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Motivation
= Multimaterial, multiphase, and/or multiphysics
= Complex or dynamic topology

Methodology

= Enriched finite element methods

Research Challenges and Solutions
= Time stepping
= Matrix conditioning
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Motivation

=  Numerous problems with
moving or topologically
complex interfaces with
discontinuous physics and
fields

Conductive burn
of energetic materials

Time = 0.3500

Material death

TranSpO_rt in_ topolpgically Complex Organic Material Decomposition (OMD)
domains including composite i : with coupled porous and low Ma flow
energetic materials and batteries Capillary Hydrodynamics




Prototypical Multimaterial Problem:
Battery Performance
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=  Numerous materials in contact

= Distinct anisotropic properties from grain to grain
= Complex Volumetric and interfacial physics

= Electrochemistry, possibly with contact resistance at grain boundaries
= Static, but Complex Topology

= Obtained from experimental image reconstruction

= Precludes many automated meshing strategies
I —————



Prototypical Multiphase Problems: Laser ) e,
Welding and Additive Manufacturing

= Both laser welding and additive manufacturing via selective laser melting involve using a laser to
apply intense heating over a very small area to metals

= Complex interfacial transport involving capillarity, laser heating, non-equilibrium vaporization,
gives rise to dynamic, discontinuous physics and fields

50 micron 304L stainless
6 cm/s scan rate

Time = 0.000145

ime = 0.000000

»

Time = 0.00830

T

3 634e+03
2800e+03
1.967e+03
1.133e+03

3.000e+02

n
Time = 0.015007

Additive Manufacturing via selective
laser melting




Prototypical Multiphysics Problem:
Burning, Deformable Solid ... ..« oeorming sois

Sandia
ﬂ'l National

Laboratories

Area vs. Time
Ideal Gas

0.01125

Deforming Enclosure

= Disparate Volumetric Physics

0.00375

= 3 Distinct materials and physics — fluid,
solid, and burning solid

O0 000375 00075 001125 0015
Tii . . .
e = DOFs discontinuous or one-sided
Pressure vs. Time . )
1 50408 = Complex Interfacial Physics

= Momentum balance, mass balance,
burn front motion

*— TALE

CDFEM = Fronts moving with speed other than
local velocity

Pressure

= Dynamic Topology
=  Precludes simple moving mesh methods

0.005 0.01 0015

Time = |nterfaces created and deleted
dynamically




Finite Element Methods for Moving Interfaces in
Fluid/Thermal Applications Tested at Sandia
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Enriched Finite Element Methods

ALE

Diffuse LS

XFEM

CDFEM

» Separate, static
blocks for gas and
liquid phases

 Static discretization

» Single block with
smooth transition
between gas and
liquid phases

« Static discretization

VAVAVAVA
VAV :':,tjf%",:\ =

» Single block with
sharply enriched
elements (weak or
strong) spanning
gas and liquid
phases

* Interfacial
elements are
dynamically
enriched to
describe phases

» Separate, dynamic
blocks for gas and
liquid phases

* Interfacial elements
are dynamically
decomposed into
elements that
conform to phases

NV

4
5
i

VA

VAN




Many Forms of Enriched Finite Element Methods ) s,
for Discontinuous Transport Problems
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= Generalized Finite Element Methods (GFEM)
= |. Babuska, G. Caloz, J.E. Osborn (1994)
= Use non-polynomial shape functions to more accurately capture material response
= May include continuous or discontinuous functions

= eXtended Finite Element Methods (XFEM)
= N. Moés, J. Dolbow, T. Belytschko (1999)
= Nodal enrichment using discontinuous functions
= Conformal Decomposition Finite Element Methods (CDFEM)

= D.R. Noble, E.P Newren, J.B Lechman (2010)

= Decompose background mesh into elements that conform to both the background elements
and the implicit interfaces

= Enrichment occurs via degrees of freedom at added interface nodes

= Shape functions for nodes of background mesh are modified by conformal decomposition
= Hierarchical Interface-Enriched Finite Element Methods (HIEFEM)

= S.Soghrati and P.H. Geubelle (2012)

= Retain unaltered shape functions for nodes of background mesh

= Enrichment occurs via degrees of freedom at added interface nodes



XFEM — CDFEM Discretization Comparison T .

