

Exceptional service in the national interest

Comparing global link arrangements for Dragonfly networks

Hastings, Rincon-Cruz, Spehlmann,
Meyers, Xu, and Bunde (Knox College)
and **Vitus Leung (Discrete Math & Opt)**

SIAM PP 2016

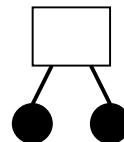
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Dragonfly

- Hierarchical architecture to exploit high-radix switches and optical links

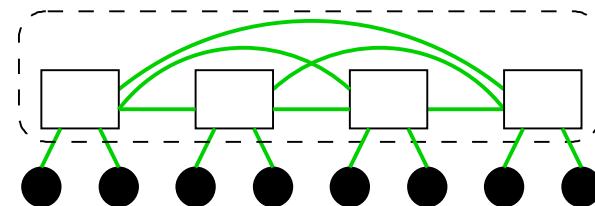
Dragonfly

- Hierarchical architecture to exploit high-radix switches and optical links
 - Nodes attached to switches



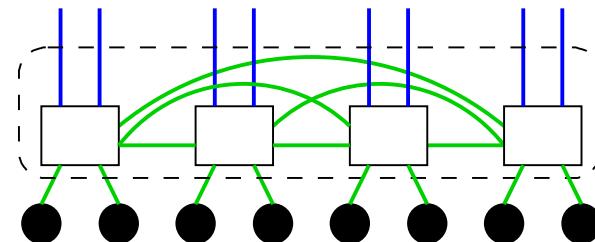
Dragonfly

- Hierarchical architecture to exploit high-radix switches and optical links
 - Nodes attached to switches
 - Switches form groups
 - Group members connected w/ **local edge** (electrical)



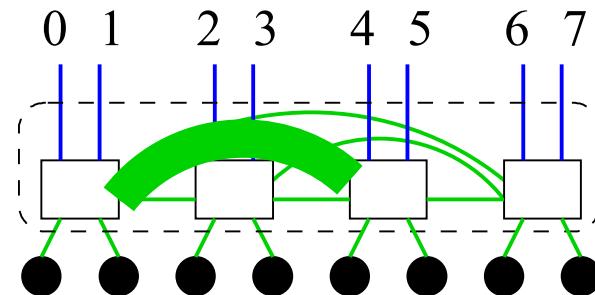
Dragonfly

- Hierarchical architecture to exploit high-radix switches and optical links
 - Nodes attached to switches
 - Switches form groups
 - Group members connected w/ **local edge** (electrical)
 - Each pair of groups connected w/ **global edge** (optical)



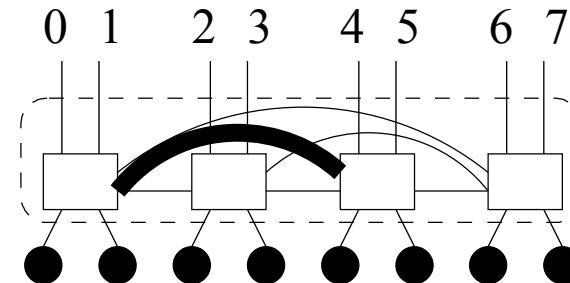
Dragonfly

- Hierarchical architecture to exploit high-radix switches and optical links
 - Nodes attached to switches
 - Switches form groups
 - Group members connected w/ **local edge** (electrical)
 - Each pair of groups connected w/ **global edge** (optical)



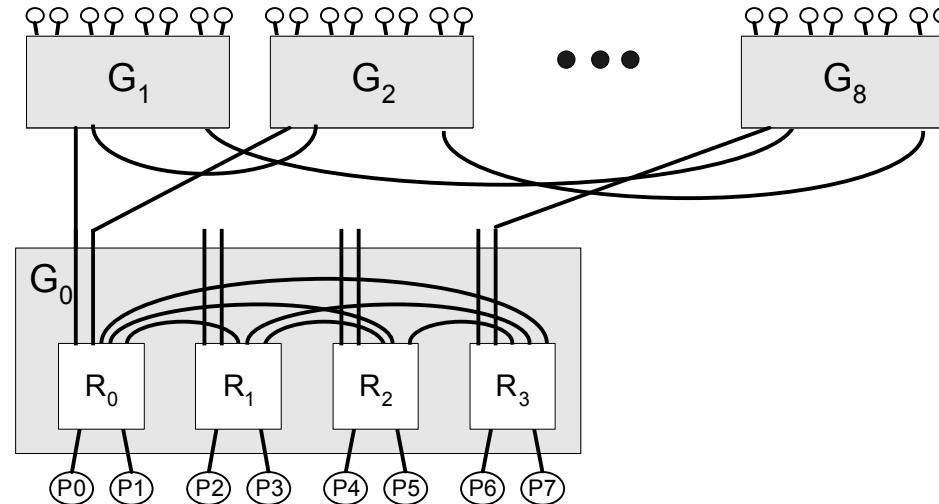
Dragonfly parameters

- p = number of nodes connected to a switch
- a = number of switches in a group
- h = number of optical links on a switch



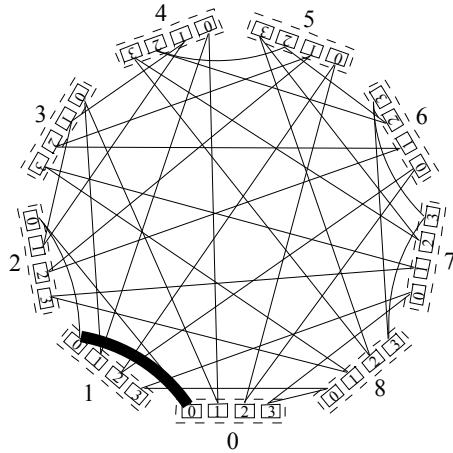
- Number of groups $g = ah+1$

Which port connects to which group?

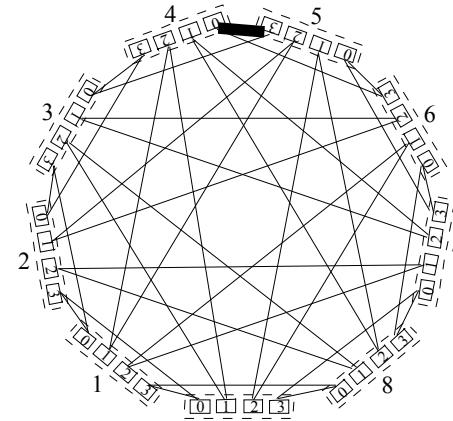


From original Dragonfly paper: Kim et al., ISCA 2008

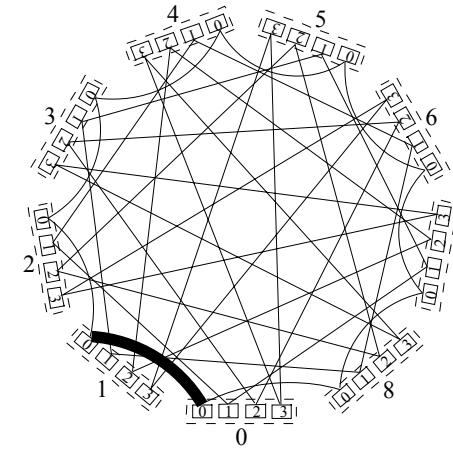
Three distinct global link arrangements



Absolute arrangement



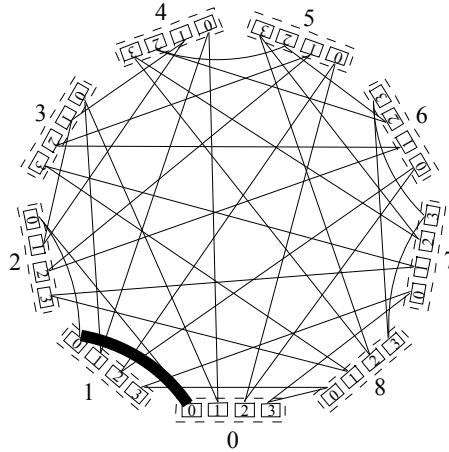
Relative arrangement



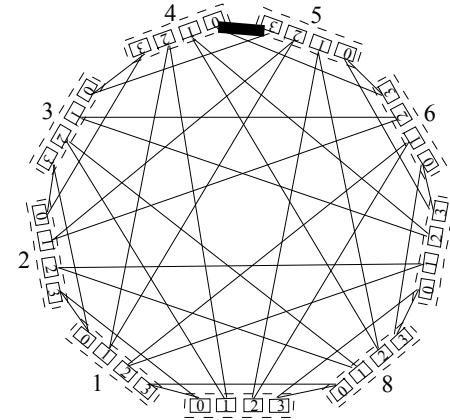
Circulant-based arrangement

Arrangements defined in Camarero et al. ACM Trans. Architec. Code Optim., 2014.

