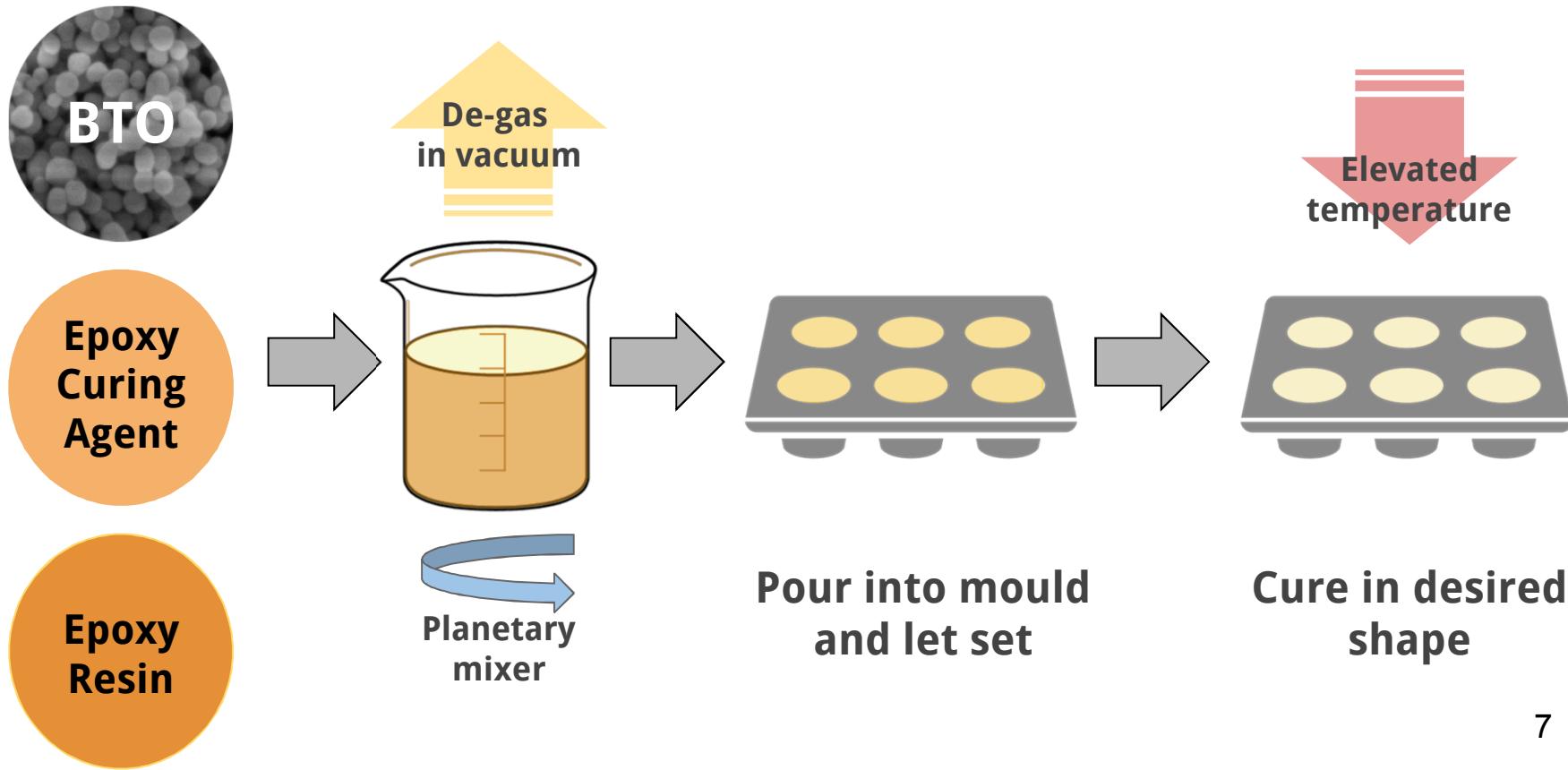
Jayasundere-Smith Equation

$$\rightarrow \varepsilon_{\text{eff}} = \frac{\nu_p \varepsilon_p + \nu_c \varepsilon_c \left[\frac{3\varepsilon_p}{\varepsilon_c + 2\varepsilon_p} \right] \left[1 + \frac{3\nu_c(\varepsilon_c - \varepsilon_p)}{\varepsilon_c + 2\varepsilon_p} \right]}{\nu_p + \nu_c \left[\frac{3\varepsilon_p}{\varepsilon_c + 2\varepsilon_p} \right] \left[1 + \frac{3\nu_c(\varepsilon_c - \varepsilon_p)}{\varepsilon_c + 2\varepsilon_p} \right]} \rightarrow \text{BTO } \varepsilon_r$$