= XFEM Approximation

el A N

= CDFEM Approximation

[P<=p =

= |dentical IFF interfacial nodes in CDFEM are constrained to
match XFEM values at nodal locations
= CDFEM space contains XFEM space
= CDFEM is no less accurate than XFEM (Li et al., 2003)
= XFEM can be recovered from CDFEM by adding constraints
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XFEM - CDFEM Requirements Comparison

XFEM CDFEM
Volume Assembly Conformal subelement Standard Volume
integration, specialized Integration

element loops to use
modified integration rules

Surface Flux Specialized volume element | Standard Surface
loops with specialized Intearation
Assembly guadrature J
Phase Specific Different variables presentat | Block has homogenous
different nodes of the same '
DOFs and block dofs/equations
Equations
Dynamic DOFS and | Require reinitializing Require reinitializing
Equations linear system linear system
Various BC types Dirichlet BCs are Standard Techniques

on Interface research area available

SAND2010-6067P



Conformal Decomposition Finite Element e
Method (CDFEM)
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= Simple Concept (Noble, et al. 2010)
= Use one or more level set fields to define materials or phases

= Decompose non-conformal elements into conformal ones
= Obtain solutions on conformal elements
= Related Work
= Lietal. (2003) FEM on Cartesian Grid with Added Nodes
= |linca and Hetu (2010) Finite Element Immersed Boundary

= S.Soghrati and P.H. Geubelle (2012) Interface Enriched Finite
Element

=  Properties

= Supports wide variety of interfacial conditions (identical to boundary
fitted mesh)

= Avoids manual generation of boundary fitted mesh

= Supports general topological evolution (subject to mesh resolution)

= Similar to finite element adaptivity

= Uses standard finite element assembly including data structures,
interpolation, quadrature




But What About the Low Quality Elements? (@&

= Resulting meshes
" |nfinitesimal edge lengths
= Arbitrarily high aspect ratios (small angles)

" |ntroduces obtuse angles. Depending on cutting
strategy, large angles can approach 180°

= Consequences
= Condition number of resulting system of equations
" |nterpolation error

= Other concerns: stabilized methods, suitability for
solid mechanics, Courant number limitations,
capillary forces

= Questions
= How serious are these issues?

= What can be done to mitigate them?




Impact of Mesh Quality

Let /" be a function.

f over some triangulation.

Three Criteria for Linear Elements

f
Let o be a piecewise linear interpolant of
g P P | N /1

Criterion
Interpolation error Size very important.
| f— gl Shape only marginally

important.

Gradient interpolation error
v f=vgll.

Size important.
Large angles bad;
small okay. A

Element stiffness matrix
maximum eigenvalue

A max

Small angles bad;
large okay. @
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Reprinted from “What is a Good Finite Element?” by Jonathan Richard Shewchuk




Static Interface CDFEM Verification rh) peim

= Steady Potential Flow about a Sphere = Steady, Viscous Flow about a Periodic Array of
=  Embedded curved boundaries Spheres
= Dirichlet BC on outer surface, Natural = Embedded curved boundaries
BC on inner surface = Dirichlet BC on sphere surface
= Optimal convergence rates for =  Accurate results right up to close packing limit
solution and gradient both on volume = Sum of nodal residuals provides
and boundaries P accurate/convergent measure of drag force

50

N
o
|

— Curve Fit to Zick & Homsy (1982)
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= Time stepping
= How to handle dynamic unknowns as interface evolves

= Matrix conditioning

= |ssue common to “al

I”

enriched finite element methods

= Linearly dependent system of equations if produced as support
vanished for enriched degrees of freedom

= Same as small angle issue
= Physics-geometry coupling

= How to develop full Newton methods when unknowns are dynamic
within a nonlinear iteration loop

= Ongoing work in this area

= Stabilized enriched finite elements

= Little work has been done here



Research Challenge: Evolving Interfacesin
Enriched Finite Element Methods
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= How do we handle the moving = What do we do when nodes change
interface? material?