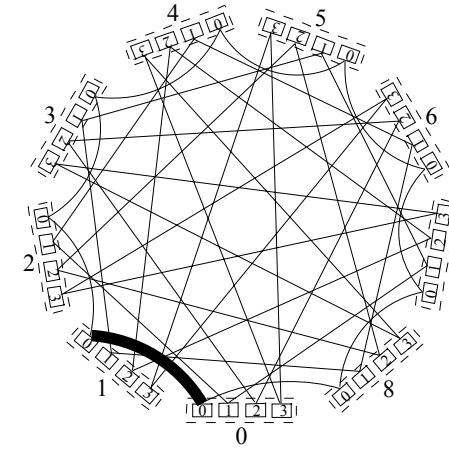
Three distinct global link arrangements



Absolute arrangement



Relative arrangement



Circulant-based arrangement

Arrangements defined in Camarero et al. ACM Trans. Architec. Code Optim., 2014.

Note:

IBM implementation (PERCS) uses absolute

Researchers who draw entire system in their papers use relative

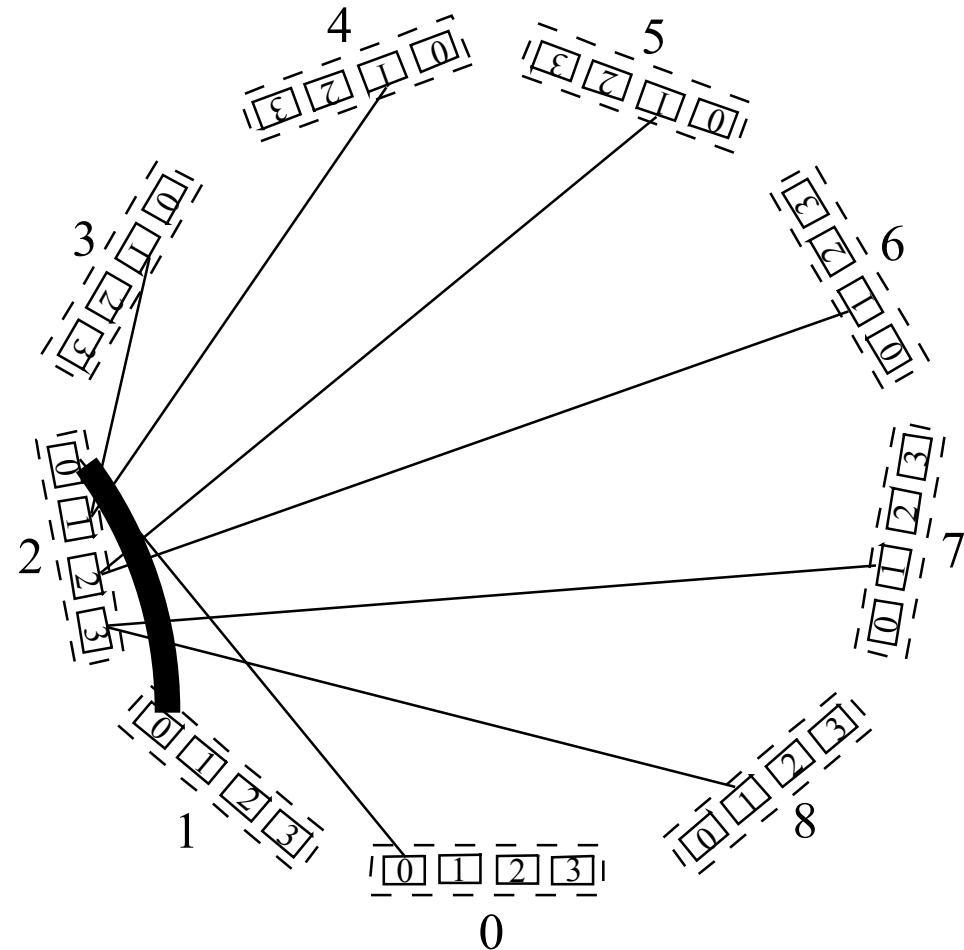
Absolute arrangement

(aka Consecutive arrangement)

**Port k connects to group k
(except skip own group)**

Equivalently, port k of group i
connects to

group k	if $k < i$
group $k+1$	if $k \geq i$

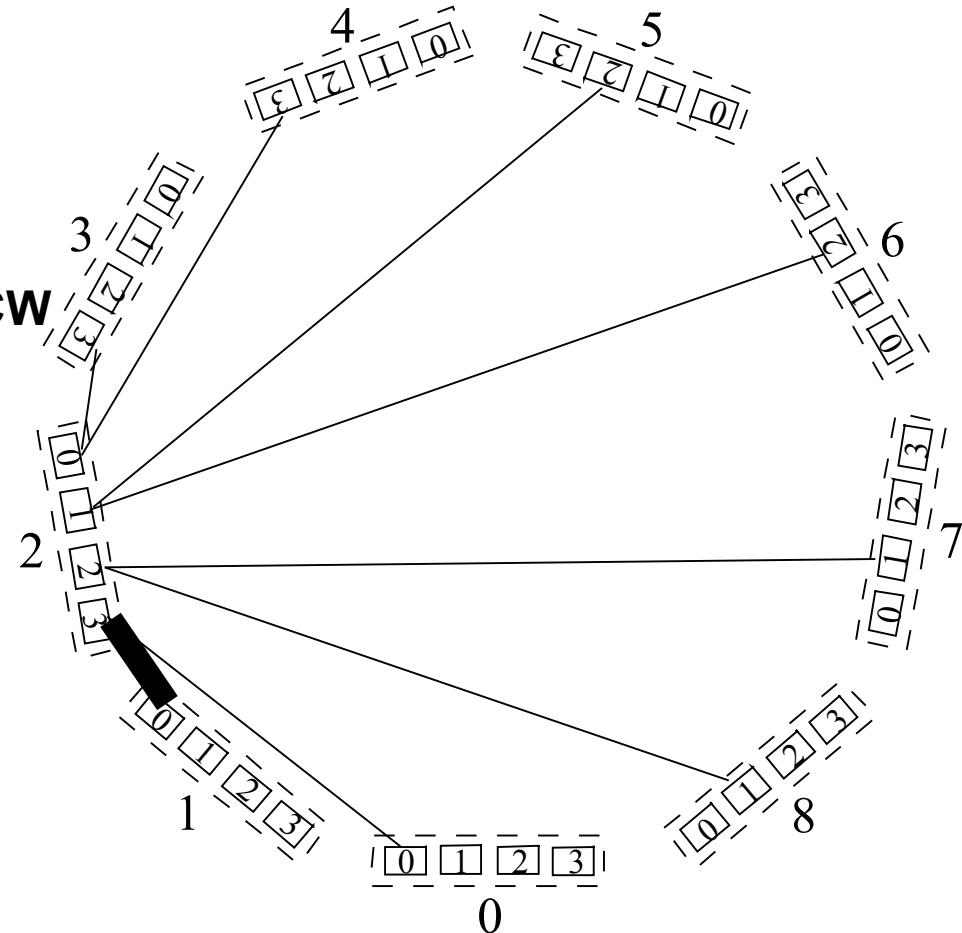


Relative arrangement

(aka Palmtree arrangement)

Port k connects $(k+1)^{\text{st}}$ group CW

Equivalently, port k of group i
connects to group $(i+k+1) \bmod g$



Circulant-based arrangement

Port 0 connects to next group (CW)

