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ABSTRACT 
Radiation heat transfer is an important phenomenon in 

many physical systems of practical interest. When participating 

media is important, the radiative transfer equation (RTE) must 

be solved for the radiative intensity as a function of location, 

time, direction, and wavelength. In many heat transfer 

applications, a quasi-steady assumption is valid. The 

dependence on wavelength is often treated through a weighted 

sum of gray gases type approach. The discrete ordinates method 

is the most common method for approximating the angular 

dependence. In the discrete ordinates method, the intensity is 

solved exactly for a finite number of discrete directions, and 

integrals over the angular space are accomplished through a 

quadrature rule. In this work, a projection-based model 

reduction approach is applied to the discrete ordinates method. 

A small number or ordinate directions are used to construct the 

reduced basis. The reduced model is then queried at the 

quadrature points for a high order quadrature in order to 

inexpensively approximate this highly accurate solution. This 

results in a much more accurate solution than can be achieved 

by the low-order quadrature alone.  One-, two-, and three-

dimensional test problems are presented. 

 
INTRODUCTION 

 The steady-state gray radiation transport equation (RTE) 

with isotropic scattering is given by 

Ω⃗⃗ ∙ ∇⃗⃗ 𝐼(Ω⃗⃗ ) + 𝜎𝑇𝐼(Ω⃗⃗ ) = 𝜅
𝜎𝑇4

𝜋
+

𝜎𝑠

4𝜋
∫ 𝐼 (Ω⃗⃗̃ ) 𝑑Ω⃗⃗̃ . (1) 

 

The boundary conditions for Eq. 1 are Dirichlet; they specify 

the outgoing intensity at a surface to be equal to the sum of the 

surface emission and the reflected intensity.  This equation 

defines the radiative intensity as a function of 5 independent 

variables: 3 in space and 2 in angle.  The inputs that 

parameterize this equation are the absorption and scattering 

coefficients and the emission source (or alternatively the 

temperature).  The intensities in different directions are only 

coupled through the right-most (in-scattering) term in Eq. 1 and 

reflective boundary conditions.   

Model-reduction techniques are useful for decreasing the 

computational cost of many-query problems and are 

increasingly popular in the areas of optimal design, optimal 

control, uncertainty quantification, and inverse problems.  At 

first glance, the solution of the RTE does not appear to belong 

to this class of problems.  However, if the angular discretization 

is performed according to the discrete ordinates method, the 

angular coordinates may be viewed as independent parameters 

that must be sampled in much the same way as the parameters 

in the previously mentioned applications. 

 

NOMENCLATURE 

𝐼 is the radiative intensity 

𝐼𝑛 is the angular intensity at quadrature point n 

𝜎𝑇 is the macroscopic total cross section or extinction 

coefficient 

𝑤𝑛 is the nth quadrature weight 

𝜎𝑠 is the macroscopic scattering cross section or scattering 

coefficient 

𝜅 is the macroscopic absorption cross section or 

absorption coefficient 
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𝜎 is the Stefan-Boltzmann constant 

𝑇 is the material temperature 

𝐼𝑏  is the black-body intensity 𝐼𝑏 =
𝜎𝑇4

𝜋
 

Ω⃗⃗ 𝑖 is a unit vector pointing in the ordinate direction 

corresponding to quadrature point i 

𝜀 is the surface emissivity 

𝑛⃗  is the surface normal unit vector 

𝜙̿ is the reduced basis 

  

 

The discrete ordinates method is a common approach for 

representing the angular dependence of the radiative intensity.  

In the discrete ordinates method, the RTE is satisfied along a 

set of discrete directions and a quadrature rule is used to 

evaluate integrals over angle.  The choice of quadrature rule is 

somewhat problem dependent and there are many options 

available [1-12].  The choice of quadrature rule defines a set of 

N directions, Ω⃗⃗ 𝑖 and weights, 𝑤𝑖  𝑖 = 1,2,⋯ ,𝑁.  Eq. 1 is then 

approximated as a set of N first-order PDEs in only the three 

spatial dimensions. 