= This is an issue for all enriched finite
element methods
= CDFEM
= XFEM —Issue when nodes change material




Model Problem: Scalar Advection-
Diffusion
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= |Level Set Equation for interface
motion

J¢

m—l—u Vo =0

= Scalar advection-diffusion

o

—-u Vi —aV3)h = s(x,t)

= Allow arbitrary discontinuities in
fields across interface
= Discontinuous value and gradient




Approach for Dynamic Discretizations: .
Subdomain Integration
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= XFEM — Immersed Interface Approach
" Integration done over the 4 subdomains

Qp Nyt arnapt!
ergz, N Q?—I—l Q’g N Qngl

= Scalar advection — Backward Euler

w n+1 w N
/Q( tu. vw) w;dQ = ZZ/%W( o u v +1> w;d9

= Careful formation of the time term evaluates fields at times when that field is
present, Y71 (x) when x € Q}"'and Y['(x) when x € O

= However, this does involve differencing across material boundaries: 7+ -7
when [ # |

" Proposed by Fries and Zilian (2009) but shown to be insufficient for strong
discontinuities by Henke et al. (2014)




Approach for Dynamic Discretizations: .
Semi-Lagrangian Advection
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= Semi-Lagrangian advection
= Discretize time and advection terms simultaneously to avoid dispersive errors

aw Dw N n+1
] (E_'_u Vzﬂ) w;dS) = —w dQ) ~ Z]QnH

For straight line characteristics: x* = x — uA{
Quantity V7 (x*) evaluated by interpolation
— May be overly diffusive
Avoids differencing across material boundaries by tracing back to previous location
Less clear how to handle arbitrary interface motion (i.e. phase change)

J( D o

n+1 ntl  nt+l 1
Xk—1 Xy Xp Xpt+1

fnt1g ® IO ® ®

n
K41




Approach for Dynamic Discretizations:

Extrapolation from Previous Location

= Extrapolation from previous location
= Essentially method by Henke et aI (2014) for XFEM (termed semi-Lagrangean)

n+1
/ Dy 9= 2 /Q( wJ( N )) wid2

g = {W(Xk)a S"(xp) = 9" xk)  §MHL(R) s set of all
’ Y(x*) + (xk = x*) - VY (x*),  S™(xk) # S (xk) materials present at X
= Allows time and advection terms to be handled separately
= Avoids differencing across material boundaries by tracing back to previous location
= Involves extrapolation from previous location to current location
= Extrapolation may be poorly defined because of multi-valued gradient in 2-D and 3-D
= Even for weakly discontinuous fields, the extrapolated field is strongly discontinuous

n+1 n+1 n+1 n+1
Xp—1 Xp Xr Xkt1
i1 g o ' )
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Approach for Dynamic Discretizations:
Interface Extrapolation (IE)
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= Extrapolation from closest point on previous interface

P ) 7 (x4) = S+ (1)
PR P () + ek — P(xk)) - VOB (P(xk)), S (xk) £ S ()

= Point P™(X) is the nearest point to X on the previous interface

= |dentical to extrapolation from previous location in 1-D if CFL<1

= Extrapolation may be poorly defined due to discontinuous gradient in 2-D and 3-D

