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samples and measurements

(xy-2)/xx
2 = -0.7 ~ -0.5 (Son,PRX) 
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Main result – CFs are probably Dirac fermions 

resistivity scaling linear density dependence



Outline:

• Introduction

• Resistivity scaling at =1/2

• Density dependence of the CF conductivity 
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Quantum Hall effects

Rxy=(h/e2)/

IQHE – single particle 
 = 1, 2, 3 … 

FQHE – many-body

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similarity between IQHE and FQHE: Rxx
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one composite fermion = one electron + 2 flux quanta

Composite Fermion (CF) Model

Beff = B – 2Φ0  n = B – 2nh/e = B – B1/2

Jain, PRL 1989
Halperin, Lee, and Read (HLR), PRB 1993
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Classical transport features around =1/2

 = 1/2

Beff = B – B1/2 = 0

CFs form fermi sea
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Unclarified aspects of CF theory

……

The most fundamental problem is the lack of particle-hole symmetry

Kivelson, Lee, Krotov, and Gan, PRB (1997). 
Lee, PRL (1998). 
Kamburov et al. PRL (2014). 
Barkeshli, Mulligan, and Fisher, PRB (2015). 
Balram, Toke, and Jain, PRL (2015). 
Murthy and Shankar, arXiv: 1508.06974. 

(copied from Son’s presentation at the workshop on Strongly Interacting Topological Phases)



Dirac composite fermions

Son, Phys. Rev. X 5, 031027 (2015); Metlitski and Vishwanath, arXiv:1505.05142; 
Wang and Senthil, arxiv:1507.08290; Geraedts et al, arXiv:1508.04140; …

Dirac CFs: (xy-2)/xx
2 = -1/2

(xy-2)/xx
2

Beff = B – B1/2

(xy-2)/xx
2

Beff = B – B1/2

(0,-1/2)

HLR CFs:  (xy-2)/xx
2 = 0

Son, PRX (2015).
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D.T. Son, Is the Composite Fermion a Dirac Particle? Phys. Rev. X 5, 031027 (2015). 



Sample: high quality quantum well

Density: n = 1.190x1011 cm-2

Mobility:  ~ 13x106 cm2/Vs

PRL (2003)
PRB (2015)
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Magneto-transport measurements around =1/2



Highly uniform 2DEG



Accurate Hall resistivity Quantization better than 0.1%
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• Finite thickness

• Landau level mixing

50nm
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Details …

• Mixing of xx and xy

xy = xy
0 + xx

xy
0  = (xy(+B)–xy(-B))/2

xy(+B) = xy
0(B) + xx(B)

xy(-B) = - xy
0(B) + xx(B)



The position of the 1/2 state

straight line, through origin

B=1/2 = 9.843T

Magnetic Field (T)
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• Landau level mixing 

~ 1
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DENSITY DEPENDENCE OF CF CONDUCTIVITY



HIGFET
(Heterojunction-Insulated Gate Field-Effect Transistor)

high mobility down to very low densities

GaAs overgrowth layer

AlGaAs/GaAs superlattice

GaAs substrate

GaAs (2 m)

AlGaAs (600 nm)

n+ GaAs (60 nm)

2DEG
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HIGFET 

n+ GaAs
AlGaAs

GaAs

2DES

Vg

Kane, Pfeiffer, West, and Harnett, APL,1993



contact area
(before Ni/Ge/Au)

Mesa

Straight sidewall is important



Mesa

Annealed 
Ni/Ge/Au 

contact

device works!



Linear I-V at very low densities



B = 0.197T
T ~ 15 mK

0.0 0.5 1.0 1.5 2.0

0.01

0.1

1

10

R
xx

electron density (10
11

 cm
-2
) 

=2

3

30

40

=29

SdH oscillations at B ~ 0.2T

16



0.00 0.05 0.10 0.15 0.20 0.25
0

2

4

6

8

10

12

=16
D

e
n

si
ty

 (
1
0

1
0
 c

m
-2
)

Magnetic Field (T)

T = 15 mK
HIGFET

n=eB/h



Floating or anti-floating of Landau levels 
in vanishing B field? 

E
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Laughlin, PRL 52, 2304 (1984).
Khmelnitskii, Phys. Lett. A 106, 182 (1984).

Glozman, Johnson, and Jiang PRL 74, 594 (1995)Wang, Avishai, Meir, and Wang, PRB 89, 045314 (2014)



Observation of anti-floating in vanishing B field
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CF conductivity versus density
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Electron conductivity
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Linear dependence in graphene

Tan et al. PRL (2007).
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CFs are Dirac fermions

• Resistivity scaling

• Linear density dependence of conductivity

(xy-2)/xx
2 = -0.7 ~ -0.5
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Thank you
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Very big density tunable range
~ 1x109 to ~ 7.5x1011 cm-2
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