 

Ω⃗⃗ 𝑖 ∙ ∇⃗⃗ 𝐼𝑖 + 𝜎𝑇𝐼𝑖 = 𝑆 𝑖 = 1,2,⋯ ,𝑁  (2) 

 

The source, S is generally the sum of the emission and in-

scattering terms.  This couples the solution in each ordinate 

direction with that in every other ordinate direction.  This added 

complexity may be avoided by the use of scattering source 

iteration [7, 13] in which Eq. 2 is solved repeatedly with 

different source distributions via fixed point iteration.  The 

uncollided intensity is given by: 

 

Ω⃗⃗ 𝑖 ∙ ∇⃗⃗ 𝐼𝑖
0 + 𝜎𝑇𝐼𝑖

0 = 𝜅
𝜎𝑇4

𝜋
 𝑖 = 1,2,⋯ ,𝑁 (3) 

     𝐼𝑖
0 = 𝜀

𝜎𝑇𝑤
4

𝜋
  𝑛⃗ ∙ Ω⃗⃗ 𝑖 > 0,   

 

while, the nth-time collided intensity (with n>0) is given 

by: 

 

Ω⃗⃗ 𝑖 ∙ ∇⃗⃗ 𝐼𝑖
𝑛 + 𝜎𝑇𝐼𝑖

𝑛 =
𝜎𝑆

4𝜋
∑ 𝑤𝑗𝐼𝑗

𝑛−1𝑁
𝑗=1    𝑖 = 1,2,⋯ ,𝑁 (4) 

𝐼𝑖
𝑛 = (1 − 𝜀)∑ |𝑛⃗ ∙ Ω⃗⃗ 𝑗|𝑤𝑗𝐼𝑗

𝑛−1
𝑛⃗ ∙Ω⃗⃗ 𝑗<0       𝑛⃗ ∙ Ω⃗⃗ 𝑖 > 0.  

 

Thus, each source iteration can be viewed as one set of 

collisions.  The solution to Eq. 2 is then approached as n 

approaches infinity. 

 

𝐼𝑖 = ∑ 𝐼𝑖
𝑗∞

𝑗=0   𝑖 = 1,2,⋯ ,𝑁  (5) 

 

For a given source distribution S, Eq. 2 may be solved 

independently for each ordinate direction.  These solutions are 

all similar, varying only in the direction parameter, Ω⃗⃗ 𝑖.  For 1D 

slab geometry problems, this parameter space is one-

dimensional as only the component of the direction of travel 

aligned with the spatial dimension enters into the governing 

equation.  For 2D and 3D problems, this parameter space is 

two-dimensional.  Any point on the unit sphere (or hemisphere 

in the 2D case) may be described by two variables.  The goal of 

the parameterized model reduction strategy used is to generate 

a reduced basis for possible solution vectors (i.e. intensity 

distributions) across the parameter (angular) space.  The first 

step is to discretize Eq. 2.  In this paper, the spatial 

discretization is accomplished through linear finite elements.  

The discrete problem is given by  

 

𝐾(Ω⃗⃗ )𝐼 (Ω⃗⃗ ) = 𝑆 ,    (6) 

 

where 𝐾 is an m x m matrix where m is the number of 

degrees of freedom in the discretized problem.  For a linear 

finite element discretization m is the number of nodes.  Eq. 6 is 

linear with respect to both the unknown intensity as well as the 

directional parameter.  The existence of this reduced basis may 

be confirmed by sampling the parameter space and computing 

the dimensionality of the span of the solution vectors generated.  

For a fixed source distribution, for several values of the 

directional parameter, Ω1
⃗⃗ ⃗⃗  , Ω2

⃗⃗ ⃗⃗  , ⋯ , Ω𝐾
⃗⃗ ⃗⃗  ⃗ the solution vector 

𝐼1⃗⃗  , 𝐼2⃗⃗⃗  , ⋯ , 𝐼𝐾⃗⃗  ⃗ is computed.  These solution vectors are then 

concatenated to construct the global m x K basis matrix. 