= Even for weakly discontinuous fields, the extrapolated field is strongly discontinuous

n+1 ntl ntl n+1
Xk—1 Xy Xp Xpt1

fni1g ® 10 ? ®

n+1
X — uAit n
" k X X Xkt1




Approach for Dynamic Discretizations:
Moving Mesh (MM)
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= Uses Arbitrary Lagrangian Eulerian (ALE) technology for moving meshes
= Relates time derivative following a moving point to the time derivative fixed in space

o0 0wl ox Coe|
o, o), T, VU= TRV
A :

o), ol T VY

|7 —wzdﬂNZ / ( AR )+<u—>'<)wj<x)) wae =%

= Using the closest point projection
n—l—l n
/ w;d€) ~ E /n+1 ( + (11 X(X)) ij (X)) w;df2

L xSy =) =) X
Xk = . : x(x) =
k {P”(xk)’ S (xy) # S"T(x)  Y(x) = Zzp?kwk zk: At
k

= Recovers semi-Lagrangianinlimitof x = u

W




Approach for Dynamic Discretizations: 2@
Order Interface Extrapolation (IE)

= Second order time accuracy via Crank-Nicolson (CN)
: Straightforward to average advection operator

T (x) — 0 (x) Vit (x) + Vi (x)
ZLR+1 ( +u- 5 ) w@dﬂ

= Second order time accuracy via BDF2
= Requires extrapolation of n-1 state

3 n+1 . l “n—1
Z /Q+( o 2% WL B v )) w0
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Approach for Dynamic Discretizations: 2"d
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Order Moving Mesh (MM)

= Second order time accuracy via Crank-Nicolson (CN)
* Dynamic domain requires integral to evaluated at half plane

n+1 n+1 n %
Z/ ( B Y P A LR AL ))w@-dﬂ
1+

2

= Second order time accuracy via BDF2
= Requires nearest point projection of n-1 state

n+1 o l ~n—1 «
Z/QnH (2w 2¢Ai X) + 2¢J ( )—I—(u %(x)) - anﬂ( )) w,dQ




Approach for Dynamic Discretizations:
Method Summary
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Capturing arbitrary discontinuities on moving interfaces

= All enriched methods require specialized method for handling dynamic
discretization

= Subdomain integration
= Requires decomposition with respect to old and new configurations
= Differences across material boundaries
= Not convergent for strong discontinuities (Henke et al. 2014)
Interface Extrapolation

= Poorly defined at element boundaries in higher dimensions due to
discontinuous gradient

= The extrapolation of a weak discontinuity is strongly discontinuous
= 2" order versions straightforward to implement
= Moving Mesh

= Only requires value, not gradient from nearest point, so it is well defined in
higher dimensions

= Crank-Nicolson requires assembly over mid-plane configuration
= 2" order time accuracy is straightforward via BDF2
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Results: Patch Tests

=  Constant advection of a strong discontinuity
= Subdomain integration method does not converge (Henke et al. 2014)

= Both interface extrapolation and moving mesh achieve machine precision

= Constant advection of a weak discontinuity
= All proposed methods should achieve machine precision (Subdomain integration

not tested.)

0.8

04

02 t u u + +
0 02 0.4 06 0.8 1

Distance
T

1.000e+00
7.750e-01
5.500e-01

3.250e-01
1.000e-01




Results: MMS for 1-D Advection-Diffusion with )
Strong and Weak Discontinuity from Contact e
Resistance

= Constant advection of a sinusoid
= Trivial level set solution for constant advection velocity

o(x,t) = (xr — x0) — ut

= Method of manufacture solutions for advection-diffusion with both strong and
weak discontinuity

(.1 ksin(c,[r — (xo + ut)]) exp(—t/c), » <0
x,t) =
sin(c.[x — (vo + ut)]/k)exp(—t/ci) + A, ¢ >0
9, 9,
Oﬁla_(;j’b $=0- — ar% $=0+ — 6 (Mcﬁ:(ﬁ o w‘gbzo_)

0. ¢<0
A(t) = 2exp(—t/c)[(Beacr) (1) = { 2

T o2 exp(—t/ct), ¢ >0

= Examine convergence with in space and time for various Courant numbers

Era0 = [V —v(x,t)|la = (/Q (V" — w(Xat))Q dﬂ) -
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Results: MMS for 1-D Advection-Diffusion with
Strong and Weak Discontinuity from Contact

