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ABSTRACT

Radiation heat transfer is an important phenomenon in
many physical systems of practical interest. When participating
media is important, the radiative transfer equation (RTE) must
be solved for the radiative intensity as a function of location,
time, direction, and wavelength. In many heat transfer
applications, a quasi-steady assumption is valid. The
dependence on wavelength is often treated through a weighted
sum of gray gases type approach. The discrete ordinates method
is the most common method for approximating the angular
dependence. In the discrete ordinates method, the intensity is
solved exactly for a finite number of discrete directions, and
integrals over the angular space are accomplished through a
quadrature rule. In this work, a projection-based model
reduction approach is applied to the discrete ordinates method.
A small number or ordinate directions are used to construct the
reduced basis. The reduced model is then queried at the
quadrature points for a high order quadrature in order to
inexpensively approximate this highly accurate solution. This
results in a much more accurate solution than can be achieved
by the low-order quadrature alone. One-, two-, and three-
dimensional test problems are presented.

INTRODUCTION

The steady-state gray radiation transport equation (RTE)
with isotropic scattering is given by

= . SI1(a = T4 s =\ =
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The boundary conditions for Eg. 1 are Dirichlet; they specify
the outgoing intensity at a surface to be equal to the sum of the
surface emission and the reflected intensity. This equation
defines the radiative intensity as a function of 5 independent
variables: 3 in space and 2 in angle. The inputs that
parameterize this equation are the absorption and scattering
coefficients and the emission source (or alternatively the
temperature). The intensities in different directions are only
coupled through the right-most (in-scattering) term in Eq. 1 and
reflective boundary conditions.

Model-reduction techniques are useful for decreasing the
computational cost of many-query problems and are
increasingly popular in the areas of optimal design, optimal
control, uncertainty quantification, and inverse problems. At
first glance, the solution of the RTE does not appear to belong
to this class of problems. However, if the angular discretization
is performed according to the discrete ordinates method, the
angular coordinates may be viewed as independent parameters
that must be sampled in much the same way as the parameters
in the previously mentioned applications.

NOMENCLATURE

I is the radiative intensity

I, is the angular intensity at quadrature point n

or is the macroscopic total cross section or extinction
coefficient

w, isthe nth quadrature weight

o, isthe macroscopic scattering cross section or scattering
coefficient

K is the macroscopic absorption cross section or
absorption coefficient
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o is the Stefan-Boltzmann constant
T is the material temperature
4
is the black-body intensity I, = %
Q; is a unit vector pointing in the ordinate direction
corresponding to quadrature point i
is the surface emissivity
is the surface normal unit vector
is the reduced basis

S St m

The discrete ordinates method is a common approach for
representing the angular dependence of the radiative intensity.
In the discrete ordinates method, the RTE is satisfied along a
set of discrete directions and a quadrature rule is used to
evaluate integrals over angle. The choice of quadrature rule is
somewhat problem dependent and there are many options
available [1-12]. The choice of quadrature rule defines a set of
N directions, 51' and weights, w; i = 1,2,---,N. Eq. 1 is then
approximated as a set of N first-order PDEs in only the three
spatial dimensions.

Q -V +o; =S i=12-,N )

The source, S is generally the sum of the emission and in-
scattering terms. This couples the solution in each ordinate
direction with that in every other ordinate direction. This added
complexity may be avoided by the use of scattering source
iteration [7, 13] in which Eq. 2 is solved repeatedly with
different source distributions via fixed point iteration. The
uncollided intensity is given by:

N 4
G-Vl +opll =xZ-  i=12,-,N (3)
4 —
10 = 2w #-0,>0,
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while, the nth-time collided intensity (with n>0) is given
by:

(_ii-V’I?+6T1i”—US NleIjn_1 i=12-,N (4)

=23k
I'=>0-¢) Zﬁ-ﬁj<0|ﬁ'ﬂj|wilﬁ_l n-Q; > 0.

Thus, each source iteration can be viewed as one set of
collisions. The solution to Eq. 2 is then approached as n
approaches infinity.

