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Motivation 

 Numerous problems with 
moving or topologically 
complex interfaces with 
discontinuous physics and 
fields 

Capillary Hydrodynamics 

Transport in topologically complex 

domains including composite  

energetic materials and batteries 

Organic Material Decomposition (OMD) 

with coupled porous and low Ma flow 

Conductive burn 

of energetic materials 

Material death 

5 cm/s 

Laser welding  



Prototypical Multimaterial Problem: 
Battery Performance 

 Numerous materials in contact 

 Distinct anisotropic properties from grain to grain 

 Complex Volumetric and interfacial physics 

 Electrochemistry, possibly with contact resistance at grain boundaries 

 Static, but Complex Topology 

 Obtained from experimental image reconstruction 

 Precludes many automated meshing strategies 



Prototypical Multiphase Problems: Laser 
Welding and Additive Manufacturing 
 Both laser welding and additive manufacturing via selective laser melting involve using a laser to 

apply intense heating over a very small area to metals 

 Complex interfacial transport involving capillarity, laser heating, non-equilibrium vaporization, 
gives rise to dynamic, discontinuous physics and fields 

50 micron 304L stainless 

6 cm/s scan rate  

Additive Manufacturing via selective 

laser melting 



Prototypical Multiphysics Problem: 
Burning, Deformable Solid 

 Disparate Volumetric Physics 

 3 Distinct materials and physics – fluid, 
solid, and burning solid 

 DOFs discontinuous or one-sided 

 Complex Interfacial Physics 

 Momentum balance, mass balance, 
burn front motion 

 Fronts moving with speed other than 
local velocity 

 Dynamic Topology 

 Precludes simple moving mesh methods 

 Interfaces created and deleted 
dynamically 

Ideal Gas 

Burning and Deforming Solid 

Deforming Enclosure 



Enriched Finite Element Methods 

ALE Diffuse LS XFEM CDFEM 

• Separate, static 

blocks for gas and 

liquid phases 

• Static discretization 

• Single block with 

smooth transition 

between gas and 

liquid phases  

• Static discretization 

• Single block with 

sharply enriched 

elements (weak or 

strong) spanning 

gas and liquid 

phases 

• Interfacial 

elements are 

dynamically 

enriched to 

describe phases 

• Separate, dynamic 

blocks for gas and 

liquid phases 

• Interfacial elements 

are dynamically 

decomposed into 

elements that 

conform to phases 

Finite Element Methods for Moving Interfaces in  
Fluid/Thermal Applications Tested at Sandia 



Many Forms of Enriched Finite Element Methods 
for Discontinuous Transport Problems 

 Generalized Finite Element Methods (GFEM) 

 I. Babuška, G. Caloz, J.E. Osborn (1994) 

 Use non-polynomial shape functions to more accurately capture material response 

 May include continuous or discontinuous functions 

 eXtended Finite Element Methods (XFEM) 

 N. Moës, J. Dolbow, T. Belytschko (1999)  

 Nodal enrichment using discontinuous functions 

 Conformal Decomposition Finite Element Methods (CDFEM) 

 D.R. Noble, E.P Newren, J.B Lechman (2010)  

 Decompose background mesh into elements that conform to both the background elements 
and the implicit interfaces 

 Enrichment occurs via degrees of freedom at added interface nodes 

 Shape functions for nodes of background mesh are modified by conformal decomposition 

 Hierarchical Interface-Enriched Finite Element Methods (HIEFEM) 

 S. Soghrati and P.H. Geubelle (2012)  

 Retain unaltered shape functions for nodes of background mesh 

 Enrichment occurs via degrees of freedom at added interface nodes 



XFEM – CDFEM Discretization Comparison 

 XFEM Approximation 

 

 

 

 CDFEM Approximation 
 

 

 

 

 Identical IFF interfacial nodes in CDFEM are constrained to 
match XFEM values at nodal locations 

 CDFEM space contains XFEM space 

 CDFEM is no less accurate than XFEM (Li et al., 2003) 