 

𝑀̿ = [𝐼1⃗⃗  , 𝐼2⃗⃗⃗  , ⋯ , 𝐼𝐾⃗⃗  ⃗]    (7) 

 

If a large number of samples K are taken, it is likely that 

the column rank of 𝑀̿ is less than K.  To address this situation, 

the singular value decomposition (SVD) of 𝑀̿ is generated [15] 

yielding 3 matrices 𝑈̿, 𝑆̿, and 𝑉̿ where 𝑀̿ = 𝑈𝑆̿𝑉̿𝑇.  𝑆̿ is a 

diagonal matrix containing the singular values and 𝑈̿ is a full 

matrix containing the modes as its columns.  The presence of a 

reduced basis may be confirmed by examining the decay of 

these singular values. In the 1D example cases, 99.9999% of 

the energy is captured by the first 5 or 6 modes depending on 

the source distribution.  In the 2D example cases, capturing the 

same fraction of the total energy requires between 10 and 35 

modes depending on the source distribution. 

Fig. 1 shows the decay for a number of different cases.  

The precise behavior of the singular values is problem 

dependent, however, the qualitative behavior appears to be 

similar for problems of the same spatial dimension.  The rapid 

decay in singular values suggests that a relatively small number 

of modes is likely to be sufficient to capture the vast majority of 

the solution behavior.   
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Fig. 1  Decay of singular values demonstrates the presence of a 

reduced order basis for the intensity solution for several source 

distributions.  (a) 20 modes are sufficient to capture all 

behavior in the 1D geometry.  (b) 50 modes would capture a 

very large percentage of the solution behavior in the 2D 

geometry. 

 

As a result, only the primary modes of 𝑀̿ corresponding to 

the first k<K columns of 𝑈 are used.  This defines the reduced 

basis, 𝜙̿ through proper orthogonal decomposition (POD).  The 

discretized intensity in any direction is then approximated as 

 

𝐼 (Ω⃗⃗ ) ≈ 𝜙̿𝑥      (8) 

 

where 𝑥  is an n-dimensional vector and 𝜙̿ is a tall skinny m 

x k matrix.  The reduced order model (ROM) is then given by 

substituting Eq. 8 into the full-order model (Eq. 6). 

 

(𝐾(Ω⃗⃗ )𝜙̿)𝑥 = 𝑆     (9) 

 

Eq. 9 is over-determined, i.e., a solution may not exist. 

Instead, a unique solution can be computed by enforcing the 

Galerkin orthogonality condition or by applying least-squares 

Petrov–Galerkin projection [29], which minimizes the residual 

and solves 

 

(𝐾(Ω⃗⃗ )𝜙̿)
𝑇
(𝐾(Ω⃗⃗ )𝜙̿)𝑥 = (𝐾(Ω⃗⃗ )𝜙̿)

𝑇
𝑆   (10) 

 

1-D EXAMPLE 
Consider the 1D case of a purely absorbing slab 

surrounded by black walls.  The temperature profile is assumed 

quadratic, 𝑇(𝑥) = 300 + 700𝑥2.  For 1D geometries, the 

Gauss-Legendre quadrature rules are typically employed.  

Consider the angle-integrated intensity generated by the Gauss-

Legendre quadrature with 6 directions (S6).  The error in this 

case is approximately 2%.  Contrast this with the distribution 

generated by the Legendre-Gauss quadrature with 200 

directions (S200) which has an expected error of about 0.001%.  

The S6 model will be referred to as the low-order model 

(LOM).  The S200 model will be referred to as the high-order 

model (HOM).  The intensities from the S6, LOM solution may 

be used to generate a ROM capable of predicting intensities in 

any arbitrary direction.  If this ROM is then used to generate 

intensities for the S200 quadrature, the resulting error in the 

angle-integrated intensity is less than 0.3%.  The convergence 

of the LOM and ROM solutions as the LOM quadrature order 

is increased is plotted in Fig 2.       

 

 
Fig. 2  Convergence of angle-integrated intensity distributions 

for quadratic temperature profile with increasing LOM 

quadrature order. 

 

The results in Fig 2 do not tell the whole story since the 

ROM is both more accurate and necessarily more expensive 

than the LOM with the same number of quadrature points.  Fig 

3 shows the comparison of execution time and accuracy for 

each method.  The trends in Fig 3 only hold up for sufficiently 

large problems (m>>k) otherwise model reduction provides 

little advantage.  Often it is possible in 1D problems to get 

away with an extremely coarse mesh such that this condition is 

not satisfied.  However, this condition is almost always true for 

any practical 2D or 3D problem.  These results show a great 

deal of promise for ROMs to reduce the computational expense 

and increase the accuracy of discrete ordinates simulations in 

1D.   