Port 1 connects to previous group

Port 2 connects to group 2 ahead

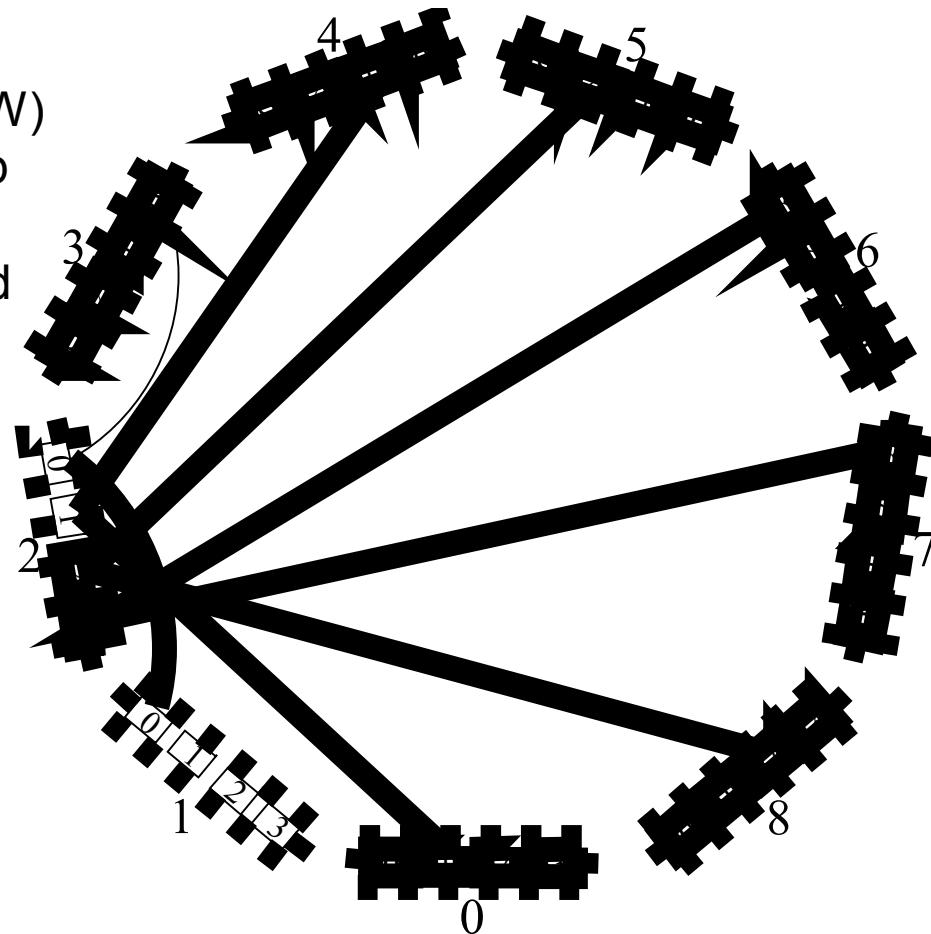
Port 3 connects to group 2 behind

...

Equivalently, port k of group i
connects to group

$(i+k/2+1) \bmod g$ if k is even

$(i-k/2-1) \bmod g$ if k is odd



Circulant-based arrangement

Port 0 connects to next group (CW)

Port 1 connects to previous group

Port 2 connects to group 2 ahead

Port 3 connects to group 2 behind

...

Equivalently, port k of group i connects to group

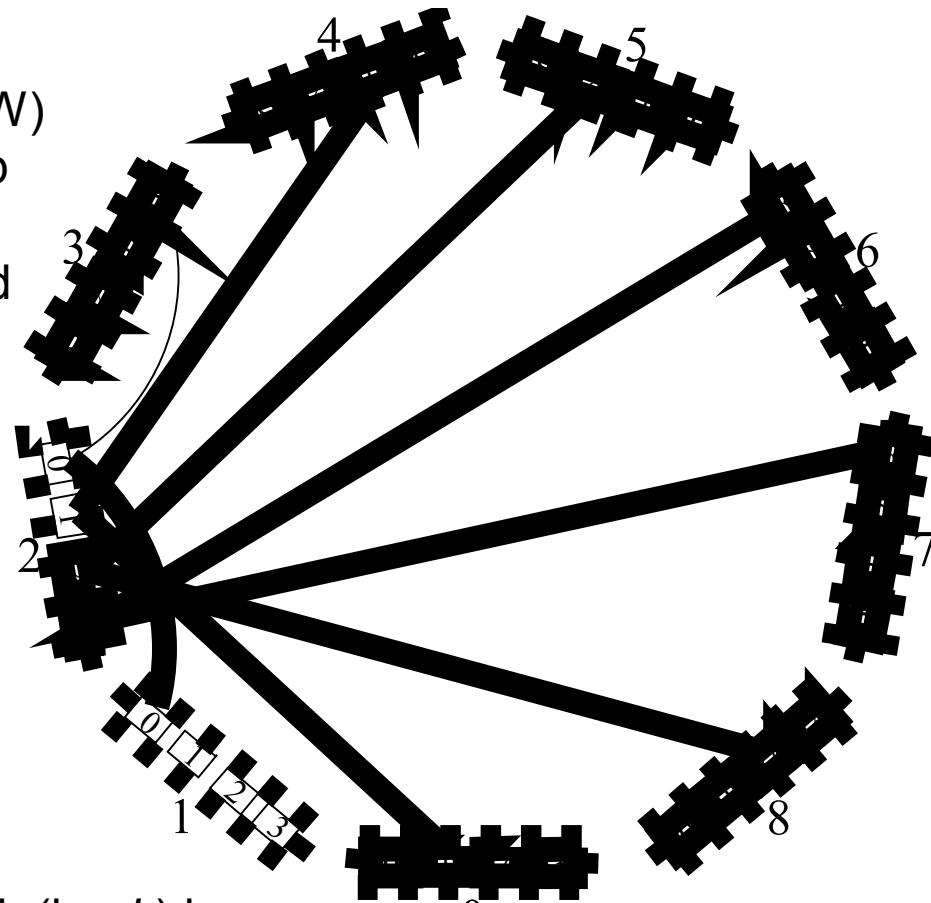
$(i+k/2+1) \bmod g$ if k is even

$(i-k/2-1) \bmod g$ if k is odd

Notes:

Assumes # global links/switch (i.e. h) is even

Always connects switches at same position in their groups



Our contribution

- Comparing absolute, relative, and circulant-based arrangements
 - Bisection bandwidth
 - “Ease of use” with task mapping
 - Criteria for good mapping adapted from Prisacari et al., IPDPS 2013
 - Communication in phases such that
 - Messages distributed evenly on links
 - All paths in a phase have same length