Resistance

Constant advection advection of a sinusoid
= 2" order convergence using BDF2 for either Interface Extrapolation or Moving
Mesh methods

(]
2 T T T 10° 10
f R o Pe-1.0e:00
15l / 8 —— Pe=1.0e+02 i . -
’ Foo \ —— Pe=10e+04 10
/ / Y | o Pe=t0es08 |
1k / \ A —2
o \ A -2[ 107k
/7 \ A 10
0.5 I A\
il 4 - _ 107k
s 4 Y 5 10F g
2 / \ g =
=] 04 LS )= 7 o
@ ,g b / B =107
I \ !
osf A \ Y
fﬁ \ ‘\\ /1 o* 107
\
b J \ —&_GFL=05
J R ,\‘\‘./ CFL=0.5 —+ CFL=02
\ . 4+ CFL=0.2 0l 1
\ 107k . Cri-o1 B — CFL=01
154 / GFL=0.1 ; o
/ - ——1st Order - rder
7 ‘ -—-—-2nd Order
f N L R 2nd Order 107 A , A
_ . . . . . R . . 10 . ‘ | - — —~ = )
0 01 02 03 04 05 06 07 08 09 1 10 10 107 o 1o 10 10 10 10 10
x n

(b) Interface extrapolation (IE)

(a) Moving mesh (MM)



Verification via MMS for 2D Advection-
Diffusion with a Sharp Discontinuity
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Second Order

Convergence plot for the 2-D advection-

diffusion problem with contact resistance,
using the BDF2 time integrator




Research Challenge: Circumventing Poor ) e,
Conditioning of Enriched System of Equations

Laboratories

= Common issue to GFEM, XFEM, cutFEM, CDFEM

= Linearly dependent as support vanishes
= Small angle poor conditioning in CDFEM

= Previously published solutions
= Moés et al. (2002) — Snapping interface to nodes in XFEM
= Modifies geometry by moving interface
= Proposed solutions

= Guaranteed quality CDFEM — Snap background mesh to interface
= Avoids disturbing interface location
= Difficult to implement (or impossible) near boundaries or other interfaces

= Specially designed preconditioners based on hierarchical basis



Guaranteed Quality Conformal Decomposition ) e,
Finite Element Method (CDFEM)
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= Simple Concept

= Determine edge cut locations using intersection of
level set and edge

= When any of the edges of a node are cut below a
specified ratio, move the node to the closest edge
cut location (snap background mesh nodes to
interface, e—>¢)

=  Related Work

= Moés et al. (2002) — Snapping interface to nodes in
XFEM

= Labelle and Shewchuk (2007) - Isosurface stuffing for
guaranteed quality meshes that conform to an
isosurface

= Rangarajan and Lew (2012) - Universal Meshes for
guaranteed quality triangulations that conform to a
smooth surface




Choosing the Edge Snap Tolerance in 2D ) e

= How High Can the Snap Tolerance Be?

= Can we push this so that no edge get cut, only
snapped? NO

=  Maximum snap tolerance for non-degenerate
triangles

= Cannot allow all nodes of an element to snap to the
interface

= Maximum snap tolerance, o, in terms of maximum
to minimum edge length ratio, r

_\/§T—1

o)
2r2 — 1

=  Maximum snap tolerance of 0.41 for equilateral
triangle mesh and 1/3 for structured mesh
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Choosing the Edge Snap Tolerance in 3D ) feee,

=  Maximum snap tolerance for non-degenerate
tetrahedral mesh

= Cannot allow all nodes of an element to snap to the
interface

= Maximum snap tolerance, o, in terms of maximum
to minimum edge length ratio, r

_\/§T—1

3r2 —1

(07

=  Maximum snap tolerance of 0.37 for equilateral
tetrahedron mesh and 0.29 for structured mesh




