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Alkaline Electrolysis Cell 
Configurations

• Commercialized systems are either liquid KOH or PEM-based.  
• Liquid electrolyte systems contain corrosive solutions (handling and materials 

costs) and porous separators (gas crossover and high resistance across gap) 
• PEM systems require platinum group metal catalyst such as iridium oxide,   

whereas alkaline systems electrolysis can be conducted with Ni or Ag.
• An anion-exchange membrane based system would provide the advantages

of both alkaline liquid electrolyte and PEM systems.

Liquid electrolyte Cell                                       Membrane-based cell (PEM or AEM)



Membrane Issues

There is no commercial standard AEM (such as Nafion® for PEM).

1. Backbone stability
• Membrane must maintain mechanical integrity for up to 5000h at high pH.
• Must be stable to MEA fabrication (hot and dry)

2. Stable cationic groups
• Quaternary ammonium groups can be attacked by OH

-
.

3. Conductivity
• OH

-
inherently 2-3x less mobile than H+

• Identity of anions (OH-/CO3
2-/HCO3

-
) 

• Conductivity at low RH
4. Water swelling

• Physical stress on cell hardware due to expansion/compression.
• Delamination of electrodes from membrane.

1From DOE Alkaline Membrane Fuel Cell Workshop, May 8-9 2011.



Cations on Anion Exchange 
Membranes (AEMs)
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Typical functional groups with fixed positive charges in AEMs:

A Typical Commercially-available
AEM:

• Crosslinked polystyrene with
benzyl trimethylammonium groups (BTMA)

• Typically blended with PVC or a polyolefin
• Cast on fabric support
• Used for electrodialysis



AEMs: The State of the Art

Radiation-grafting of functionalized poly(styrene) onto fluorinated polymers1: 

Bromination of poly(2,6-dimethyl-1,4-phenylene oxide)2:

1Danks, T. N.; Slade, R. T. C.; Varcoe, J. R. J. Mater. Chem., 2003, 13, 712.
2Wu, Y.; Wu, C.; Xu, T.; Lin, X.; Fu, Y. J. Membr. Sci., 2009, 338, 51.
3Kostalik, H. A.; Clark, T. J.; Robertson, N. J.; Mutolo, P. F.; Longo, J. M.; Abruna, H. D.;

Coates, G. W. Macromol., 2010, 43, 7147.

Poly(ethylene)-based AEM from ROMP3:



AEMs: The State of the Art

Poly(biphenylene alkylene) with tethered
ammonium groups1

Poly(phenylene oxide) with multication
sidechains2

1Lee, W.-H.; Kim, Y.S.; Bae, C. ACS Macro Lett. 2015, 4, 814.
2Zhu, L.; Pan, J.; Wang, Y.; Han, J.; Zhuang, L.; Hickner, M.A. Macromol. 2016, 49, 815.

Stable in 1M NaOH at 80 oC for 700h1 Stable in 1M NaOH
at 80 oC for 500h2
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Alternative Cationic Groups

Poly(sulfone) with benzyltris(2,4,6-
trimethoxyphenyl) phosphonium groups1

Poly(sulfone) with benzylpentamethyl
guanadinium groups2

1Gu, S.; Cai, R.; Luo, T.; Chen, Z.; Sun, M.; Liu, Y.; He, G.; Yan, Y. Angew. Chem. Int. Ed., 2009, 48, 1.
2Wang, J.; Li, S.; Zhang, S. Macromol. 2010, 43, 3890.

Stable in 1M KOH at 60 oC for 48h1 Stable in 1M KOH at 60 oC for 48h2



AEMs made at Sandia:
Poly(sulfone)-Based Membranes

Mw = 80-100k

ATMPS
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Polysulfone-based AEM Properties
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Conductivities measured by impedance spectroscopy with a two-point
probe immersed in water at room temperature.



Sandia Pol Curves
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Electrolysis Data: 
Lifetime Test
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Cell conditions:  30 oC, 1M KOH, 10 Amp. Current, active area = 62 cm2

In a similar test in 25% KOH, membrane failed after 24 hrs.



AEMs made at Sandia:
Poly(phenylene)-Based Membranes

Mw = 60-80k

ATMPP

Hibbs, M. R.; Fujimoto, C. H.; Cornelius, C. J. Macromol. 2009, 42, 8316.

TMPP



ATMPP Properties & Stability

• Hydroxide conductivities were measured
in liquid water at room temperature. 

N(CH3)3
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• Test conditions: 4M NaOH (aqueous), 
60 oC, no stirring.

• AHA is “base stable” electrodialysis
membrane – crosslinked polystyrene.

• Both membranes have BTMA cations.



Electrolysis Testing at Proton OnSite

Durability test at 27 oC with PGM catalysts and no added electrolyte

• Established test bed for 
multiple materials 
collaborators

• Failure criterion = 3.0 V.
• Achieved 2000 hrs of 

stable operation using 
ADAPP membrane + 
ADAPP ionomer.

• Need to improve voltage 
stability.

Commercial          Polysulfone Polysulfone Sandia ADAPP
membrane            membrane membrane membrane
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Resonance-Stabilized Cations

ImTMPP (DMSO-d6)

PMGTMPP (DMSO-d6)

BrTMPP (CDCl3)
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KOH Stability Test
Resonance-Stabilized Cations

Test conditions: Membranes immersed in 4M KOH at 90 oC.

