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Main result — CFs are probably Dirac fermions

resistivity scaling linear density dependence
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Outline:

e [ntroduction
e Resistivity scaling at v=1/2

e Density dependence of the CF conductivity



Quantum Hall effects

' n=155x10" /om’
T =50 mK

MAGNETIC FIELD [T]

R, =(h/e?)/v

IQHE — single particle
v=1,2,3...
FQHE — many-body

v=1/3,2/5,3/7 ...
2/3,3/5,4/7 ...



similarity between IQHE and FQHE: R,
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similarity between IQHE and FQHE: R,,



Composite Fermion (CF) Model

Jain, PRL 1989
Halperin, Lee, and Read (HLR), PRB 1993

one composite fermion = one electron + 2 flux quanta
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Classical transport features around v=1/2
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IQHE of CF FQHE of e-
p v=p/(2p+1)
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Lots of Fractions Observed
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Unclarified aspects of CF theory

The most fundamental problem is the lack of particle-hole symmetry

(copied from Son’s presentation at the workshop on Strongly Interacting Topological Phases)

Kivelson, Lee, Krotov, and Gan, PRB (1997).
Lee, PRL (1998).

Kamburov et al. PRL (2014).

Barkeshli, Mulligan, and Fisher, PRB (2015).
Balram, Toke, and Jain, PRL (2015).

Murthy and Shankar, arXiv: 1508.06974.



Dirac composite fermions

Son, Phys. Rev. X 5,031027 (2015); Metlitski and Vishwanath, arXiv:1505.05142;
Wang and Senthil, arxiv:1507.08290; Geraedts et al, arXiv:1508.04140; ...
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D.T. Son, Is the Composite Fermion a Dirac Particle? Phys. Rev. X5, 031027 (2015).

Note that, because of the smallness of p,,,
distinguishing Berry phases of 0 and z requires a suffi-
ciently accurate measurement of p,,: For a relatively large

po~0.1h/e*, an accuracy better than 5 x 1073h/e? is
needed.



Sample: high quality quantum well
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Density: n = 1.190x10! cm~2
Mobility: u ~ 13x10° cm?/Vs



Magneto-transport measurements around v=1/2
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Highly uniform 2DEG
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Accurate Hall resistivity Quantization better than 0.1%

2.3

115 120 125 70 75 8.0
Magnetic Field (T)



T T T T T T
— T=30mK
( ) —T=852K
— T=220 mK
4.0 |

{23 35
g | | 1/2

/
-

Magnetic Field (T)



—— T =30 mK
—— T=85mK
— T=220 mK

9.80 9.82 9.84 9.86

Magnetic Field (T)

9.88



_—
' alb
Za DO ]
) E——

pXX

I

i

MAGNETIC FIELD (T)

75/7]l4
31543
L | "

5

H.W. Jiang et al PRB (1989)
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* Finite thickness

* Landau level mixing

9.83
50nm

Kk=e/cy/ha.=087 atv=1/2




Details ...

* Mixing of p,, and p,,

— 0
pxy - pxy t OlPyx

pxy(+B) = pxyO(B) t O(‘pxx(B)
Pyy(-B) = - p,,°(B) + ap,,(B)

prO = (pxy(+B)_pxy(_B))/2
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The position of the 1/2 state
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» Landau level mixing k= ¢”/ely/ha, = 0.87 at v = 1/2



DENSITY DEPENDENCE OF CF CONDUCTIVITY



HIGFET

(Heterojunction-Insulated Gate Field-Effect Transistor)

high mobility down to very low densities

n+ GaAs (60 nm) 0 ;
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HIGFET
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2DES

Kane, Pfeiffer, West, and Harnett, APL,1993



Straight sidewall is important
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device works!




Linear |-V at very low densities
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SdH oscillations at B ~ 0.2T
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Density (1010 cm'z)
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Floating or anti-floating of Landau levels
in vanishing B field?

0.0 0.1 0.2

Wang, Avishai, Meir, and Wang, PRB 89, 045314 (2014) B



Observation of anti-floating in vanishing B field
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Composite fermions in HIGFET
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CF conductivity versus density
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Linear dependence In graphene
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Tan et al. PRL (2007).



CFs are Dirac fermions

Resistivity scaling

Linear density dependence of conductivity
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Thank you
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n (10""ecm?)

Very big density tunable range
~ 1x10° to ~ 7.5x10%! cm™2
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