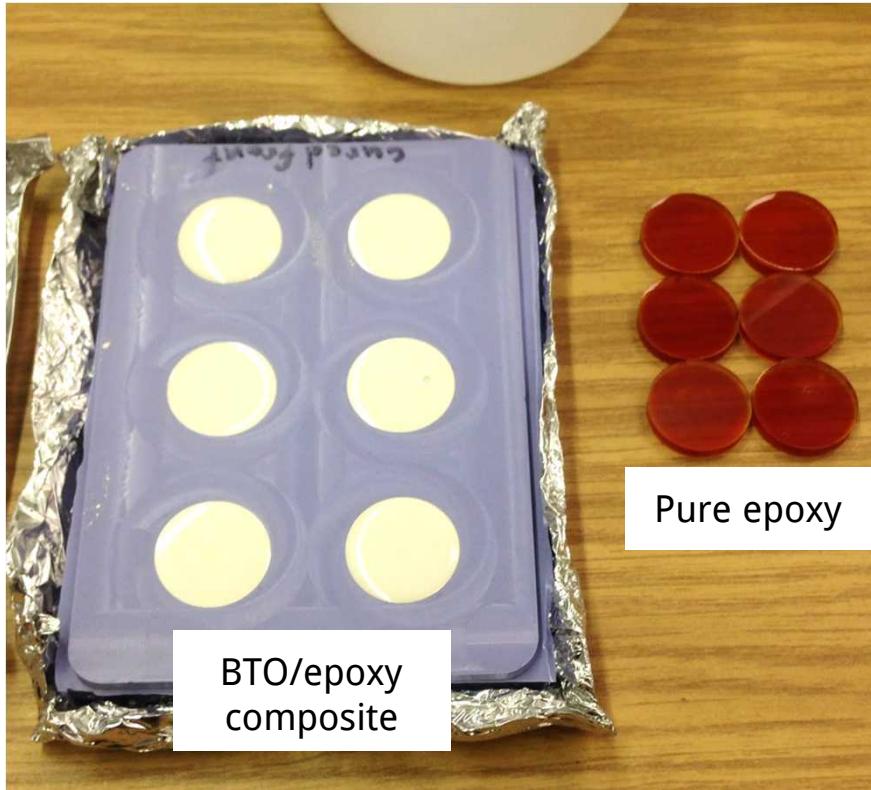
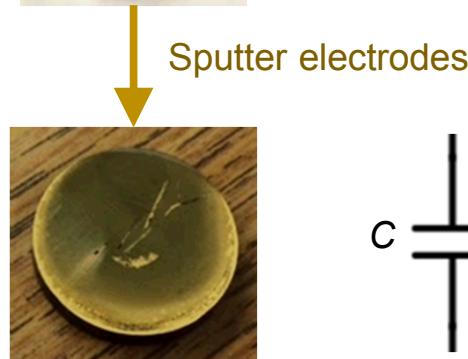
We fabricated similar BTO/epoxy composites and explore the validity of mathematical modeling to extract the BTO ε_r using finite element modeling

Cho et al. *J. Mat. Sci.*, **16** 77-84 (2005).

BTO Composite Fabrication



Composite Fabrication

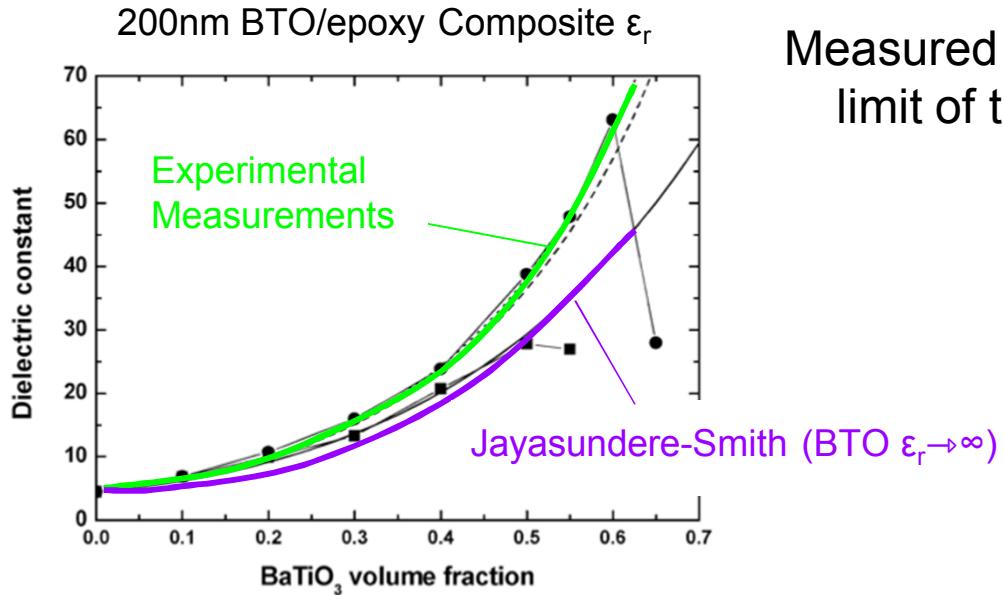


Measure C (capacitance meter or impedance spectroscopy)