 XFEM can be recovered from CDFEM by adding constraints 

+ 

+ 



XFEM - CDFEM Requirements Comparison 

XFEM CDFEM 

Volume Assembly Conformal subelement 

integration, specialized 

element loops to use 

modified integration rules 

Standard Volume 

Integration 

Surface Flux 

Assembly 

Specialized volume element 

loops with specialized 

quadrature 

Standard Surface 

Integration 

Phase Specific 

DOFs and 

Equations 

Different variables present at 

different nodes of the same 

block 

Block has homogenous 

dofs/equations 

Dynamic DOFS and 

Equations 

Require reinitializing 

linear system 

Require reinitializing 

linear system 

Various BC types 

on Interface 

Dirichlet BCs are 

research area 

Standard Techniques 

available 

SAND2010-6067P 



Conformal Decomposition Finite Element 
Method (CDFEM) 

 Simple Concept (Noble, et al. 2010) 

 Use one or more level set fields to define materials or phases 

 Decompose non-conformal elements into conformal ones 

 Obtain solutions on conformal elements 

 Related Work 

 Li et al. (2003) FEM on Cartesian Grid with Added Nodes 

 Ilinca and Hetu (2010) Finite Element Immersed Boundary 

 S. Soghrati and P.H. Geubelle (2012)  Interface Enriched Finite 
Element 

 Properties 

 Supports wide variety of interfacial conditions (identical to boundary 
fitted mesh) 

 Avoids manual generation of boundary fitted mesh 

 Supports general topological evolution (subject to mesh resolution) 

 Similar to finite element adaptivity 

 Uses standard finite element assembly including data structures, 
interpolation, quadrature 

 



But What About the Low Quality Elements? 

 Resulting meshes 
 Infinitesimal edge lengths 

 Arbitrarily high aspect ratios (small angles) 

 Introduces obtuse angles. Depending on cutting 
strategy, large angles can approach 180⁰ 

 Consequences 
 Condition number of resulting system of equations 

 Interpolation error  

 Other concerns: stabilized methods, suitability for 
solid mechanics, Courant number limitations, 
capillary forces 

 Questions 
 How serious are these issues? 

 What can be done to mitigate them? 



Impact of Mesh Quality 

Reprinted from “What is a Good Finite Element?” by Jonathan Richard Shewchuk 



Static Interface CDFEM Verification 

 Steady Potential Flow about a Sphere 
 Embedded curved boundaries 
 Dirichlet BC on outer surface, Natural 

BC on inner surface 
 Optimal convergence rates for 

solution and gradient both on volume 
and boundaries 

 
 

 Steady, Viscous Flow about a Periodic Array of 
Spheres 
 Embedded curved boundaries 
 Dirichlet BC on sphere surface 
 Accurate results right up to close packing limit 
 Sum of nodal residuals provides 

accurate/convergent measure of drag force 



Research Challenges 

 Time stepping 
 How to handle dynamic unknowns as interface evolves 

 Matrix conditioning 
 Issue common to “all” enriched finite element methods 

 Linearly dependent system of equations if produced as support 
vanished for enriched degrees of freedom 

 Same as small angle issue 

 Physics-geometry coupling 
 How to develop full Newton methods when unknowns are dynamic 

within a nonlinear iteration loop 

 Ongoing work in this area 

 Stabilized enriched finite elements 
 Little work has been done here 



 What do we do when nodes change 
material? 
 
 
 
 
 

 

Research Challenge: Evolving Interfaces in 
Enriched Finite Element Methods 

 How do we handle the moving 
interface? 
 