 

(a) 

(b) 
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Fig. 3  Convergence of angle-integrated intensity 

distributions for quadratic temperature profile with increasing 

LOM quadrature order. 

2-D EXAMPLES 
In order to demonstrate this solution methodology in 

higher dimensional geometries, consider the case of a square 

surrounded by black walls and filled with a purely absorbing 

medium with opacity equal to the inverse of the side length of 

the square.  Consideration of a purely absorbing medium is 

sufficient as this is mathematically equivalent to considering 

any individual source iteration step for a scattering problem.  

The LOM considered here is the 14
th

 order PNTN quadrature 

which still contains 112 ordinate directions.  The HOM is the 

32
nd

 order quadrature of the same type which contains 544 

ordinate directions.  The PNTN quadrature rule [9] is defined 

by using the Gauss-Legendre quadrature set to define the levels 

along the z-axis as well as the total weight for each level.  The 

azimuthal angles for each level are set equal to the roots of the 

Chebyshev polynomials.   

 

 

 
Fig. 4  Normalized heat flux predictions q”(x,1) for (a) a 

discontinuous temperature profile and (b) a linear temperature 

profile for the 14
th

 order PNTN quadrature, 32
nd

 order PNTN 

quadrature, and the ROM derived from the 14
th

 order 

quadrature solutions but evaluated at the 32
nd

 order quadrature 

points 

 

Fig 4 shows the heat flux evaluated at the top (y=1) surface 

for a pair of temperature distributions.  Both the accuracy of the 

solution and the improvement provided by the ROM relative to 

the LOM are seen to depend strongly on the source distribution, 

the order of the LOM, and the mesh resolution.  However, in all 

cases a rapid increase in accuracy was observed once the LOM 

achieved a sufficient order. 

 

(a) 

𝑇(𝑥, 𝑦) =  
100, 𝑦 = 0

0, 𝑦 ≥ 0
 

(b) 

𝑇(𝑥, 𝑦) = 300 + 700(1 − 𝑦) 
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Fig. 5  Reduction in error provided by the ROM relative to the 

low-order model for various spatial mesh resolutions.  This is 

the L2 error of the ROM solution divided by the L2 error of the 

low-order model solution 

 

Fig 5 shows the reduction in error in the angularly 

integrated intensity distribution relative to the LOM for a 

variety of source distributions and mesh resolutions.  In all of 

these cases a regular rectangular grid is used.  The relative 

improvement is seen to be more pronounced for the linear 

temperature profile than for the discontinuous temperature 

profile.  This is related to the fact that the LOM error tends to 

be smaller for the linear temperature profile.  The number of 

ordinate directions required in the LOM to sufficiently inform 

the ROM and achieve the greatly enhanced accuracy is 

observed to increase with mesh refinement.  This is likely due 

to the reduction in false scattering with increasing mesh 

resolution. 

 

 
Fig. 6  Decay of singular values demonstrates that many 

additional modes are required to capture the behavior of the 

fully 3D problem 

3-D EXAMPLES 
We now move on to 3D applications.  Consider a purely 

absorbing cube with an optical side-length of one surrounded 

by black walls.  Fig 6 shows the relatively slow decay of the 

singular values for this geometry for several temperature 

distributions.  Fig 6 shows that the methodology is significantly 

less efficient for the 3D problem than was demonstrated for the 

2D problem.  Between 711 and 1284 modes are required to 

capture 99.9999% of the energy depending on the source 

distribution while between 42 and 296 are required to capture 

even 99.9% of the energy.  This is partially due to reduced 

symmetry and partially due to the mesh size.  The same 

quadrature includes twice as many angles in 3D as it does in the 

2D case.  Also, the number of degrees of freedom in the 3D 

simulation is significantly greater than the number in the 2D 

simulation.  The end result is that the LOM may be required to 

be impractically large in order to adequately inform the ROM 

and achieve significant accuracy gains. 