$$C = \epsilon_0 \epsilon_r \frac{A}{d}$$

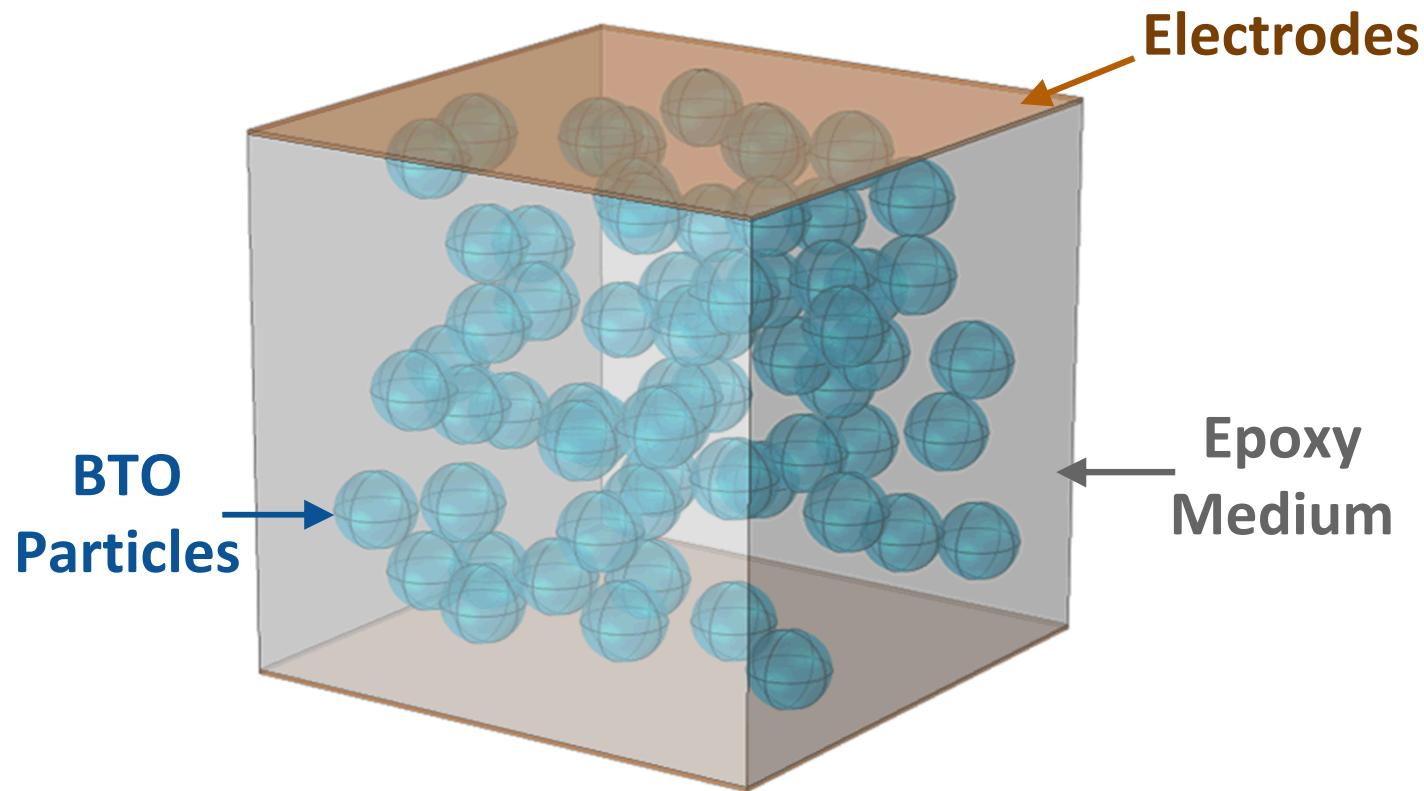
Calculate composite ϵ_r

Composite Dielectric Constant

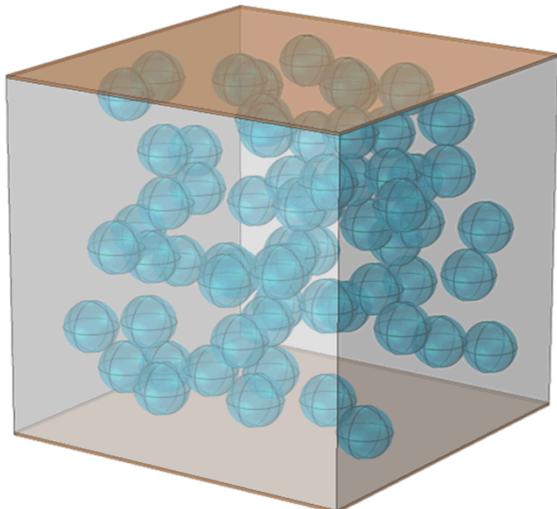


Measured composite ϵ_r is above the upper limit of the Jayasundere-Smith model

Finite Element Modeling



Finite Element Modeling



- Electric potential V applied to the simulated capacitor
- Surface charge Q is computed using