L =Y%,1] i=12-,N (5)

For a given source distribution S, Eq. 2 may be solved
independently for each ordinate direction. These solutions are
all similar, varying only in the direction parameter, ﬁi. For 1D
slab geometry problems, this parameter space is one-

dimensional as only the component of the direction of travel
aligned with the spatial dimension enters into the governing

equation. For 2D and 3D problems, this parameter space is
two-dimensional. Any point on the unit sphere (or hemisphere
in the 2D case) may be described by two variables. The goal of
the parameterized model reduction strategy used is to generate
a reduced basis for possible solution vectors (i.e. intensity
distributions) across the parameter (angular) space. The first
step is to discretize Eq. 2. In this paper, the spatial
discretization is accomplished through linear finite elements.
The discrete problem is given by

K(@)1(a) =3, ®)

where K is an m x m matrix where m is the number of
degrees of freedom in the discretized problem. For a linear
finite element discretization m is the number of nodes. Eq. 6 is
linear with respect to both the unknown intensity as well as the
directional parameter. The existence of this reduced basis may
be confirmed by sampling the parameter space and computing
the dimensionality of the span of the solution vectors generated.
For a fixed source distribution, for several values of the

directional parameter, Q,,Q,,--,Q, the solution vector

ZEE is computed. These solution vectors are then
concatenated to construct the global m x K basis matrix.

M= ,Ig| U]

If a large number of samples K are taken, it is likely that
the column rank of M is less than K. To address this situation,
the singular value decomposition (SVD) of M is generateg [15]

yielding 3 matrices U, S, and V where M = USVT. S is a
diagonal matrix containing the singular values and U is a full
matrix containing the modes as its columns. The presence of a
reduced basis may be confirmed by examining the decay of
these singular values. In the 1D example cases, 99.9999% of
the energy is captured by the first 5 or 6 modes depending on
the source distribution. In the 2D example cases, capturing the
same fraction of the total energy requires between 10 and 35
modes depending on the source distribution.

Fig. 1 shows the decay for a number of different cases.
The precise behavior of the singular values is problem
dependent, however, the qualitative behavior appears to be
similar for problems of the same spatial dimension. The rapid
decay in singular values suggests that a relatively small number
of modes is likely to be sufficient to capture the vast majority of
the solution behavior.
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Fig. 1 Decay of singular values demonstrates the presence of a
reduced order basis for the intensity solution for several source
distributions. (@) 20 modes are sufficient to capture all
behavior in the 1D geometry. (b) 50 modes would capture a
very large percentage of the solution behavior in the 2D
geometry.

As a result, only the p_rimary modes of M corresponding to
the first k<K columns of U are used. This defines the reduced

basis, ¢=> through proper orthogonal decomposition (POD). The
discretized intensity in any direction is then approximated as

b @)

S|

(@) ~

where X is an n-dimensional vector and ¢=> is a tall skinny m
X k matrix. The reduced order model (ROM) is then given by
substituting Eq. 8 into the full-order model (Eg. 6).

(K(@)¢)z=3$ 9)

Eqg. 9 is over-determined, i.e., a solution may not exist.
Instead, a unique solution can be computed by enforcing the
Galerkin orthogonality condition or by applying least-squares
Petrov—Galerkin projection [29], which minimizes the residual
and solves

(R(@)3) (R@)$)% = (R(@)F)' S (10)

1-D EXAMPLE

Consider the 1D case of a purely absorbing slab
surrounded by black walls. The temperature profile is assumed
quadratic, T(x) =300+ 700x?. For 1D geometries, the
Gauss-Legendre quadrature rules are typically employed.
Consider the angle-integrated intensity generated by the Gauss-
Legendre quadrature with 6 directions (Sg). The error in this

case is approximately 2%. Contrast this with the distribution
generated by the Legendre-Gauss quadrature with 200
directions (S,qo) Which has an expected error of about 0.001%.
The Sg model will be referred to as the low-order model
(LOM). The S,00 model will be referred to as the high-order
model (HOM). The intensities from the Sg, LOM solution may
be used to generate a ROM capable of predicting intensities in
any arbitrary direction. If this ROM is then used to generate
intensities for the S,qy quadrature, the resulting error in the
angle-integrated intensity is less than 0.3%. The convergence
of the LOM and ROM solutions as the LOM quadrature order
is increased is plotted in Fig 2.
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Fig. 2 Convergence of angle-integrated intensity distributions
for quadratic temperature profile with increasing LOM
quadrature order.