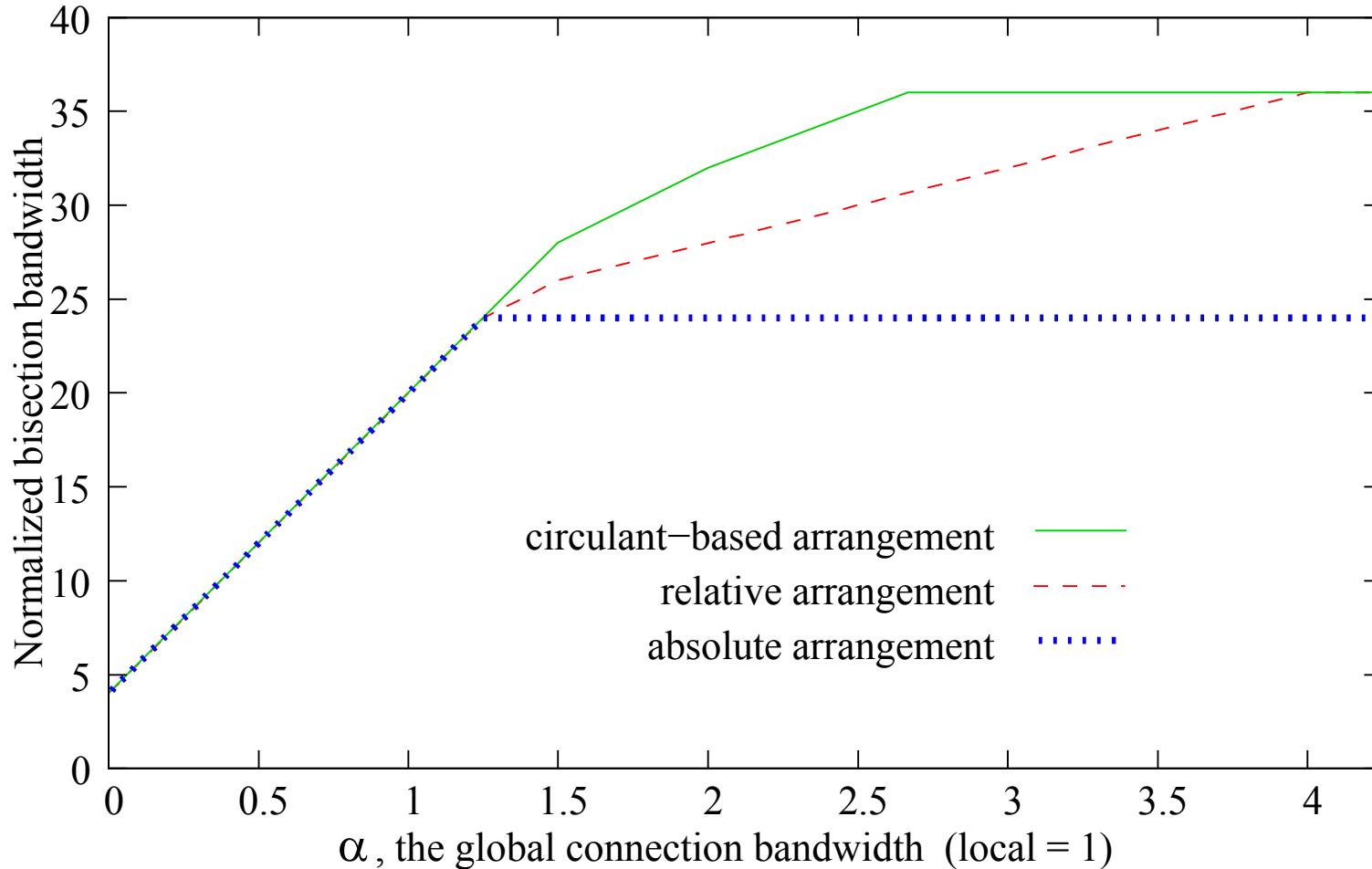
Bisection bandwidth

- Minimum bandwidth between two equal-sized parts of the system
 - Bandwidth for a particular bisection is the (weighted) number of edges crossing from one part to the other
 - Minimize this over all bisections
- Tries to measure worst-case communication bottleneck in a large computation

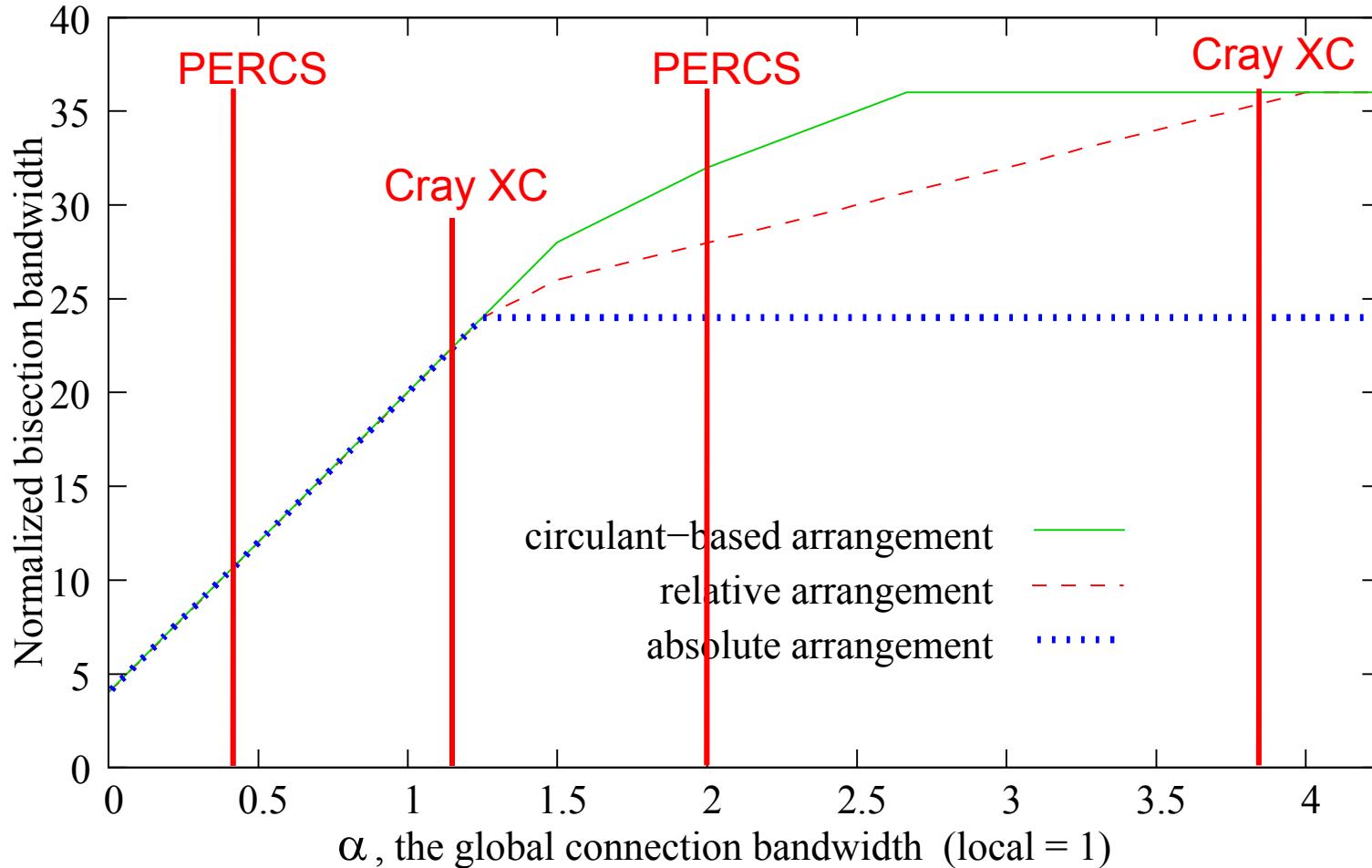
Initial exploration

- Branch and bound on small Dragonfly system (NP-hard ...)
 - ($p, 4, 2$): 4 switches per group
 - 2 global links per switch
 - Has 36 switches
- Treat types of edges separately
 - local edges have bandwidth 1
 - global edges have bandwidth α