$$\nabla \cdot D = \rho_V \quad E = - \nabla V$$

- Composite ϵ_r calculated using

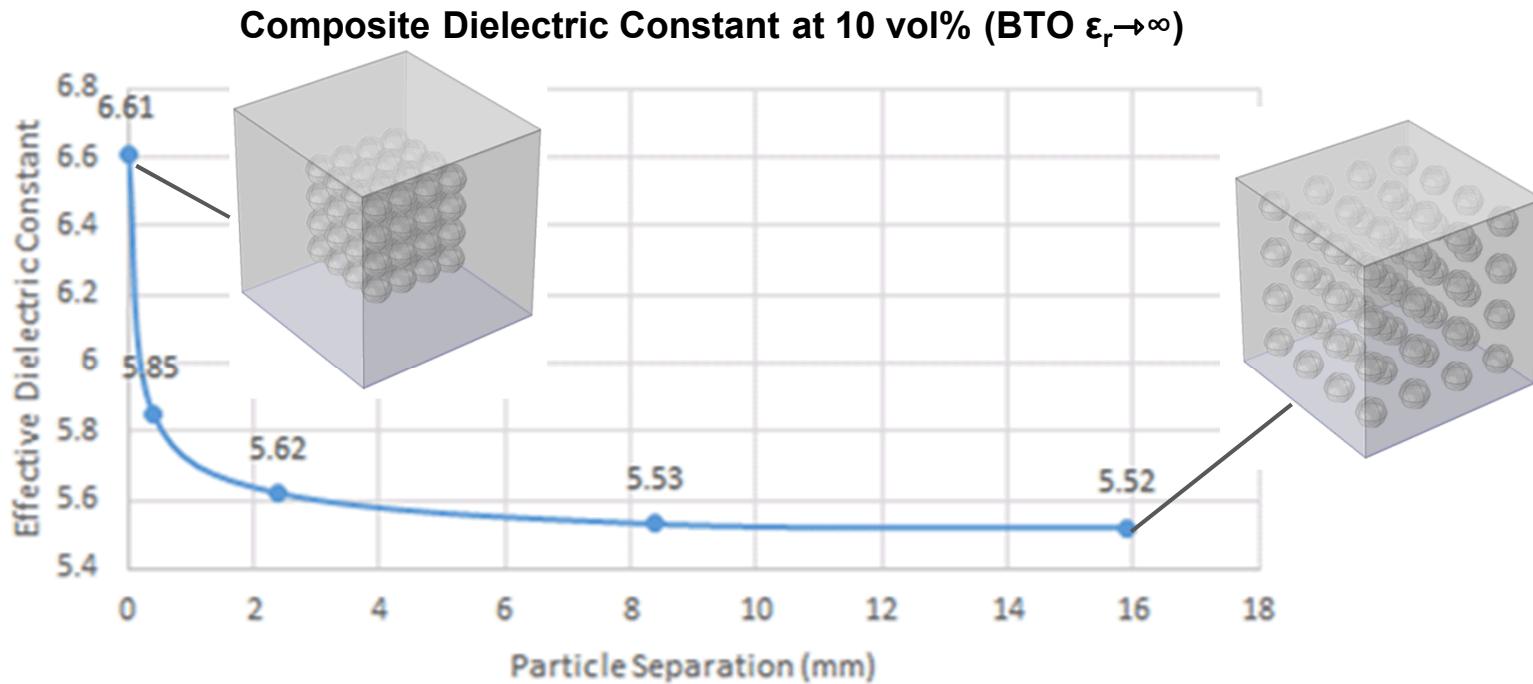
$$C = \frac{Q}{V} = \epsilon_r \epsilon_0 \frac{A}{d}$$

Slide 11

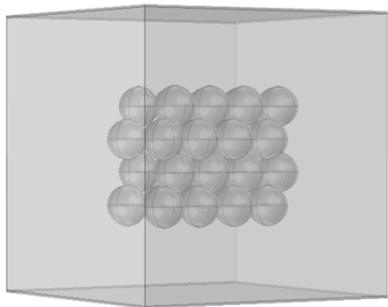
- 2 clutter, better suited to be said verbally