Guaranteed Mesh Quality As a Function of Edge (7 s,
Snap Tolerance

1000
\ —normalized inverse minimum edge length
o ‘\\ —triangle mesh quality
% \ |--- tetrahedron mesh quality
£ 100
2
T
>
o
< 10
n
)
£
1 T T T *I 1
0 0.1 0.2 0.3 0.4 0.5

edge snap tolerance

= Mesh quality measures
= Normalized inverse minimum edge length, A
= Element quality (Berzins 1998)
triangles: Qu = @(Zﬂjhef tetrahedrons: Q. = M(Zh)g
= For snap tolerance of 0.2 for equilateral triangle, A=5, Q,,=2.49
= For snap tolerance of 0.1 for equilateral tetrahedron, A=10, Q,,=15.3




Quantitative Improvement in Condition Number T

and Minimum Edge Length in 2D

10° . i
- | + Enriched system s
O Snapped system, 0.2 i
H Ve
= 7
04l h=1/64 )

Matrix condition number factor

L[ A P

L N T | R T
10° 10° 102 108 104 10°
Normalized inverse minimum edge length

= Test
= Perform 500 decompositions for circle with random radius with and without snapping
= Evaluate minimum edge length and condition number of Laplacian matrix

=  Results
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= Without snapping, both minimum edge length and condition number shows many orders

of variation. These quantities are highly correlated.

= Snap tolerance of 0.2 reduces inverse minimum edge length and condition number to
small multiples of uncut mesh values.



Qualitative Improvement Obtained by )
Snapping Nodes to Interface
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= |mproved angles, edge lengths, element volumes, radius ratio




L2 interpolation error

Convergence of Interpolation Error in 3D

1077
[ | —+— Face Angle Cut
[ Vertex ID Cut
| | —©— Angle Cut, Snap, 0.1
—&—1|D Cut, Snap, 0.1
[ | —— 2nd Order
1072
1079 ¢
104
107

= Test

= Decomposed mesh for sphere of radius (n+1)/10

nominal h

H1 interpolation error
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100

[ | —+— Face Angle Cut

Vertex ID Cut

I | —— Angle Cut, Snap, 0.1
L | —=— D Cut, Snap, 0.1
|| == 1st Order

= Evaluate interpolation error with mesh refinement for function:

flx,y) = (x - xc)z + (y _yc)z + (z _Zc)z —r?

=  Results

nominal h

= Solution error decreases at expected rates regardless of snapping or face cutting strategy
= In fact, neither snapping or face cutting has a significant effect on the interpolation error as

compared to mesh refinement



Creating Well-Conditioned Systems Without

rl1 ﬁg%gﬁal
Modifying the Mesh Geometry
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=  Motivation

With multiple interfaces or near external boundaries slivers are unavoidable
= |deas considered

= Some form of stabilization?
= Ghost penalty stabilization has been shown to eliminate poor conditioning
in XFEM and cutFEM methods
= Change of variables

= Constrain added CDFEM nodes to have values in XFEM space of functions

— Conceptually involves introducing constraints for CDFEM added nodes in terms
of unknowns located at parent nodes

— This produces well-conditioned systems for 1-sided problems!
= Use hierarchical basis for added CDFEM nodes

— Can be formed as either actual change of variables or as preconditioner for
unaltered CDFEM system



Prototype poorly conditioned problem

Modified Poisson Equation
cT =V?T

= Mass-like and Laplacian term

= Vary interface position, «

Matrix (=0.001)

(’;.4995

0

0
0.0005
-0.0005
-0.4995

-

=  Growing disparity of row and column scales

0
0.0011
-0.0005
0
-0.0000
-0.0005
0

-0.0005
0.0012
0

0
0.0001
-0.0005

0.0005
0

0
0.4995
0
-0.0005
-0.4995
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= Sliver elements generate penalty between nearby nodes