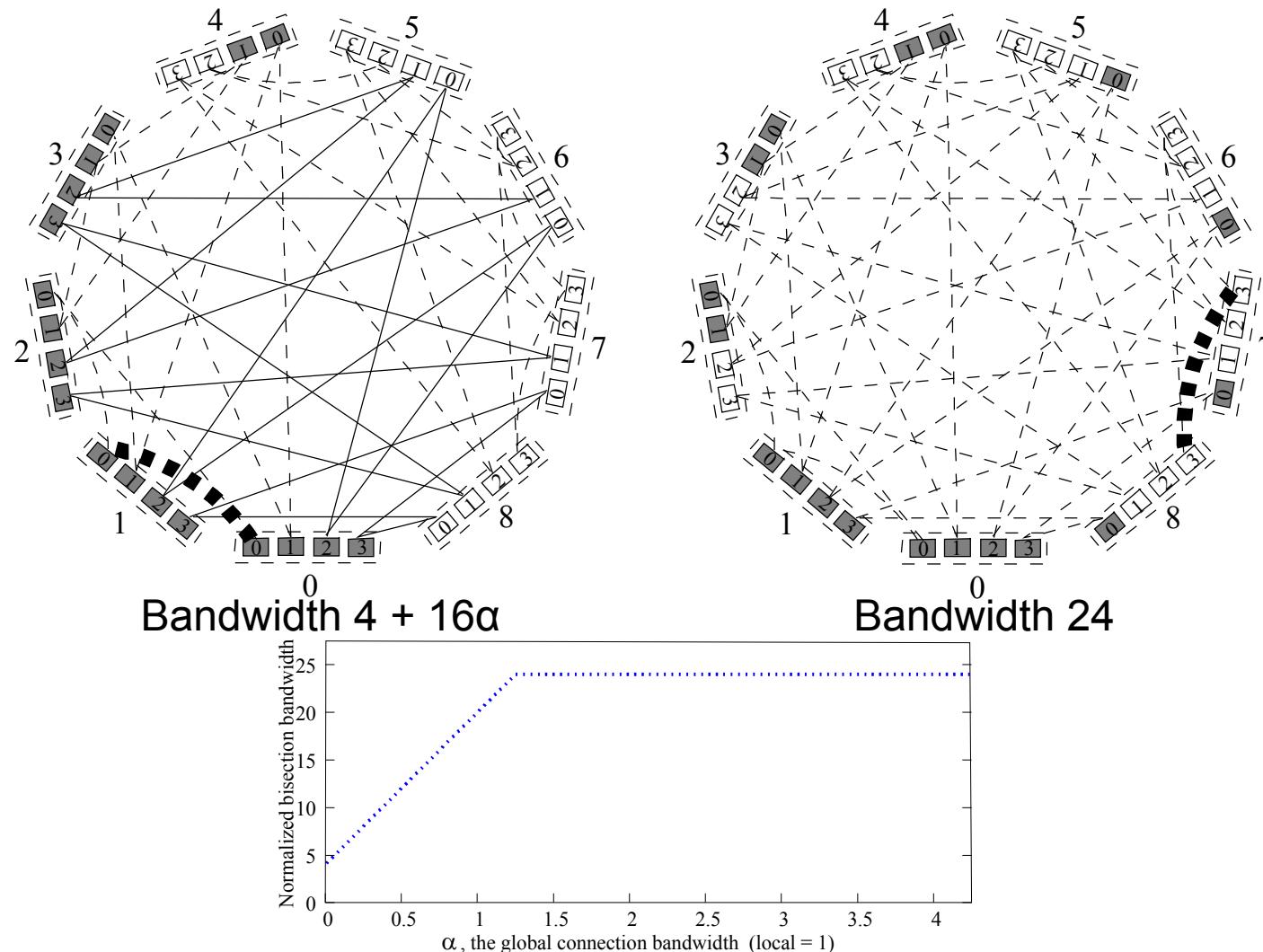
Bisection bandwidth as function of α



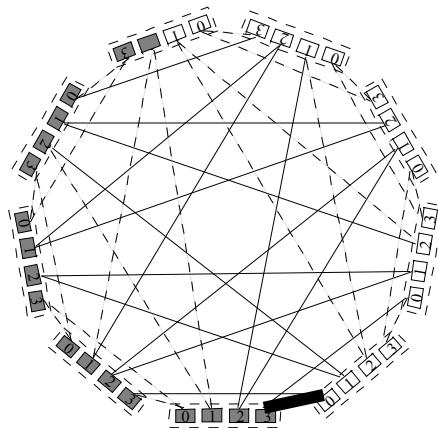
Bisection bandwidth as function of α



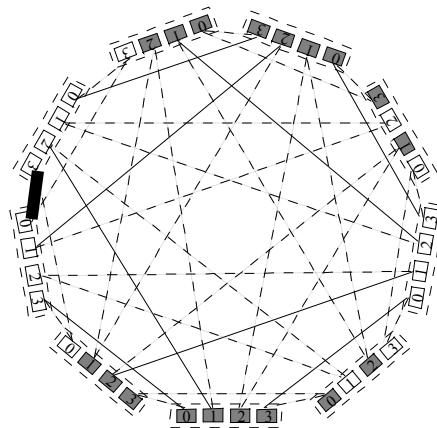
Min-bandwidth cuts for absolute arrangement



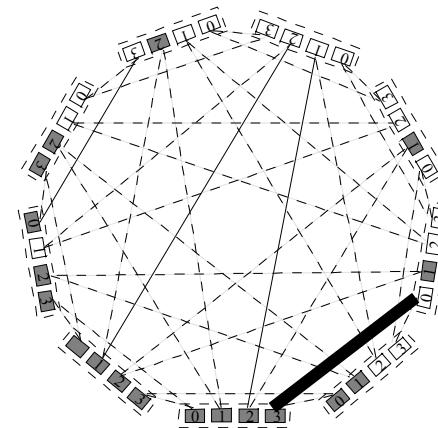
Min-bandwidth cuts for relative arrangement



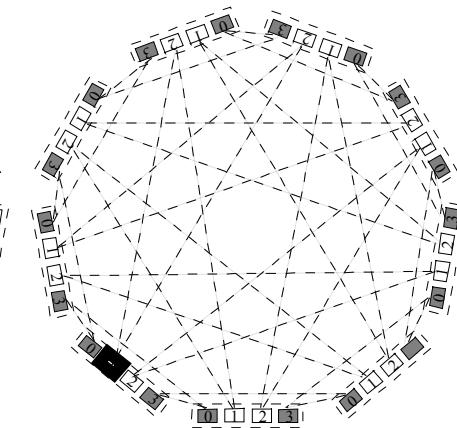
bandwidth $4 + 16\alpha$



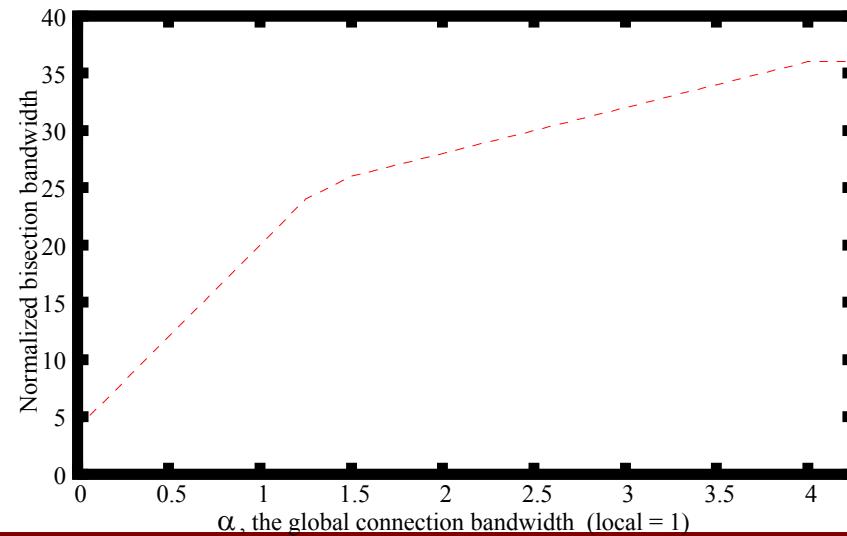
bandwidth $14 + 8\alpha$



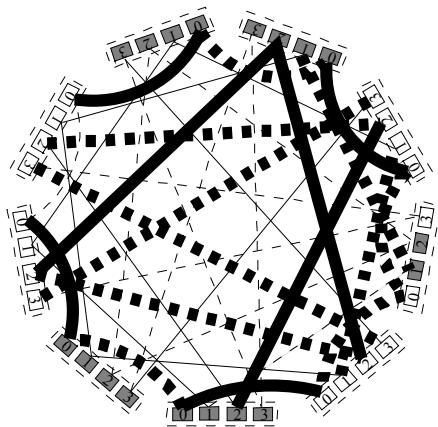
bandwidth $20 + 4\alpha$



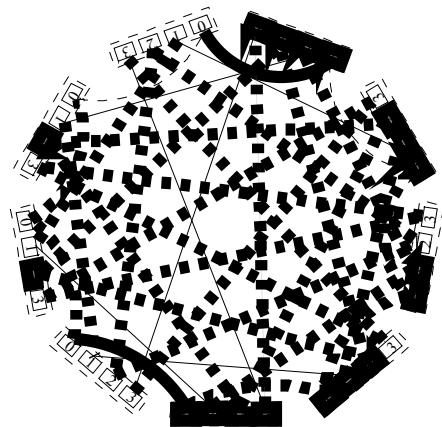
bandwidth 36



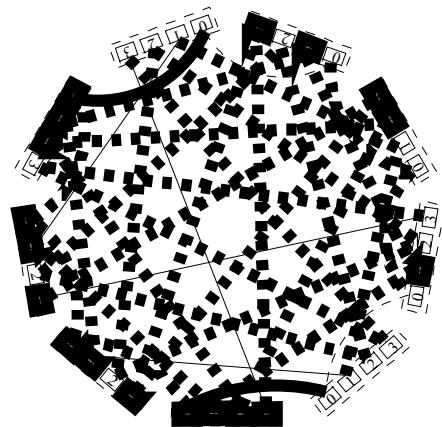
Min-bandwidth cuts for circulant-based arrangement



