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Dragonfly

 Hierarchical architecture to exploit high-radix switches and optical 
links
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Dragonfly parameters

 p = number of nodes connected to a switch

 a = number of switches in a group

 h = number of optical links on a switch

 Number of groups g = ah+1

70 1 2 3 4 5 6



Which port connects to which group?

P0 P1 P2 P3 P4 P5 P6 P7

R
0

R
1

R
2

R
3

G0

G1 G8G2

From original Dragonfly paper: Kim et al., ISCA 2008



Three distinct global link arrangements
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Absolute arrangement Relative arrangement Circulant-based arrangement

Arrangements defined in Camarero et al. ACM Trans. Architec. Code Optim., 2014.



Three distinct global link arrangements
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Absolute arrangement Relative arrangement Circulant-based arrangement

Arrangements defined in Camarero et al. ACM Trans. Architec. Code Optim., 2014.

Note:
IBM implementation (PERCS) uses absolute
Researchers who draw entire system in their papers use relative



Absolute arrangement
(aka Consecutive arrangement)
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Relative arrangement
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Port k connects (k+1)st group CW

Equivalently, port k of group i
connects to group (i+k+1) mod g



Circulant-based arrangement
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Circulant-based arrangement
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Our contribution

 Comparing absolute, relative, and circulant-based 
arrangements

 Bisection bandwidth

 “Ease of use” with task mapping

 Criteria for good mapping adapted from Prisacari et al., IPDPS 2013

 Communication in phases such that

– Messages distributed evenly on links

– All paths in a phase have same length



Bisection bandwidth

 Minimum bandwidth between two equal-sized parts of the 
system
 Bandwidth for a particular bisection is the (weighted) number of 

edges crossing from one part to the other

 Minimize this over all bisections

 Tries to measure worst-case communication bottleneck in a 
large computation 



Initial exploration

 Branch and bound on small Dragonfly system (NP-hard …)

(p,4,2): 4 switches per group

2 global links per switch

Has 36 switches

 Treat types of edges separately
 local edges have bandwidth 1

 global edges have bandwidth α



Bisection bandwidth as function of α
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Bisection bandwidth as function of α
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Min-bandwidth cuts for absolute arrangement
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Min-bandwidth cuts for relative arrangement
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Min-bandwidth cuts for circulant-based arrangement
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Observations from (p,4,2)

 In terms of bisection bandwidth:

Absolute ≤ Relative ≤ Circulant-based

 For all three arrangements, maximum bisection bandwidth is 
bounded



Larger networks

 Focus on large α
 Determine when bisection bandwidth is ultimately limited by local 

edges

 Globally Connected Component (GCC): Switches that form 
connected component in graph without local edges



GCCs in Circulant-based arrangements

Recall: Every edge connects two switches at same 
position in their respective groups
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GCCs in Circulant-based arrangements

Recall: Every edge connects two switches at same 
position in their respective groups

There are at least a GCCs (a = #switches/group)

If a is even and α is sufficiently large, the bisection 
bandwidth is (a/2)2g (g = #groups) 

Structure of GCCs potentially more complicated than that, single 
switch number can be split into multiple GCCs if g is multiple of 
distance traversed by switch’s links



Three distinct global link arrangements
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GCCs in Relative arrangements

Recall: Port k connects to (k+1)st group CW

Switch 0 connects to switch (a-1) in next group

h groups

All 0th and (a-1)st switches form a GCC

Generalizes:

a/2 GCCs of size 2g (plus 1 of size g if a is odd)
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GCCs in Relative arrangements

Recall: Port k connects to (k+1)st group CW

Switch 0 connects to switch (a-1) in next group

h groups

All 0th and (a-1)st switches form a GCC

Generalizes:

a/2 GCCs of size 2g (plus 1 of size g if a is odd)



Bisection bandwidth in Relative arrangement

When α is sufficiently large, bisection bandwidth is

(a/2)2g if a is a multiple of 4

θ(α) otherwise



GCCs in Absolute arrangements

Recall: Port k connects to group k (skip own group)

Gives

a(a-1)/2 GCCs of size 2h

a GCCs of size h+1



GCCs in Absolute arrangements

Recall: Port k connects to group k (skip own group)

Gives

a(a-1)/2 GCCs of size 2h

a GCCs of size h+1

If a is a multiple of 4, bisection bandwidth is ≤ (a/2)2g.

(Also 3 other times, including when h ≤ a/2)



GCCs in Absolute arrangements

Recall: Port k connects to group k (skip own group)

Gives

a(a-1)/2 GCCs of size 2h

a GCCs of size h+1

If a is a multiple of 4, bisection bandwidth is ≤ (a/2)2g.

(Also 3 other times, including when h ≤ a/2)

Otherwise, θ(α)



When bisection bandwidth is bounded

 Circulant: a is even (& other times)

 Relative: a is a multiple of 4

 Absolute: a is a multiple of 4 (& 3 other times, including
when h ≤ a/2) 



Normalize bisection bandwidth for 
(p, 2, 8)



Task mapping

 Assignment of tasks to compute nodes to minimize 
contention

 Our assumptions:
 Stencil jobs

 Tasks blocked to fit on entire switch



Criteria for good mapping

Adapted from Prisacari et al., IPDPS 2013:

Communication in phases such that:

1. Messages distributed evenly on links

2. All paths in a phase have same length



Criteria for good mapping
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Criteria for good mapping

3

1 0

2

3

1 0

2

2 0

3 1

2 0

3 1

2 0

3 1

2 0

3 1

3

1 0

23

1 0

2

Group 1Group 0 Group 2

Group 3 Group 4 Group 5

Group 6 Group 7 Group 8

3

1 0

2Adapted from Prisacari et al., IPDPS 2013:

Communication in phases such that:

1. Messages distributed evenly on links

2. All paths in a phase have same length

Phases for this mapping:
• Neighbors w/ local links

• Neighbors directly connected by
global link

• Neighbors with multi-hop path
Mapping of 6 × 6 job onto (p,4,2) Dragonfly

with relative global link arrangement

Nothing this regular seems to exist for absolute or circulant-based arrangements



Three mappings for a 6 x 6 stencil job
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Conclusions

 On original (p, 4, 2) graph, for bisection bandwidth:

Absolute ≤ Relative ≤ Circulant-based

 On large graphs, Circulant-based is most often bounded, then 
Absolute, then Relative

 On (p, 2, 8) graph, at large α:                                           
Circulant-based ≤ Absolute ≤ Relative

and Absolute and Relative unbounded

 For mapping stencils, Relative gives much more regular 
mappings



Mapping for a 12 x 8 stencil job on 16 
groups of (p, 6, 3)-Dragonfly with rel.
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Future work

 Bisection bandwidth at smaller values of α

 Other global link arrangements

 Generalize task mapping and evaluation by simulation

 Communication scheduling recommended by Prisacari et al. 
may be difficult to implement

 Early Sandia Trinity applications measurements

 Communications stalls surprisingly high

 Thermal problems in turbo mode, 25°F swings



Thanks!

 vjleung@sandia.gov