KirkLann Lau,

Effect of Particle Separation

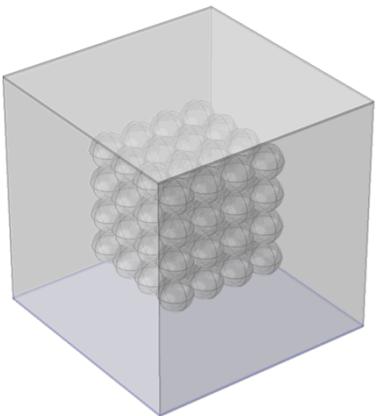


Effect of Particle Separation



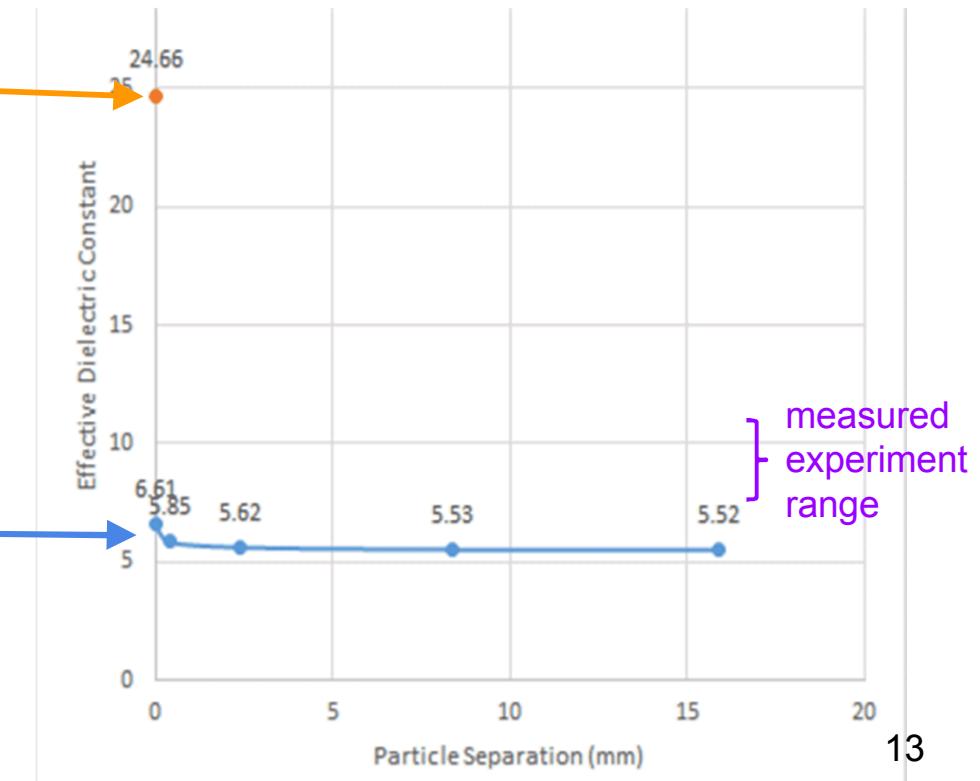
hexagonal close packed

Simulated
composite ϵ_r
up to ~ 24.66



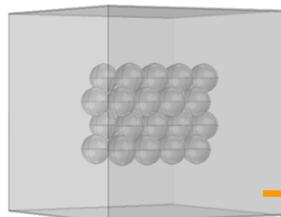
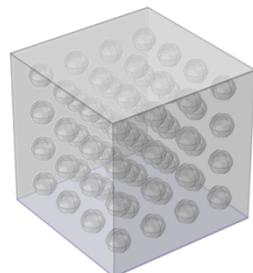
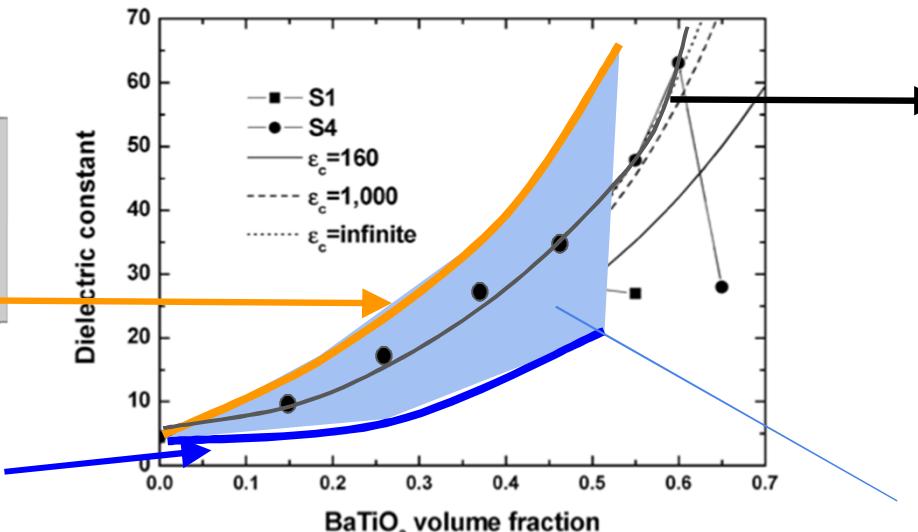
cubic close packed

Composite Dielectric Constant at 10 vol% (BTO $\epsilon_r \rightarrow \infty$)



Matching Simulation with Experiment

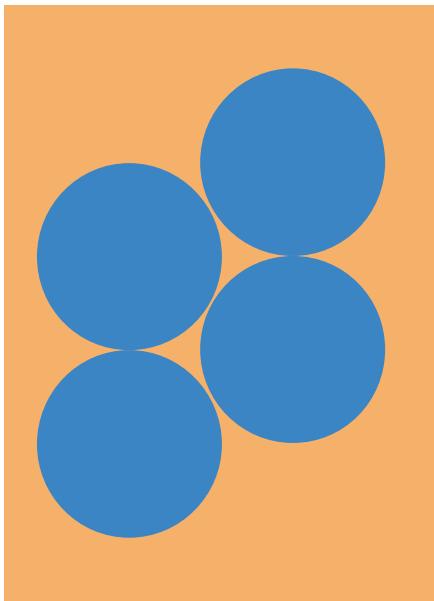
Graph of max separation to complete agglomeration with BTO $\epsilon_r \rightarrow \infty$



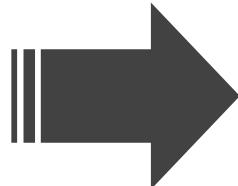
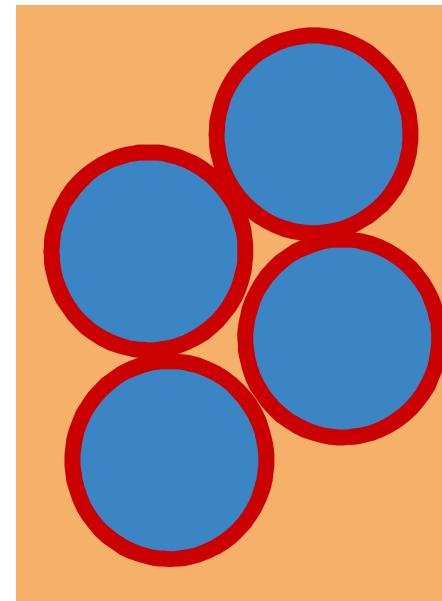
Measured composite ϵ_r lie within simulation range