 
 
 
 
 

 

 This is an issue for all enriched finite 
element methods 
 CDFEM 
 XFEM – Issue when nodes change material 

 
 
 
 
 

 



Model Problem: Scalar Advection-
Diffusion 

 Level Set Equation for interface 
motion 
 
 
 

 Scalar advection-diffusion 
 
 
 

 Allow arbitrary discontinuities in 
fields across interface 
 Discontinuous value and gradient 

 
 
 

 



 XFEM – Immersed Interface Approach 
 Integration done over the 4 subdomains 

 

 
 
 
 Scalar advection – Backward Euler 

 
 

 
 Careful formation of the time term evaluates fields at times when that field is 

present, 𝜓𝐽
𝑛+1 𝐱  when 𝐱 ∈ Ω𝐽

𝑛+1and 𝜓𝐼
𝑛 𝐱  when 𝐱 ∈ Ω𝐼

𝑛 

 However, this does involve differencing across material boundaries: 𝜓𝐽
𝑛+1-𝜓𝐼

𝑛 
when 𝐼 ≠ 𝐽 

 Proposed by Fries and Zilian (2009) but shown to be insufficient for strong 
discontinuities by Henke et al. (2014) 

 
 
 
 
 
 

 

Approach for Dynamic Discretizations: 
Subdomain Integration 



 Semi-Lagrangian advection 
 Discretize time and advection terms simultaneously to avoid dispersive errors 

 

 
 For straight line characteristics: 
 Quantity evaluated by interpolation 

– May be overly diffusive 

 Avoids differencing across material boundaries by tracing back to previous location 
 Less clear how to handle arbitrary interface motion (i.e. phase change) 

 
 
 
 
 
 

 

Approach for Dynamic Discretizations: 
Semi-Lagrangian Advection 



 Extrapolation from previous  location 
 Essentially method by Henke et al. (2014) for XFEM (termed semi-Lagrangean) 

 

 
 

 

 

 Allows time and advection terms to be handled separately 

 Avoids differencing across material boundaries by tracing back to previous location 

 Involves extrapolation from previous location to current location 

 Extrapolation may be poorly defined because of multi-valued gradient in 2-D and 3-D 

 Even for weakly discontinuous fields, the extrapolated field is strongly discontinuous 

 

 
 
 
 
 
 

 

Approach for Dynamic Discretizations: 
Extrapolation from Previous Location 

𝑆𝑛+1 𝐱  is set of all  
materials present at 𝐱 



 Extrapolation from closest point on previous interface 
 

 

 

 Point 𝑃𝑛 𝐱  is the nearest point to 𝐱 on the previous interface 

 Identical to extrapolation from previous location in 1-D if CFL<1 

 Extrapolation may be poorly defined due to discontinuous gradient in 2-D and 3-D 

 Even for weakly discontinuous fields, the extrapolated field is strongly discontinuous 

 
 
 
 
 
 

 

Approach for Dynamic Discretizations: 
Interface Extrapolation (IE) 



 Uses Arbitrary Lagrangian Eulerian (ALE) technology for moving meshes 
 Relates time derivative following a moving point to the time derivative fixed in space 

 

 

 

 

 

 

 

 

 Using the closest point projection 
 

 
 
 
 
 

 Recovers semi-Lagrangian in limit of 𝐱 = 𝐮 

Approach for Dynamic Discretizations: 
Moving Mesh (MM) 



 Second order time accuracy via Crank-Nicolson (CN) 
 Straightforward to average advection operator 

 

 

 

 

 

 

 

 Second order time accuracy via BDF2 
 Requires extrapolation of n-1 state 

 
 
 
 
 
 

 

Approach for Dynamic Discretizations: 2nd 
Order Interface Extrapolation (IE) 



 Second order time accuracy via Crank-Nicolson (CN) 
 Dynamic domain requires integral to evaluated at half plane 

 

 

 

 

 

 

 

 Second order time accuracy via BDF2 
 Requires nearest point projection of n-1 state 

 
 
 
 
 
 

 

Approach for Dynamic Discretizations: 2nd 
Order Moving Mesh (MM) 



 Capturing arbitrary discontinuities on moving interfaces 
 All enriched methods require specialized method for handling dynamic 

discretization 

 Subdomain integration 
 Requires decomposition with respect to old and new configurations 
 Differences across material boundaries 
 Not convergent for strong discontinuities (Henke et al. 2014) 

 Interface Extrapolation 
 Poorly defined at element boundaries in higher dimensions due to 

discontinuous gradient 
 The extrapolation of a weak discontinuity is strongly discontinuous 
 2nd order versions straightforward to implement 