However, this obstacle is not insurmountable.  The failure 

of the previously described technique is largely due to 

inefficient sampling of the angular parameter space.  This may 

be overcome by using a greedy search algorithm [17 - 20] to 

sample the parameter space.  In the greedy search algorithm, 

samples are chosen adaptively by placing the new sample point 

at the location where the estimated error in the ROM prediction 

is maximum.   

This process bears some similarity to previously developed 

adaptive quadrature methods [21-27].  However, it is 

fundamentally different from those techniques, which seek to 

enrich a low order quadrature through local refinement.  In the 

proposed method, a ROM is constructed to represent a very 

high order quadrature and the ROM training points (ordinate 

directions) are chosen adaptively.  The proposed method is 

demonstrated to be effective on 3D unstructured meshes. 

As has been exploited in ROM error modeling methods 

[30], the ROM residual for a given direction is closely related 

to the ROM error for that direction and the residual is selected 

as an effective error indicator.  The ROM residual tends to be a 

highly oscillatory function of the angle with many local minima 

and maxima making the continuous optimization problem 

inherent to each step of the greedy algorithm difficult.  To avoid 

this difficulty, a discrete optimization problem is solved instead 

where the sample points are constrained to belong to a high 

order quadrature. 

 

 
Fig. 7  Distribution of sample points generated through greedy 

search algorithm for a radial temperature distribution 

T(r)=300+400r
2
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Fig 7 shows the result of one such greedy search after 440 

sample points have been selected.  The greedy search algorithm 

preferentially places sample points in the directions with large 

directional intensity values.  In this case, those are directions 

pointing back towards the origin.  In practice, acceptable levels 

of accuracy may be reached with far fewer sample points than 

are shown in Fig 7. 

The greedy search algorithm is inherently suboptimal and 

so there is little value added by finding the exact location of the 

maximum error at each step.  Significant time savings may be 

achieved by choosing the maximum of as few as 10 randomly 

selected points and only evaluating the ROM residual at these 

points and then sampling at the point with the largest residual 

norm.  This greatly reduces the number of ROM evaluations 

required.  Although a ROM evaluation is significantly less 

expensive than a FOM evaluation, evaluating the ROM for 

every quadrature point of the HOM prior to generating each 

sample can become expensive.  Additional computational 

savings may be had by seeding the ROM with a number of 

predetermined sample points prior to initiating the greedy 

search algorithm.  In the examples to follow, the ROM is 

seeded with 48 sample points analogous to the P6-T6 

quadrature. 

 

 
Fig. 8  Accuracy as a function of cumulative solution time for a 

discontinuous temperature distribution T(x,y,z)=100 if y=0, 0 

else 

 

The HOM is chosen to be the 40
th

 order PN-TN quadrature 

(P40-T40) which includes 1680 ordinate directions.  This 

number of ordinate directions has been shown to be sufficient 

to eliminate ray effects from the solution for the spatial mesh 

resolutions considered here [28].  The adaptive ROM performs 

better as the mesh is refined.  This is due to the decreasing 

relative cost of ROM evaluations relative to FOM evaluations 

as mesh size increases. 

Fig 8 shows the results of a timing study for a 3D example 

problem.  Because the adaptive ROM yields a much more 

accurate solution than the LOM when given the same number 

of FOM evaluations but is slower because the adaptive ROM 

evaluates the ROM a large number of times in addition to the 

set number of FOM evaluations, it makes sense to compare the 

two approaches on the basis of error and solution time.   

The error in the adaptive ROM may be (inexpensively) 

estimated at any time and used as a stopping criterion for the 

greedy search algorithm.  The timings shown in Fig 8 include 

this error estimation although a maximum number of FOM 

evaluations was used as the stopping criteria rather than a 

predetermined error level.  There is presently no analogous 

technique for estimating the error incurred by the discrete 

ordinates method too small a quadrature set is used as the 

LOM.  Instead, an understanding of the magnitude of the error 

is typically obtained by performing multiple LOM evaluations 

with increasing quadrature orders.  For example, one might 

evaluate the LOM using the P6-T6, P8-T8, and P10-T10 

quadratures which include 48, 80, and 120 ordinate directions 

respectively and use the differences between the solutions to 

infer an approximate level of accuracy for the P10-T10 

solution.  If the inferred level of accuracy in inadequate, 

successively higher order quadratures may be invoked until the 

accuracy is acceptable.   