COMSOL range from adjusting particle separation

Surface Functionalized Nanoparticles



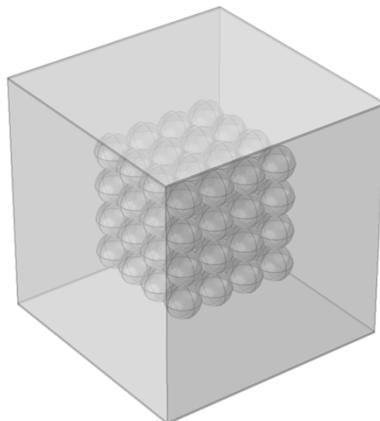
**BTO Nanoparticles in
an Epoxy Medium**



**Functionalized with a type of
phosphonic acid (APPA)**

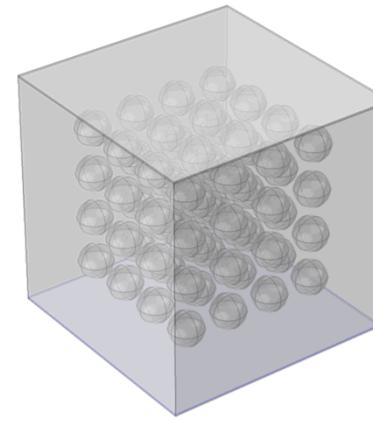
Surface Functionalized Nanoparticles

Non-functionalized



Composite $\epsilon_r = 7.30 \pm 0.06$

Functionalized



Composite $\epsilon_r = 6.93 \pm 0.04$

Conclusion

Composite dielectric constant is highly dependant on separation between particles

Jayasundere-Smith equation (and other mathematical models) cannot be applied to extract particle dielectric constants from thick ($> 3\text{mm}$) composites since they fail to properly account for agglomeration

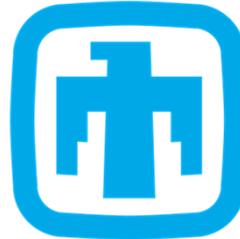
COMSOL simulations can possibly provide insight on particle agglomeration within epoxy/BTO composites

Acknowledgements

The authors would like to acknowledge and thank the following people for their guidance and support:

Todd Monson
Richard Haskell
Albert Dato
David Vargas
Paul Stovall
Sam Abdelmuati
Penny Manisco
Danny Guerra
Nicole Subler

Funding:

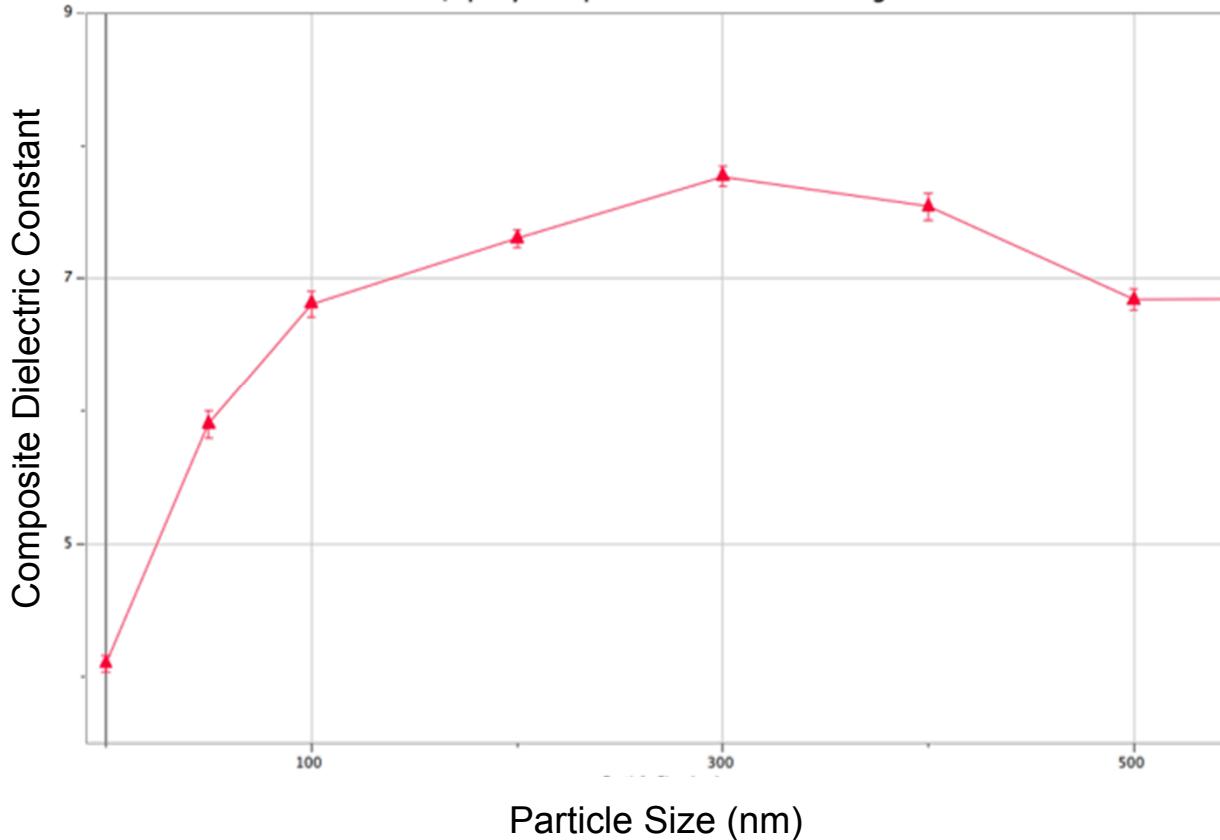


**Sandia
National
Laboratories**

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was in part supported by the Air Force Research Laboratory, Directed Energy Directorate, High Power Microwave Division (AFRL/RDH).

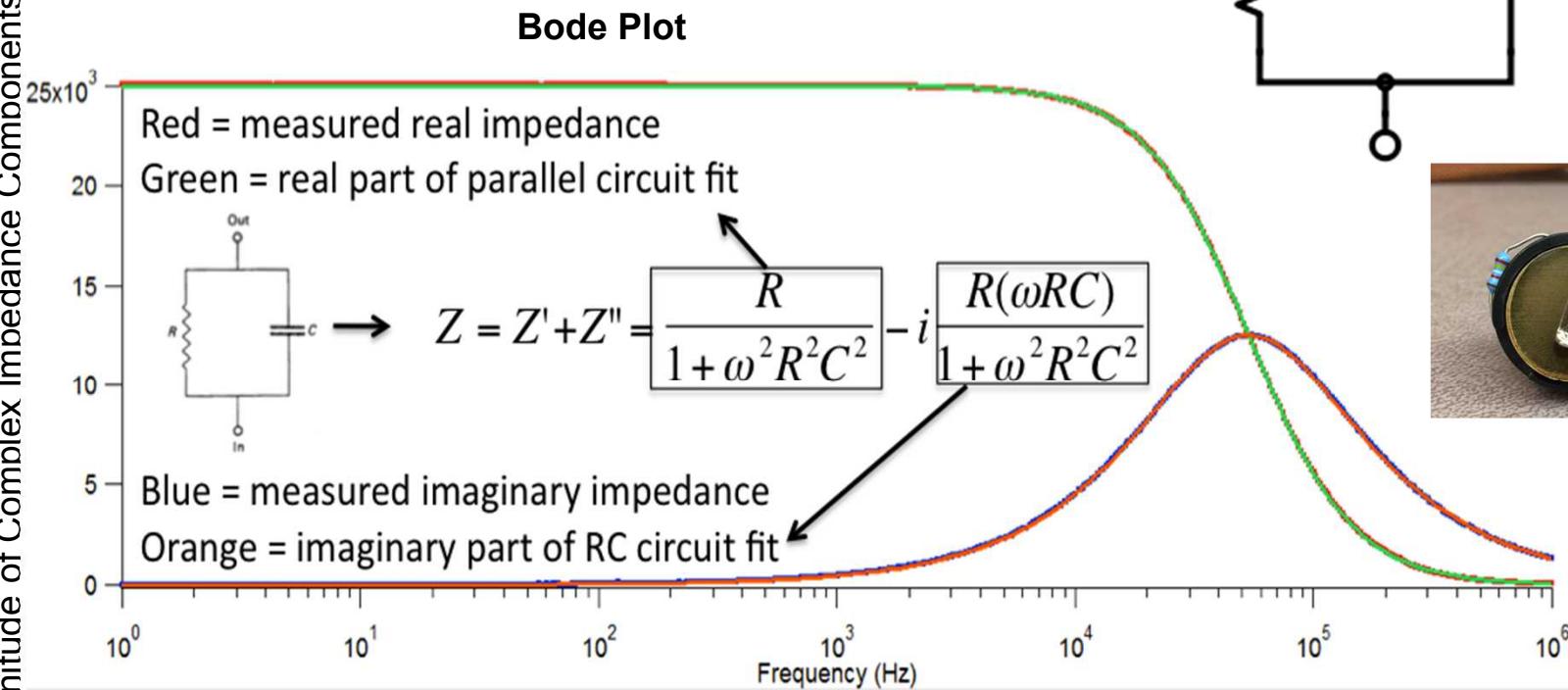
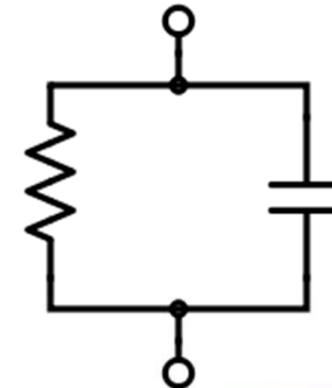
Composite Dielectric Constant vs. Particle Size