 Moving Mesh 
 Only requires value, not gradient from nearest point, so it is well defined in 

higher dimensions 
 Crank-Nicolson requires assembly over mid-plane configuration 
 2nd order time accuracy is straightforward via BDF2 

 
 
 
 
 

 

Approach for Dynamic Discretizations: 
Method Summary 



 Constant advection of a strong discontinuity 
 Subdomain integration method does not converge (Henke et al. 2014) 

 Both interface extrapolation and moving mesh achieve machine precision 

 
 Constant advection of a weak discontinuity 

 All proposed methods should achieve machine precision (Subdomain integration 
not tested.) 

 
 
 
 
 

 

Results: Patch Tests 



 Constant advection of a sinusoid 
 Trivial level set solution for constant advection velocity 

 

 

 Method of manufacture solutions for advection-diffusion with both strong and 
weak discontinuity 

 

 

 
 
 
 
 
 
 

 Examine convergence with in space and time for various Courant numbers 

 
 

Results: MMS for 1-D Advection-Diffusion with 
Strong and Weak Discontinuity from Contact 
Resistance 



 Constant advection advection of a sinusoid 
 2nd order convergence using BDF2 for either Interface Extrapolation or Moving 

Mesh methods 

 
 

 

Results: MMS for 1-D Advection-Diffusion with 
Strong and Weak Discontinuity from Contact 
Resistance 



Verification via MMS for 2D Advection-
Diffusion with a Sharp Discontinuity 

Convergence plot for the 2-D advection-
diffusion problem with contact resistance, 

using the BDF2 time integrator 

 

 

 

 
 



Research Challenge: Circumventing Poor 
Conditioning of Enriched System of Equations 

 Common issue to GFEM, XFEM, cutFEM, CDFEM 
 Linearly dependent as support vanishes 

 Small angle poor conditioning in CDFEM 

 Previously published solutions 
 Moës et al. (2002) – Snapping interface to nodes in XFEM 

 Modifies geometry by moving interface 

 Proposed solutions 
 Guaranteed quality CDFEM – Snap background mesh to interface 

 Avoids disturbing interface location 

 Difficult to implement (or impossible) near boundaries or other interfaces 

 Specially designed preconditioners based on hierarchical basis 

 



Guaranteed Quality Conformal Decomposition 
Finite Element Method (CDFEM) 

 Simple Concept 

 Determine edge cut locations using intersection of 
level set and edge 

 When any of the edges of a node are cut below a 
specified ratio, move the node to the closest edge 
cut location (snap background mesh nodes to 
interface, •→•) 

 Related Work 

 Moës et al. (2002) – Snapping interface to nodes in 
XFEM 

 Labelle and Shewchuk (2007) - Isosurface stuffing for 
guaranteed quality meshes that conform to an 
isosurface 

 Rangarajan and Lew (2012) - Universal Meshes for 
guaranteed quality triangulations that conform to a 
smooth surface 

 



Choosing the Edge Snap Tolerance in 2D 

 How High Can the Snap Tolerance Be? 

 Can we push this so that no edge get cut, only 
snapped? NO 

 Maximum snap tolerance for non-degenerate 
triangles 

 Cannot allow all nodes of an element to snap to the 
interface 

 Maximum snap tolerance, a, in terms of maximum 
to minimum edge length ratio, r 

 

 

 

 Maximum snap tolerance of 0.41 for equilateral 
triangle mesh and 1/3 for structured mesh 

 



Choosing the Edge Snap Tolerance in 3D 

 Maximum snap tolerance for non-degenerate 
tetrahedral mesh 

 Cannot allow all nodes of an element to snap to the 
interface 

 Maximum snap tolerance, a, in terms of maximum 
to minimum edge length ratio, r 

 

 

 

 Maximum snap tolerance of 0.37 for equilateral 
tetrahedron mesh and 0.29 for structured mesh 

 