The results in Fig 2 do not tell the whole story since the
ROM is both more accurate and necessarily more expensive
than the LOM with the same number of quadrature points. Fig
3 shows the comparison of execution time and accuracy for
each method. The trends in Fig 3 only hold up for sufficiently
large problems (m>>k) otherwise model reduction provides
little advantage. Often it is possible in 1D problems to get
away with an extremely coarse mesh such that this condition is
not satisfied. However, this condition is almost always true for
any practical 2D or 3D problem. These results show a great
deal of promise for ROMs to reduce the computational expense
and increase the accuracy of discrete ordinates simulations in
1D.
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Fig. 3 Convergence of angle-integrated intensity
distributions for quadratic temperature profile with increasing
LOM quadrature order.

2-D EXAMPLES

In order to demonstrate this solution methodology in
higher dimensional geometries, consider the case of a square
surrounded by black walls and filled with a purely absorbing
medium with opacity equal to the inverse of the side length of
the square. Consideration of a purely absorbing medium is
sufficient as this is mathematically equivalent to considering
any individual source iteration step for a scattering problem.
The LOM considered here is the 14™ order PNTN quadrature
which still contains 112 ordinate directions. The HOM is the
32" order quadrature of the same type which contains 544
ordinate directions. The PNTN quadrature rule [9] is defined
by using the Gauss-Legendre quadrature set to define the levels
along the z-axis as well as the total weight for each level. The
azimuthal angles for each level are set equal to the roots of the
Chebyshev polynomials.
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Fig. 4 Normalized heat flux predictions q”(x,1) for (a) a
discontinuous temperature profile and (b) a linear temperature
profile for the 14" order PNTN quadrature, 32™ order PNTN
quadrature, and the ROM derived from the 14" order
quadrature solutions but evaluated at the 32" order quadrature
points

Fig 4 shows the heat flux evaluated at the top (y=1) surface
for a pair of temperature distributions. Both the accuracy of the
solution and the improvement provided by the ROM relative to
the LOM are seen to depend strongly on the source distribution,
the order of the LOM, and the mesh resolution. However, in all
cases a rapid increase in accuracy was observed once the LOM
achieved a sufficient order.
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Fig. 5 Reduction in error provided by the ROM relative to the
low-order model for various spatial mesh resolutions. This is
the L2 error of the ROM solution divided by the L2 error of the
low-order model solution

Fig 5 shows the reduction in error in the angularly
integrated intensity distribution relative to the LOM for a
variety of source distributions and mesh resolutions. In all of
these cases a regular rectangular grid is used. The relative
improvement is seen to be more pronounced for the linear
temperature profile than for the discontinuous temperature
profile. This is related to the fact that the LOM error tends to
be smaller for the linear temperature profile. The number of
ordinate directions required in the LOM to sufficiently inform
the ROM and achieve the greatly enhanced accuracy is
observed to increase with mesh refinement. This is likely due
to the reduction in false scattering with increasing mesh
resolution.
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Fig. 6 Decay of singular values demonstrates that many
additional modes are required to capture the behavior of the
fully 3D problem

3-D EXAMPLES

We now move on to 3D applications. Consider a purely
absorbing cube with an optical side-length of one surrounded
by black walls. Fig 6 shows the relatively slow decay of the
singular values for this geometry for several temperature
distributions. Fig 6 shows that the methodology is significantly
less efficient for the 3D problem than was demonstrated for the

2D problem. Between 711 and 1284 modes are required to
capture 99.9999% of the energy depending on the source
distribution while between 42 and 296 are required to capture
even 99.9% of the energy. This is partially due to reduced
symmetry and partially due to the mesh size. The same
quadrature includes twice as many angles in 3D as it does in the
2D case. Also, the number of degrees of freedom in the 3D
simulation is significantly greater than the number in the 2D
simulation. The end result is that the LOM may be required to
be impractically large in order to adequately inform the ROM
and achieve significant accuracy gains.