BTO/Epoxy Composites at 10 vol% Loading

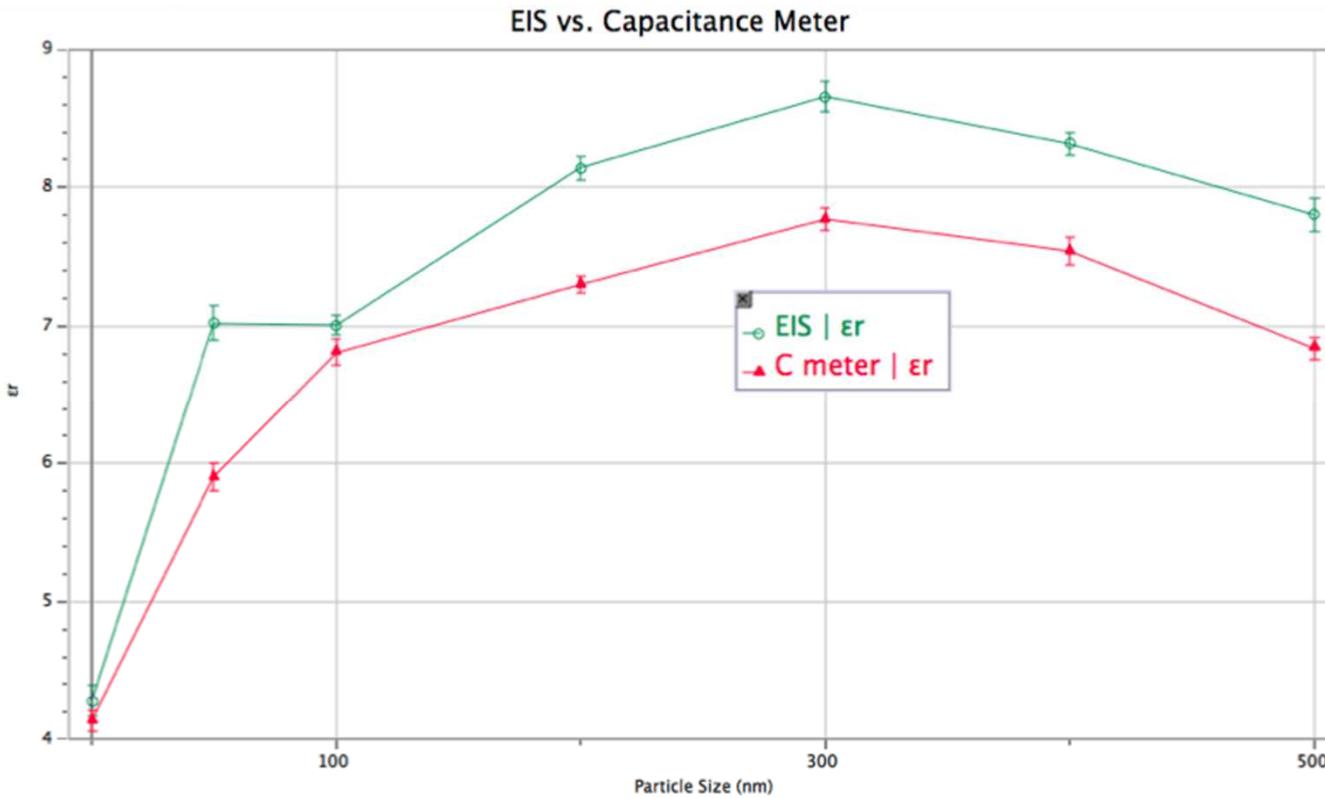


Impedance Spectroscopy

Magnitude of Complex Impedance Components (Ω)



Impedance Spectroscopy vs. Capacitance Meter



EMT Equations

$$\delta_p = \frac{(\varepsilon_{mx} - \varepsilon_{md})(2\varepsilon_{mx} + \varepsilon_p)}{3\varepsilon_{mx}(\varepsilon_{md} - \varepsilon_p)}$$

$$\frac{\varepsilon_p - \varepsilon_{mx}}{\varepsilon_p + \varepsilon_{md}} = (1 - \delta_p) \left(\frac{\varepsilon_{mx}}{\varepsilon_{md}} \right)^{\frac{1}{3}}$$

$$\varepsilon_{mx} = \frac{\varepsilon_{md}(1 - \delta_p) + \varepsilon_p \delta_p \left(\frac{3\varepsilon_{md}}{\varepsilon_p + 2\varepsilon_{md}} \left(1 + \frac{3\delta_p(\varepsilon_p - \varepsilon_{md})}{\varepsilon_p - 2\varepsilon_{md}} \right) \right)}{(1 - \delta_p) + \delta_p \left(\frac{3\varepsilon_{md}}{\varepsilon_p + 2\varepsilon_{md}} \left(1 + \frac{3\delta_p(\varepsilon_p - \varepsilon_{md})}{\varepsilon_p - 2\varepsilon_{md}} \right) \right)}$$

$$\frac{\varepsilon_{mx} - \varepsilon_{md}}{\varepsilon_{mx} + 2\varepsilon_{md}} = \delta_p \left(\frac{\varepsilon_p - \varepsilon_{md}}{\varepsilon_p + 2\varepsilon_{md}} \right)$$