Guaranteed Mesh Quality As a Function of Edge 
Snap Tolerance 

 Mesh quality measures 

 Normalized inverse minimum edge length, l 

 Element quality (Berzins 1998) 

 triangles:   tetrahedrons: 

 For snap tolerance of 0.2 for equilateral triangle, l=5, Qw=2.49 

 For snap tolerance of 0.1 for equilateral tetrahedron, l=10, Qw=15.3 
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Quantitative Improvement in Condition Number 
and Minimum Edge Length in 2D 

 Test 
 Perform 500 decompositions for circle with random radius with and without snapping 
 Evaluate minimum edge length and condition number of Laplacian matrix 

 Results 
 Without snapping, both minimum edge length and condition number shows many orders 

of variation. These quantities are highly correlated. 
 Snap tolerance of 0.2 reduces inverse minimum edge length and condition number to 

small multiples of uncut mesh values. 
 

ℎ = 1/64 



Qualitative Improvement Obtained by 
Snapping Nodes to Interface 

 Improved angles, edge lengths, element volumes, radius ratio 



Convergence of Interpolation Error in 3D 

 Test 
 Decomposed mesh for sphere of radius (p+1)/10 
 Evaluate interpolation error with mesh refinement for function: 

 
 Results 

 Solution error decreases at expected rates regardless of snapping or face cutting strategy 

 In fact, neither snapping or face cutting has a significant effect on the interpolation error as 
compared to mesh refinement 
 

𝑓 𝑥, 𝑦 = 𝑥 − 𝑥𝑐
2 + 𝑦 − 𝑦𝑐

2 + 𝑧 − 𝑧𝑐
2 − 𝑟2 



Creating Well-Conditioned Systems Without 
Modifying the Mesh Geometry 

 Motivation 

 With multiple interfaces or near external boundaries slivers are unavoidable 

 Ideas considered 

 Some form of stabilization? 

 Ghost penalty stabilization has been shown to eliminate poor conditioning 
in XFEM and cutFEM methods 

 Change of variables 

 Constrain added CDFEM nodes to have values in XFEM space of functions 

– Conceptually involves introducing constraints for CDFEM added nodes in terms 
of unknowns located at parent nodes 

– This produces well-conditioned systems for 1-sided problems! 

 Use hierarchical basis for added CDFEM nodes 

– Can be formed as either actual change of variables or as preconditioner for 
unaltered CDFEM system 
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Prototype poorly conditioned problem 

 Modified Poisson Equation 

 c𝑇 = 𝛻2𝑇 

 Mass-like and Laplacian term 

 Vary interface position, 𝛼 

 

 Matrix (a=0.001) 

 

 

 

 

 

 Growing disparity of row and column scales 

 Sliver elements generate penalty between nearby nodes 

 

    0.4995         0         0    0.0005   -0.0005   -0.4995         0 

         0    0.0011   -0.0005         0   -0.0000   -0.0005         0 

         0   -0.0005    0.0012         0         0    0.0001   -0.0005 

    0.0005         0         0    0.4995         0   -0.0005   -0.4995 

   -0.0005   -0.0000         0         0    0.5005   -0.5000         0 

   -0.4995   -0.0005    0.0001   -0.0005   -0.5000    1.0012   -0.0005 

         0         0   -0.0005   -0.4995         0   -0.0005    0.5006 

X 
1

0.001
 



Conditioning of Prototype problem 

 Condition number ~ 1 𝛼 − 𝛼2  

 Not helped by Jacobi preconditioning 

 However, preconditioner based in hierarchical basis yields condition 
number nearly independent of edge cut position, 𝛼 

 



Hierarchical Basis Functions 

 Both have same approximation space 

𝑇 = 𝑐𝑇 , 𝑇=Standard unknowns, 𝑇 =Hierarchical unknowns 

 With only 1 level (CDFEM) the condition number for hierarchical basis (𝐴 ) is 
independent of added node location, unlike standard basis (𝐴) (with Jacobi 
preconditioning) 