3
“ o
1-a

6
15 2
-0.4995 ::\
-0.0005 0

0.0001 -0.0005 "
-0.0005 -0.4995 -
-0.5000 0 0.001

1.0012 -0.0005
-0.0005 0.5006
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Conditioning of Prototype problem rh)

= Condition number ~ 1/(a — a?)
= Not helped by Jacobi preconditioning

= However, preconditioner based in hierarchical basis yields condition
number nearly independent of edge cut position, a

104 : : : : 10%F
—— CDFEM system [ | —— CDFEM system
Preconditioned CDFEM system - Preconditioned COFEM system

= S

=) =2

® 10° F & 10° F

[ i N L

| . - [

) [+F)

o 0

E E

= =

= =

§ 10 5107

= =

= =

=] ]

(W) (W]

= .

< 101 = 10!

3] (3]

= =

‘_._-—'_-_._ _-_-_‘—-_‘_- | -
].GD 1 1 1 1 10[) . A . .......|. . .......|- . A
0 0.2 0.4 0.6 0.8 1 10" 101 10¢ 10° 104
Relative position, « Normalized inverse minimum edge length
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Hierarchical Basis Functions i) Natoat

Standard Linear /\M/\

Lagrange Basis _ _ o
Functions Linear Hierarchical

Basis Functions

= Both have same approximation space
T = ¢T, T=Standard unknowns, T=Hierarchical unknowns
= With only 1 level (CDFEM) the condition number for hierarchical basis (4) is

independent of added node location, unlike standard basis (A) (with Jacobi
preconditioning)

AT =b - AcT =b
ctAcT =cth - AT =b
= Can be posed as preconditioner of original system
M—1=LIt [*AL = L*AL if L =cL




Application of Hierarchical Basis Functions to )
CDFEM Added Nodes — Hierarchical Basis
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= CDFEM Basis Functions for weak discontinuities

N——

1
= Hierarchical Basis Functions for weak discontinuities

N T,=(1—-a)Ty+al, + T,

= CDFEM Basis Functions for strong discontinuities

T2=(1—a)T0+T2 T2=aT1+T2




Application of Hierarchical Basis Functions to
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CDFEM Added Nodes — Linear Algebra .
| @ 1-a
1
1
1
c = 1
l—-a «a 1
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= Transformation from hierarchical to standard basis (c) is built edge by edge

= Hierarchical matrix preconditioner also readily approximated in terms of a

based on scale of diagonal

= End result is that poor conditioning due to CDFEM slivers is removed
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Quantitative Improvement in Condition Number ) s,
using Hierarchical Basis (HB) Preconditioner

Laboratories
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= Test
= Perform 500 decompositions for circle with random radius with and without HB
preconditioner

= Evaluate minimum edge length and condition number of modified Poisson matrix

= Results
= Condition number of HB preconditioned matrix is nearly independent of minimum edge
length



Summary: Matrix Conditioning ) .

= Findings
= Slivers do indeed cause poor conditioning
= Poor conditioning is removed using concepts from hierarchical basis

= Consequences

= Only removes poor conditioning from slivers, not from overall problem size
= Require ML preconditioner for overall system

= Sliver conditioning is also handled by incomplete factorization
= Limited usefulness in parallel

= On-going work

= |mplement and test hierarchical preconditioners for strongly discontinuous
problems

= |mplement preconditioners in production code

= |mpact

= Key part of large scale, parallel scalable solution strategy




Future Work rh) o

= Research Topics

= Coupling between interface motion and physics
= Capillary dominated flows
= Fluid-structure interaction (particularly stiff fluids)
= Full Newton strategies and discrete space requirements

= Stabilized enriched finite elements

= Using enriched finite element methods to eliminate user-generated meshes
= Remove costly step in analysis
= Allows dynamic interfaces include topology optimization

= Exciting applications
= Traditional analysis has focused on static, meshable geometries

= Exascale computing opens up possibilities to address more problems with
increasing complexity and geometric fidelity

= Requires scalable algorithms both in problem size and processor count