However, this obstacle is not insurmountable. The failure
of the previously described technique is largely due to
inefficient sampling of the angular parameter space. This may
be overcome by using a greedy search algorithm [17 - 20] to
sample the parameter space. In the greedy search algorithm,
samples are chosen adaptively by placing the new sample point
at the location where the estimated error in the ROM prediction
is maximum.

This process bears some similarity to previously developed
adaptive quadrature methods [21-27]. However, it is
fundamentally different from those techniques, which seek to
enrich a low order quadrature through local refinement. In the
proposed method, a ROM is constructed to represent a very
high order quadrature and the ROM training points (ordinate
directions) are chosen adaptively. The proposed method is
demonstrated to be effective on 3D unstructured meshes.

As has been exploited in ROM error modeling methods
[30], the ROM residual for a given direction is closely related
to the ROM error for that direction and the residual is selected
as an effective error indicator. The ROM residual tends to be a
highly oscillatory function of the angle with many local minima
and maxima making the continuous optimization problem
inherent to each step of the greedy algorithm difficult. To avoid
this difficulty, a discrete optimization problem is solved instead
where the sample points are constrained to belong to a high
order quadrature.
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Fig. 7 Distribution of sample points generated through greedy
search algorithm for a radial temperature distribution
T(r)=300+400r?
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Fig 7 shows the result of one such greedy search after 440
sample points have been selected. The greedy search algorithm
preferentially places sample points in the directions with large
directional intensity values. In this case, those are directions
pointing back towards the origin. In practice, acceptable levels
of accuracy may be reached with far fewer sample points than
are shown in Fig 7.

The greedy search algorithm is inherently suboptimal and
so there is little value added by finding the exact location of the
maximum error at each step. Significant time savings may be
achieved by choosing the maximum of as few as 10 randomly
selected points and only evaluating the ROM residual at these
points and then sampling at the point with the largest residual
norm. This greatly reduces the number of ROM evaluations
required. Although a ROM evaluation is significantly less
expensive than a FOM evaluation, evaluating the ROM for
every quadrature point of the HOM prior to generating each
sample can become expensive. Additional computational
savings may be had by seeding the ROM with a number of
predetermined sample points prior to initiating the greedy
search algorithm. In the examples to follow, the ROM s
seeded with 48 sample points analogous to the P6-T6
quadrature.

T(x,y,2)=100 if y=0, 0 else
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Fig. 8 Accuracy as a function of cumulative solution time for a
discontinuous temperature distribution T(x,y,z)=100 if y=0, 0
else

The HOM is chosen to be the 40" order PN-TN quadrature
(P40-T40) which includes 1680 ordinate directions. This
number of ordinate directions has been shown to be sufficient
to eliminate ray effects from the solution for the spatial mesh
resolutions considered here [28]. The adaptive ROM performs
better as the mesh is refined. This is due to the decreasing

relative cost of ROM evaluations relative to FOM evaluations
as mesh size increases.

Fig 8 shows the results of a timing study for a 3D example
problem. Because the adaptive ROM vyields a much more
accurate solution than the LOM when given the same number
of FOM evaluations but is slower because the adaptive ROM
evaluates the ROM a large number of times in addition to the
set number of FOM evaluations, it makes sense to compare the
two approaches on the basis of error and solution time.