σinit. = 9.7

σinit. = 17.7

σinit. = 10.0

• Conductivities were measured with membranes in Cl- form in 25 oC water.

• Hydroxide conductivity is generally 2-3x higher than chloride conductivity.

• Benzyl imidazolium and benzyl guanidinium cations are much less stable 
than BTMA.

0

0.5

1

1.5

2

0 5 10 15

IE
C

 (
m

e
q

/g
)

Time (days)



Stability of Alkyl 
Trimethylammonium Groups

Three Degradation Mechanisms:

Alkylene spacers can increase stability1

Tested for 30 days in 100 oC water (OH- form):

IEC (after/before)

Benzyltrimethylammonium 79 %

Tetramethylene spacer                   92 %

1Tomoi, M.; Yamaguchi, K.; Ando, R.; Kantake, Y.; Aosaki, Y.; Kubota, H.
J. Appl. Polym. Sci. 1997, 64, 1161.



Addition of Side Chains to 
Poly(phenylene)

O
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AlCl3, CH2Cl2, 0 oC
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Hibbs, M. R. J. Polym. Sci. Part B, Polym. Phys. 2013, 51, 1736.



Poly(phenylene) with 
Alkyltrimethylammonium Groups

O Br

O Br
BrKC6PP

O N

O N
TMAKC6PP

1) cast film from CHCl3
2) soak in trimethyl amine (aq)
3) soak in NaOH (aq)

OH

OH

0

50

100

150

200

250

0 0.5 1 1.5 2 2.5

w
a
te

r 
u

p
ta

k
e
 (

O
H

-)

IEC (meq/g)

ATMPP w/
BTMA

TMAKC6PP

0

10

20

30

40

50

60

70

0 1 2

c
o

n
d

u
c
ti

v
it

y

IEC (meq/g)

ATMPP w/ BTMA

TMAKC6PP



Poly(phenylene) with 
Alkyl Side Chains without Ketone
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TMAC6PP Stress/Strain Testing

• AEMs with sidechains show better
mechanical properties.

• With samples of similar molecular
weights, TMAC6PP has over twice 
the elongation at break as ATMPP.

• Elasticity (lack of brittleness), 
especially when dry, is an important 
property for membrane-electrode 
assembly fabrication.

• This testing was performed at 50%
relative humidity and 50 oC.
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TMAC6PP Alkaline Stability

ATMPP              TMAC6PP         

DABC6PP                      TMAKC6PP 

Test conditions: Membranes immersed in 4M KOH at 90 oC.
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• TMAC6PP shows the greatest stability in high pH test.
• The ketone adjacent to the phenyl ring destabilizes 

the side chains.
• Quaternized DABCO on hexyl sidechains with no 

ketone are less stable than BTMA.



Electrolysis Testing at Proton OnSite

Polarization curve ~200 mV above commercially available membrane
baseline for both ionomer tests
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Electrolysis Testing at Proton OnSite

Steady state performance indicated better stability versus 
commercial material

200 mA/cm2 steady state performance at 50 oC with 
PGM catalysts and no added electrolyte
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Conclusions

• Sandia’s polysulfone-based AEMs have shown stable 1000-
hour performance in electrolysis cell with 1 M KOH.

• Polysulfone-based AEMs lack chemical stability above room 
temperature or at higher KOH concentrations.

• Operational stability (>2000 hours) can be achieved in 
electrolysis cells using polyphenylene-based membranes 
without added electrolyte.

• Resonance-stabilized cations (imidazolium and pentamethyl
guanidinium) are less stable to alkaline degradation than BTMA 
cations.

• Trimethylammonium cations on alkyl sidechains have better 
stability than BTMA despite the possibility of Hoffmann 
elimination reactions.

• Further work is needed to develop ionomers to integrate non-
PGM catalysts with polyphenyene-based electrolysis systems.
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Anode Humid. Temp.: 60oC

H2/O2 Performance of Alkaline
Membrane Fuel Cells

Anode Humid. Temp.: 50°C

Perfluorinated ionomer

N(CH3)3

N(CH3)3

aminated TMPP

Membrane/ionomer

IEC = 1.8 meq./g

= 55 mS/cm

Thickness: 50 m

Catalyst: Pt black (3 mg/cm2), Cell temp. 60°C, Cathode

humidification: 60°C, back pressure: 30 psig, high stoic. Catalyst:

ionomer weight composition (9:1, not optimized); MEAs were

prepared from direct painting.

Fully hydrated conditions (anode humid. temp.: 60°C) 

 Mass transport issue due to flooding

 Possibly poor cation – catalyst structure

Partial hydrated conditions (anode humid. temp.: 50°C) 

 Improved performance with removing mass 
transport 

issue

 Poor membrane hydration/remaining issue with 
cation

Data from Yu Seung Kim, LANL

Ionomer (IEC = 0.74 meq./g,  = 20 mS/cm)
Perfluorinated ionomer (anode humid. temp.: 60°C) 

 Improved performance with removing mass transport issue

 No membrane hydration problem

 Maximum power density: 

236 (at 60°C) and 278 mW/cm2 (at 80°C)

80°C

60°C



Mechanical Stability

• Test conditions: 50 oC, 50% RH.
• Poly(arylene ether sulfone) shows significant degradation.
• Poly(phenylene) is weaker in OH- form, but there is no sign

of backbone degradation. 
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