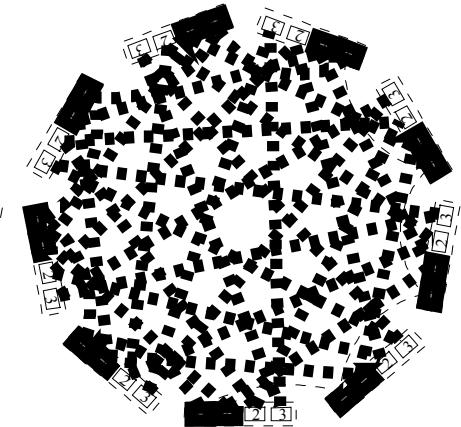
bandwidth $4 + 16\alpha$



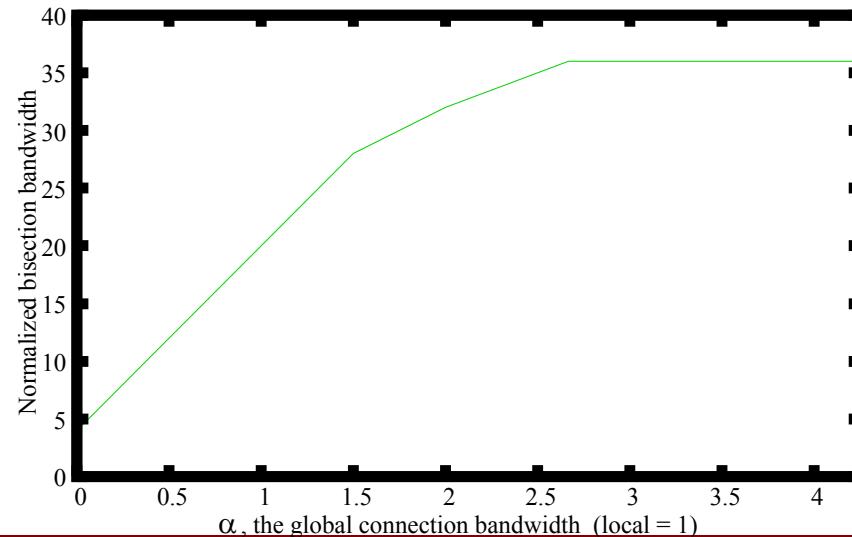
bandwidth $16 + 8\alpha$



bandwidth $20 + 6\alpha$



bandwidth 36



Observations from $(p,4,2)$

- In terms of bisection bandwidth:
 Absolute \leq Relative \leq Circulant-based
- For all three arrangements, maximum bisection bandwidth is bounded

Larger networks

- Focus on large α
 - Determine when bisection bandwidth is ultimately limited by local edges
- Globally Connected Component (GCC): Switches that form connected component in graph without local edges

GCCs in Circulant-based arrangements

Recall: Every edge connects two switches at same position in their respective groups

GCCs in Circulant-based arrangements

Recall: Every edge connects two switches at same position in their respective groups

There are at least a GCCs

($a = \#\text{switches/group}$)

GCCs in Circulant-based arrangements

Recall: Every edge connects two switches at same position in their respective groups

There are at least a GCCs $(a = \#\text{switches/group})$

If a is even and α is sufficiently large, the bisection bandwidth is $(a/2)^2g$ $(g = \#\text{groups})$

GCCs in Circulant-based arrangements

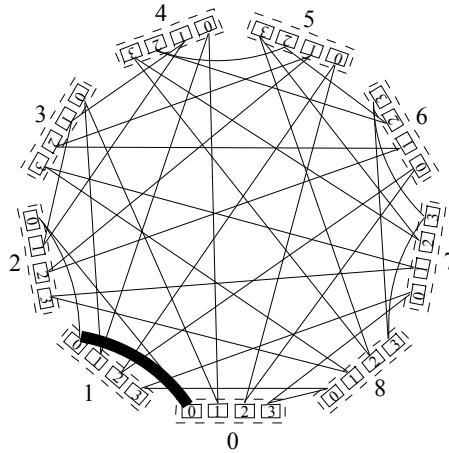
Recall: Every edge connects two switches at same position in their respective groups

There are at least a GCCs $(a = \#\text{switches}/\text{group})$

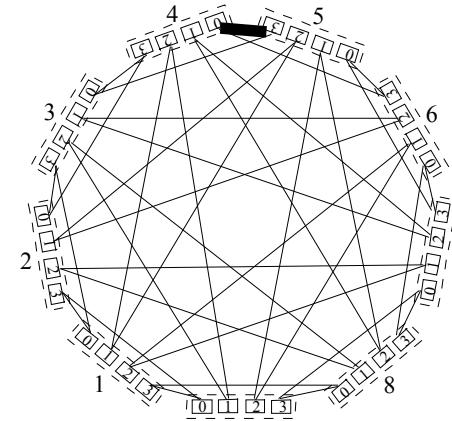
If a is even and α is sufficiently large, the bisection bandwidth is $(a/2)^2g$ $(g = \#\text{groups})$

Structure of GCCs potentially more complicated than that, single switch number can be split into multiple GCCs if g is multiple of distance traversed by switch's links

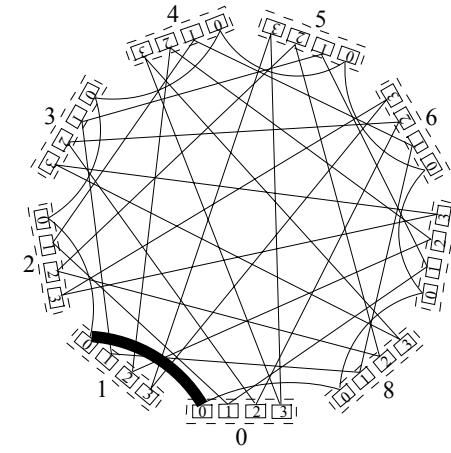
Three distinct global link arrangements



Absolute arrangement



Relative arrangement



Circulant-based arrangement

Arrangements defined in Camarero et al. ACM Trans. Architec. Code Optim., 2014.

Note:

IBM implementation (PERCS) uses absolute

Researchers who draw entire system in their papers use relative

GCCs in Relative arrangements

Recall: Port k connects to $(k+1)^{\text{st}}$ group CW

GCCs in Relative arrangements

Recall: Port k connects to $(k+1)^{\text{st}}$ group CW

Switch 0 connects to switch $(a-1)$ in next group

GCCs in Relative arrangements

Recall: Port k connects to $(k+1)^{\text{st}}$ group CW

Switch 0 connects to switch $(a-1)$ in next group

h groups

GCCs in Relative arrangements

Recall: Port k connects to $(k+1)^{\text{st}}$ group CW

Switch 0 connects to switch $(a-1)$ in next group

h groups

All 0th and $(a-1)^{\text{st}}$ switches form a GCC

GCCs in Relative arrangements

Recall: Port k connects to $(k+1)^{\text{st}}$ group CW

Switch 0 connects to switch $(a-1)$ in next group

h groups

All 0th and $(a-1)^{\text{st}}$ switches form a GCC

Generalizes:

$a/2$ GCCs of size $2g$ (plus 1 of size g if a is odd)

Bisection bandwidth in Relative arrangement

When α is sufficiently large, bisection bandwidth is

$(a/2)^2 g$ if a is a multiple of 4

$\Theta(\alpha)$ otherwise

GCCs in Absolute arrangements

Recall: Port k connects to group k (skip own group)

Gives

$a(a-1)/2$ GCCs of size $2h$

a GCCs of size $h+1$

GCCs in Absolute arrangements

Recall: Port k connects to group k (skip own group)

Gives

$a(a-1)/2$ GCCs of size $2h$

a GCCs of size $h+1$

If a is a multiple of 4, bisection bandwidth is $\leq (a/2)^2 g$.