𝐴𝑇 = 𝑏   →    𝐴𝑐𝑇 = 𝑏 

𝑐𝑡𝐴𝑐 𝑇 = 𝑐𝑡𝑏 →  𝐴 𝑇 = 𝑏  

 Can be posed as preconditioner of original system 
𝑀 −1=𝐿 𝐿 𝑡          𝐿 𝑡𝐴 𝐿 = 𝐿𝑡𝐴𝐿   if   𝐿 = 𝑐𝐿  

Standard Linear 

Lagrange Basis 

Functions Linear Hierarchical 

Basis Functions 



Application of Hierarchical Basis Functions to 
CDFEM Added Nodes – Hierarchical Basis 

 CDFEM Basis Functions for weak discontinuities 

 

 

 Hierarchical Basis Functions for weak discontinuities 

 

 

 CDFEM Basis Functions for strong discontinuities 

 

 

 Hierarchical Basis Functions for strong discontinuities 

 

𝑇2 = 1 − 𝛼 𝑇0 + 𝛼𝑇1 + 𝑇 2 

𝑇2 = 1 − 𝛼 𝑇0 + 𝑇 2 𝑇2 = 𝛼𝑇1 + 𝑇 2 

0 1 2 

0 1 2 0 1 2 
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Application of Hierarchical Basis Functions to 
CDFEM Added Nodes – Linear Algebra 

 Transformation from hierarchical to standard basis (𝑐) is built edge by edge 

 Hierarchical matrix preconditioner also readily approximated in terms of 𝛼 
based on scale of diagonal 

 End result is that poor conditioning due to CDFEM slivers is removed 

 

𝑐 =

1       
   1       
    1      
   1    

1 − 𝛼 𝛼    1   
 1 − 𝛼  𝛼    1  

  𝛼 1 − 𝛼    1 

 

    1.1667   -0.4583    0.0833   -0.4583    0.0000    0.0369   -0.0145 

   -0.4583    1.0833   -0.4583         0    0.0158   -0.0303         0 

    0.0833   -0.4583    1.1667   -0.4583   -0.0158    0.0342    0.0013 

   -0.4583         0   -0.4583    1.0833         0   -0.0303    0.0184 

    0.0000    0.0158   -0.0158         0    0.5000   -0.4995         0 

    0.0369   -0.0303    0.0342   -0.0303   -0.4995    1.0002   -0.0005 

   -0.0145         0    0.0013    0.0184         0   -0.0005    0.5001 

𝐿𝑡𝐴𝐿= 



Quantitative Improvement in Condition Number 
using Hierarchical Basis (HB) Preconditioner 

 Test 
 Perform 500 decompositions for circle with random radius with and without HB 

preconditioner 
 Evaluate minimum edge length and condition number of modified Poisson matrix 

 Results 
 Condition number of HB preconditioned matrix is nearly independent of minimum edge 

length 
 

ℎ = 1/16 



Summary: Matrix Conditioning 

 Findings 
 Slivers do indeed cause poor conditioning 

 Poor conditioning is removed using concepts from hierarchical basis 

 Consequences 
 Only removes poor conditioning from slivers, not from overall problem size 

 Require ML preconditioner for overall system 

 Sliver conditioning is also handled by incomplete factorization 

 Limited usefulness in parallel 

 On-going work 
 Implement and test hierarchical preconditioners for strongly discontinuous 

problems 

 Implement preconditioners in production code 

 Impact 
 Key part of large scale, parallel scalable solution strategy 

 



Future Work 

 Research Topics 
 Coupling between interface motion and physics 

 Capillary dominated flows 

 Fluid-structure interaction (particularly stiff fluids) 

 Full Newton strategies and discrete space requirements 

 Stabilized enriched finite elements 

 Using enriched finite element methods to eliminate user-generated meshes 

 Remove costly step in analysis 

 Allows dynamic interfaces include topology optimization 

 Exciting applications 
 Traditional analysis has focused on static, meshable geometries 

 Exascale computing opens up possibilities to address more problems with 
increasing complexity and geometric fidelity 

 Requires scalable algorithms both in problem size and processor count 

 