The error in the adaptive ROM may be (inexpensively)
estimated at any time and used as a stopping criterion for the
greedy search algorithm. The timings shown in Fig 8 include
this error estimation although a maximum number of FOM
evaluations was used as the stopping criteria rather than a
predetermined error level. There is presently no analogous
technique for estimating the error incurred by the discrete
ordinates method too small a quadrature set is used as the
LOM. Instead, an understanding of the magnitude of the error
is typically obtained by performing multiple LOM evaluations
with increasing quadrature orders. For example, one might
evaluate the LOM using the P6-T6, P8-T8, and P10-T10
quadratures which include 48, 80, and 120 ordinate directions
respectively and use the differences between the solutions to
infer an approximate level of accuracy for the P10-T10
solution. If the inferred level of accuracy in inadequate,
successively higher order quadratures may be invoked until the
accuracy is acceptable.
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Fig. 9 Accuracy as a function of cumulative solution time for a
linear temperature distribution, T(x,y,z)=300+700(1-y)

For this reason, the cumulative solution time is used in
Figs 8, 9, and 10. It is shown in all three figures that seeding
the adaptive ROM with 48 ordinate directions and applying no
refinement (the first data point) is both more accurate than the
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P10-T10 solution and significantly faster than evaluating the 3
LOM s listed above. This initial speed advantage increases with
mesh resolution.

These conclusions hold true for a wide variety of
temperature distributions. The series of meshes used in this set
of example problems included approximately 3.4k, 12.2k,
36.5k, and 111.8k nodes. In all cases, the medium is purely
absorbing and the walls are black. The wall temperature is
equivalent to the temperature of the adjacent medium.

T(x,y,2)=300+400*(x’ +y° +z°)
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Fig. 10 Accuracy as a function of cumulative solution time for
a radially quadratic temperature distribution T(x,y,z) =
300+400(x*+y*+7%)

ERROR ESTIMATION

The adaptive ROM error may be estimated at any time by
constructing a relationship between the ROM residual and the
ROM error. At each step in the greedy search algorithm, both
of these quantities are known for what will become the next
sample point. The form of the relationship between the residual
norm and the error norm is roughly a power law as shown in
Fig 11. The training data in Fig 11 represents the residual norm
— error norm pairs that are known from previous iterations of
the greedy search algorithm. These errors are the L2 errors in
the directional intensity. The prediction data are the errors
calculated for all quadrature points in the HOM not included in
the adaptive quadrature. The training data are used to generate
a curve fit that allows for the approximation of the error at any
point for which the ROM residual norm is known; this can be
interpreted as a reduced-order model error surrogate (ROMES)
model [30].

10%;
X Training Data
« Prediction Data
—Error Estimate

103.

Error Norm

10t
107! 10° 10! 10° 10°
Residual Norm

Fig. 11 Example of construction of ROM error estimate from
training data acquired during the greedy search algorithm for a
linear temperature distribution, T(x,y,z)=300+700(1-y)

This process provides an estimated distribution of the
ROM error over the angular space. The resulting error in

angularly integrated quantities may then be estimated as well.
Fig 12 shows the convergence of one such quantity.

Error = Y w? [(IFOM — [fROM)2qy (12)
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Fig. 12 Convergence of adaptive ROM and associated error
estimate of an angularly integrated quantity for a linear
temperature distribution, T(x,y,zZ)=300+700(1-y)

CONCLUSIONS

The discrete ordinates method is shown to be amenable for
reduced order modeling. For 1D and 2D problems, any
sufficiently large sampling of ordinate directions results in
adequate sampling of the angular domain to construct a highly
accurate reduced order model. For 3D problems more care
must be taken to sample the angular domain efficiently. A
greedy sampling approach is proposed using the ROM residual
as an error indicator. Timing studies show this to be highly
effective relative to successively increasing the angular
quadrature order. The advantages of this approach increase
with increasing mesh resolution since the cost of additional
ROM evaluations is only weakly related to the mesh size
(unlike the cost of additional FOM evaluations). Additionally,
an error estimate is proposed that closely matches the actual
error for the problems considered. This error estimate is
inexpensive to generate and evaluate and may be easily used as
a stopping criteria for the greedy search algorithm.

Although the deterministic error model presented performs
well in predicting the mean behavior, additional utility is likely
possible through the use of stochastic error models which
would provide a distribution of error estimates. The source
iteration scheme described by Eqns. 3 and 4 converges rapidly
for problems with small scattering albedos. However, it is
highly inefficient for highly scattering problems. There is
potential for incorporating the ROM into a KP acceleration
method which uses earlier ROM estimates to generate the low-
order operator. This is currently under development.
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