 
Fig. 9  Accuracy as a function of cumulative solution time for a 

linear temperature distribution, T(x,y,z)=300+700(1-y) 

 

For this reason, the cumulative solution time is used in 

Figs 8, 9, and 10.  It is shown in all three figures that seeding 

the adaptive ROM with 48 ordinate directions and applying no 

refinement (the first data point) is both more accurate than the 
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P10-T10 solution and significantly faster than evaluating the 3 

LOMs listed above.  This initial speed advantage increases with 

mesh resolution. 

These conclusions hold true for a wide variety of 

temperature distributions.  The series of meshes used in this set 

of example problems included approximately 3.4k, 12.2k, 

36.5k, and 111.8k nodes.  In all cases, the medium is purely 

absorbing and the walls are black.  The wall temperature is 

equivalent to the temperature of the adjacent medium.  

 

 
Fig. 10  Accuracy as a function of cumulative solution time for 

a radially quadratic temperature distribution T(x,y,z) = 

300+400(x
2
+y

2
+z

2
) 

 

ERROR ESTIMATION 
The adaptive ROM error may be estimated at any time by 

constructing a relationship between the ROM residual and the 

ROM error.  At each step in the greedy search algorithm, both 

of these quantities are known for what will become the next 

sample point.  The form of the relationship between the residual 

norm and the error norm is roughly a power law as shown in 

Fig 11.  The training data in Fig 11 represents the residual norm 

– error norm pairs that are known from previous iterations of 

the greedy search algorithm.  These errors are the L2 errors in 

the directional intensity.  The prediction data are the errors 

calculated for all quadrature points in the HOM not included in 

the adaptive quadrature.  The training data are used to generate 

a curve fit that allows for the approximation of the error at any 

point for which the ROM residual norm is known; this can be 

interpreted as a reduced-order model error surrogate (ROMES) 

model [30]. 

 

 
Fig. 11  Example of construction of ROM error estimate from 

training data acquired during the greedy search algorithm for a 

linear temperature distribution, T(x,y,z)=300+700(1-y) 

 

This process provides an estimated distribution of the 

ROM error over the angular space.  The resulting error in 

angularly integrated quantities may then be estimated as well.  

Fig 12 shows the convergence of one such quantity. 

 

Error = ∑𝑤𝑖
2 ∫(𝐼𝑖

𝐹𝑂𝑀 − 𝐼𝑖
𝑅𝑂𝑀)2𝑑𝑉  (12) 
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Fig. 12  Convergence of adaptive ROM and associated error 

estimate of an angularly integrated quantity for a linear 

temperature distribution, T(x,y,z)=300+700(1-y) 

 

CONCLUSIONS 
The discrete ordinates method is shown to be amenable for 

reduced order modeling.  For 1D and 2D problems, any 

sufficiently large sampling of ordinate directions results in 

adequate sampling of the angular domain to construct a highly 

accurate reduced order model.  For 3D problems more care 

must be taken to sample the angular domain efficiently.  A 

greedy sampling approach is proposed using the ROM residual 

as an error indicator.  Timing studies show this to be highly 

effective relative to successively increasing the angular 

quadrature order.  The advantages of this approach increase 

with increasing mesh resolution since the cost of additional 

ROM evaluations is only weakly related to the mesh size 

(unlike the cost of additional FOM evaluations).  Additionally, 

an error estimate is proposed that closely matches the actual 

error for the problems considered.  This error estimate is 

inexpensive to generate and evaluate and may be easily used as 

a stopping criteria for the greedy search algorithm. 

Although the deterministic error model presented performs 

well in predicting the mean behavior, additional utility is likely 

possible through the use of stochastic error models which 

would provide a distribution of error estimates.  The source 

iteration scheme described by Eqns. 3 and 4 converges rapidly 

for problems with small scattering albedos.  However, it is 

highly inefficient for highly scattering problems.  There is 

potential for incorporating the ROM into a KP acceleration 

method which uses earlier ROM estimates to generate the low-

order operator.  This is currently under development. 
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