(Also 3 other times, including when $h \leq a/2$)

GCCs in Absolute arrangements

Recall: Port k connects to group k (skip own group)

Gives

$a(a-1)/2$ GCCs of size $2h$

a GCCs of size $h+1$

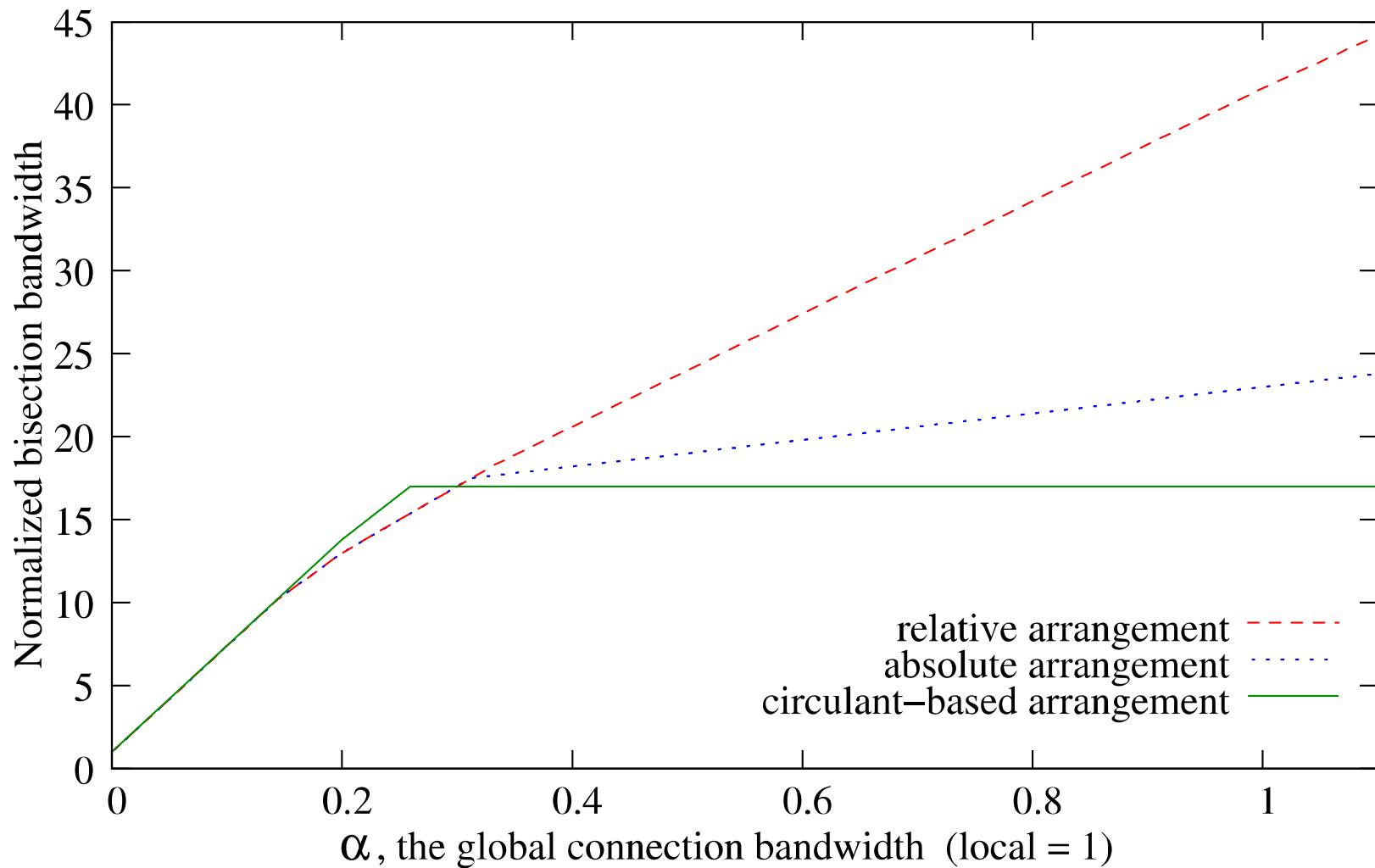
If a is a multiple of 4, bisection bandwidth is $\leq (a/2)^2 g$.

(Also 3 other times, including when $h \leq a/2$)

Otherwise, $\Theta(\alpha)$

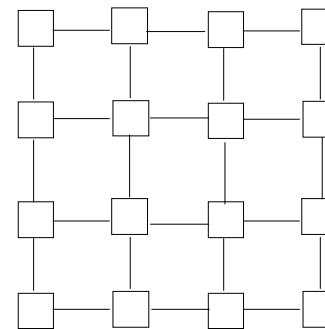
When bisection bandwidth is bounded

Normalize bisection bandwidth for $(p, 2, 8)$



Task mapping

- Assignment of tasks to compute nodes to minimize contention
- Our assumptions:
 - Stencil jobs
 - Tasks blocked to fit on entire switch



Criteria for good mapping

Adapted from Prisacari et al., IPDPS 2013:

Communication in phases such that:

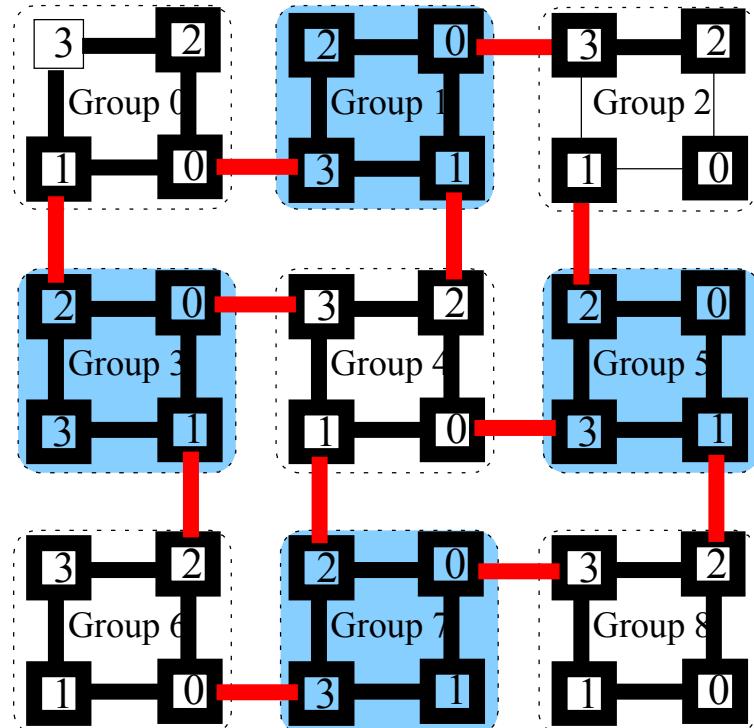
1. Messages distributed evenly on links
2. All paths in a phase have same length

Criteria for good mapping

Adapted from Prisacari et al., IPDPS 2013:

Communication in phases such that:

1. Messages distributed evenly on links
2. All paths in a phase have same length



Mapping of 6×6 job onto $(p,4,2)$ Dragonfly
with relative global link arrangement

Criteria for good mapping

Adapted from Prisacari et al., IPDPS 2013:

Communication in phases such that:

1. Messages distributed evenly on links
2. All paths in a phase have same length

Phases for this mapping:

- Neighbors w/ local links
- Neighbors directly connected by global link
- Neighbors with multi-hop path



Mapping of 6×6 job onto $(p,4,2)$ Dragonfly with relative global link arrangement

Criteria for good mapping

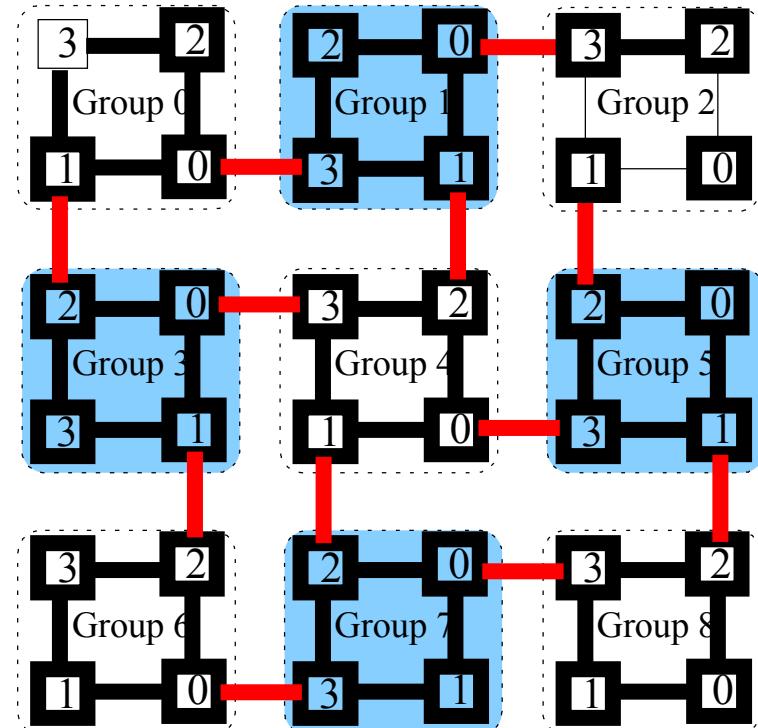
Adapted from Prisacari et al., IPDPS 2013:

Communication in phases such that:

1. Messages distributed evenly on links
2. All paths in a phase have same length

Phases for this mapping:

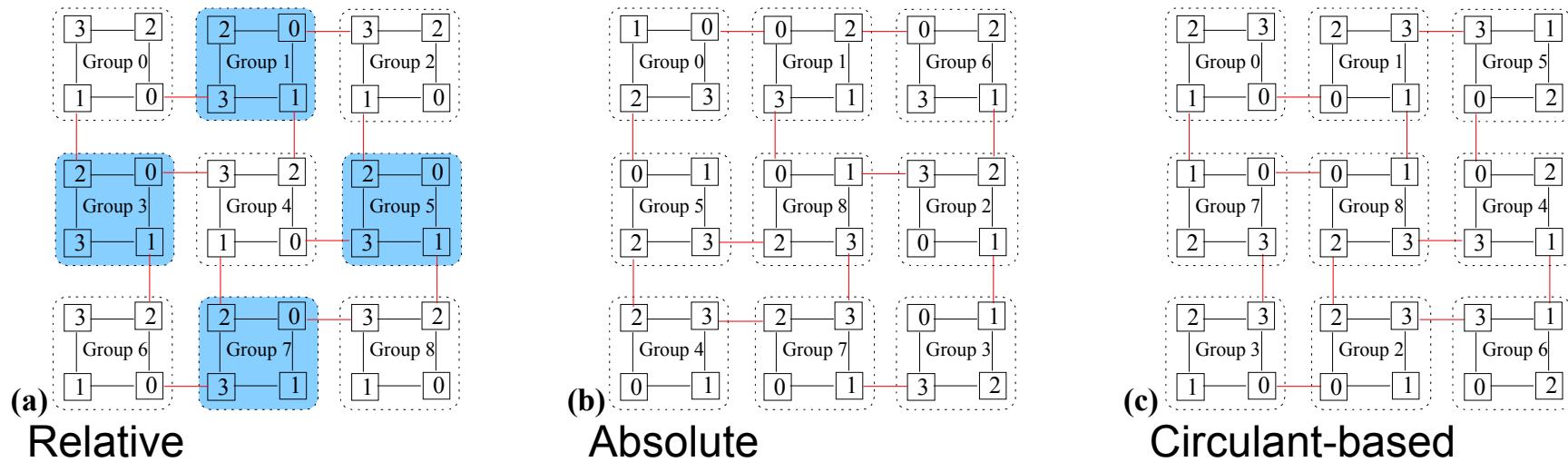
- Neighbors w/ local links
- Neighbors directly connected by global link
- Neighbors with multi-hop path



Mapping of 6×6 job onto $(p,4,2)$ Dragonfly with relative global link arrangement

Nothing this regular seems to exist for absolute or circulant-based arrangements

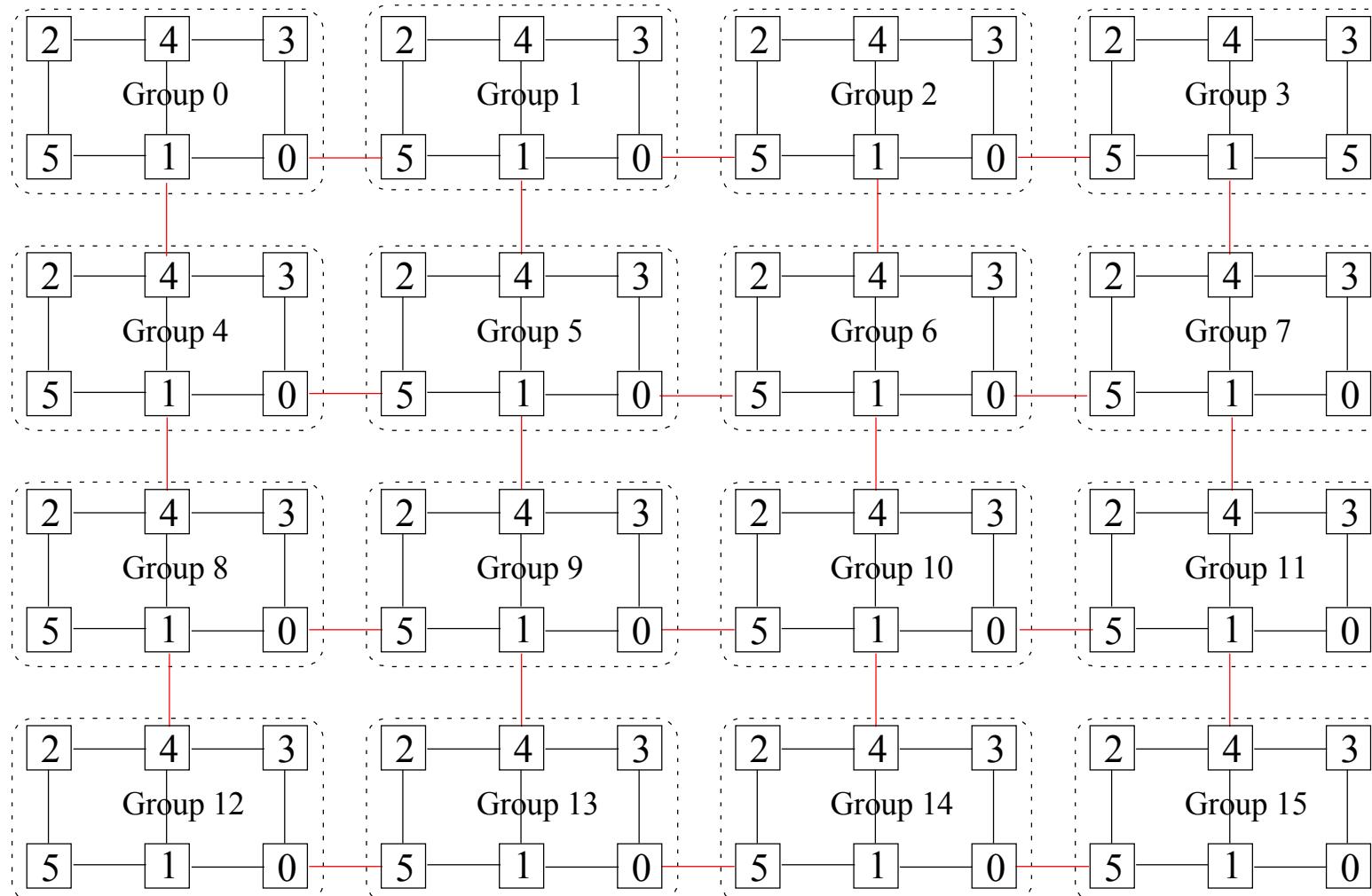
Three mappings for a 6×6 stencil job



Conclusions

- On original $(p, 4, 2)$ graph, for bisection bandwidth:
 Absolute \leq Relative \leq Circulant-based
- On large graphs, Circulant-based is most often bounded, then
 Absolute, then Relative
- On $(p, 2, 8)$ graph, at large α :
 Circulant-based \leq Absolute \leq Relative
 and Absolute and Relative unbounded
- For mapping stencils, Relative gives much more regular
 mappings

Mapping for a 12×8 stencil job on 16 groups of $(p, 6, 3)$ -Dragonfly with rel.



Future work

- Bisection bandwidth at smaller values of α
- Other global link arrangements
- Generalize task mapping and evaluation by simulation
- Communication scheduling recommended by Prisacari et al. may be difficult to implement
- Early Sandia Trinity applications measurements
 - Communications stalls surprisingly high
 - Thermal problems in turbo mode, 25° F swings

Thanks!

- vjleung@sandia.gov