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What is Concentrating Solar Power (CSP)?

3

CSP provides heat for a power cycle

1
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3
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Rankine Cycle



What is Concentrating Solar Power (CSP)?
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Conventional power plants burn fossil fuels (e.g., coal, natural gas) or use 
radioactive decay (nuclear power) to generate heat for the power cycle

Coal-Fired Power Plant



What is Concentrating Solar Power (CSP)?
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CSP uses concentrated heat from the sun as an alternative heat source for the 
power cycle

Concentrating Solar Power
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How Does CSP Work?

 Concentrating solar power uses mirrors to concentrate the 
sun’s energy onto a receiver to heat a fluid (e.g., steam), 
which turns a turbine and generator to produce electricity
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How Does CSP Work?

 Concentrating solar power uses mirrors to concentrate the 
sun’s energy onto a receiver to heat a fluid (e.g., steam), 
which turns a turbine and generator to produce electricity

From the U.S. DOE Solar Energy Technologies Program Web Site:
http://www.eere.energy.gov/basics/renewable_energy/linear_concentrator.html

http://www.eere.energy.gov/basics/renewable_energy/linear_concentrator.html
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CSP Technologies

 Line Focus
 Parabolic Troughs

 Linear Fresnel

 Central Receivers “Power Towers”

 Dish Engines
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Line Focus Systems

Parabolic trough (left) and 
linear Fresnel (right) collector 

systems (photos from 
http://en.wikipedia.org/wiki/Sol

ar_thermal_energy) 

http://en.wikipedia.org/wiki/Solar_thermal_energy
http://en.wikipedia.org/wiki/Solar_thermal_energy
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Central Receivers
“Power Towers”
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Central Receivers
“Power Towers”

Photo of Solar 
Two power 

tower plant in 
operation in 
Daggett, CA 
(photo from 

Sandia 
National 

Laboratories, 
photo 2897) 
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Dish/Engine Systems

Illustration and photo of dish/engine system
(photo from http://en.wikipedia.org/wiki/Solar_thermal_energy)

http://en.wikipedia.org/wiki/Solar_thermal_energy
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Dish/Engine – Stirling Cycle

http://en.wikipedia.org/wiki/User:Zephyris

www.energy.ca.gov

http://www.energy.ca.gov/
http://en.wikipedia.org/wiki/User:Zephyris
http://en.wikipedia.org/wiki/User:Zephyris


CSP Commercial Plants
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Parabolic Trough Plants

http://en.wikipedia.org/wiki/SEGS

 Solar Electric Generating 
System (SEGS) Plant
 9 parabolic trough plants 

in Mojave Desert, CA 
(started in 1980’s)

 354 MW installed 
capacity

 Nevada Solar One
 Near Las Vegas, NV

 64 MW installed capacity

 Commissioned ~2009

 Solana Generating 
Station
 Gila Bend, AZ

 280 MW installed 
capacity

Nevada Solar One
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eSolar Power Tower

5 MW in Lancaster, CA (started in 2009)
24,000 heliostats, two modules



Ivanpah Solar Power Tower
California (near Las Vegas, NV)
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http://news.nationalgeographic.com

392 MWe direct-steam power tower plants in 
Ivanpah, CA. 170,000 heliostats. Opened 

February 2014

http://news.nationalgeographic.com/
http://news.nationalgeographic.com/


Gemasolar
(near Seville, Spain)

 1st commercial power tower (19 MW) in the world with 24/7 dispatchable energy 
production (15 hours of thermal storage using molten salt).  Commissioned in 
May 2011.
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9/25/11



Crescent Dunes
Tonopah, Nevada
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110 MWe molten-salt power tower under construction by SolarReserve 
near Tonopah, NV. Construction from 2011 – 2015.



Khi Solar One
Upington, South Africa

20

50 MWe steam power tower with 2 hours of steam storage.  Tower is 
205 m tall and has three cavity receivers.
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Stirling Energy Systems
Dish/Engine Plant

1.5 MW, 60 dishes near Phoenix, AZ (started in 2010; filed for bankruptcy in 2011)
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DOE SunShot Goal

• Reduce LCOE of solar-generated electricity 
to $0.06/kWh by 2020 with no tax credits

• Reduce cost of installed solar energy systems by 
75%

• Enable solar-generated power to account for
15–18% of America’s electricity generation by 2030
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Research Needs

 Collectors (Mirrors) and Optical Performance

 High-Temperature Receivers

 Thermal Energy Storage
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Collectors and Optical Performance



Optical Accuracy – Gravity Sag

Mirror canting and gravity sag can affect optics
(J.Yuan)

August 23

• Need lightweight, stiff support structures (composite 
fibers, space frame?)



Wind Impacts – Optics and Fatigue

Optics impacted by 
“sway” or out-of-
plane bending

J. Sment, J. Christian, J. Yuan

Tacoma Narrows Bridge 
collapsing under 40 mph winds 

(1940)

• Need 
dampeners or 
anti-vibration 
devices

• “Winglets” to 
reduce wind 
loads?



Optical Accuracy – Characterization,
Alignment, and Tracking (Andraka, Yellowhair, Smith)

(Andraka, Yellowhair)

Heliostat

Camera

Target Tower

Before After

• Need smart alignment techniques
• MEMS-based self adjusting surfaces?
• Novel tracking methods



Advanced Reflective Materials

Heliostat with 3M™ Solar Mirror 
Film 1100

12:56 PM, 7/6/11

SMF 1100

3 mm silvered glass



Anti-Soiling Coatings

 Need anti-soiling coatings for mirrors to reduce need for washing 
and maintain high reflectivity

33



Anti-Soiling Coatings and Devices

3M Anti-Soiling Coating
(nanoparticle based liquid pH ~3)

M. Mazumdar (Boston University) 
Electrodynamic screens charge 

particles and lift them off the 
surface



35

Receivers



High-Temperature Receivers

 Maximize solar absorptance and minimize heat loss 
(selective absorber coatings, geometry, 
concentration ratio)

 Need materials that operate at high temperature 
(>650 C) and are durable in air

National Solar Thermal Test Facility, Sandia National Laboratories, Albuquerque, NM

External tubular receiver

Cavity receiver



Fractal-Like Receiver Designs

 Develop fractal-like designs and structures across multiple scales to 
increase solar absorptance while minimizing heat loss

37

~10 m

©SolarReserve

Conventional cylindrical 
solar receiver

meters

mm - cm

microns

New fractal-like designs with light-trapping and low-emittance 
properties at multiple scales

Sharma et al. 
(2009)

Patents Pending



High Temperature Falling Particle 
Receiver (DOE SunShot Award FY13 – FY15)

38Participants:  Sandia, Georgia Tech, Bucknell U., King Saud Univ., DLR



Advantages of Particle Receivers

 Direct heating of particles

 Higher temperatures than conventional molten salts
 Enable more efficient power cycles (e.g., sCO2 at ~700 C)

 Higher solar fluxes for increased receiver efficiency

 Direct storage of hot particles

 Reduced costs

39
CARBO ceramic particles (“proppants”)



General Approach
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Phase 1

• Modeling, design, 
proof-of-concept 
testing

Phase 2

• Component 
testing, model 
validation, design 
optimization

Phase 3

• Prototype 
development for 
on-sun testing



Particle Receiver Designs – Free Falling
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Free-Falling Receiver Designs

 Developed CFD models to optimize 
receiver performance 
 ANSYS FLUENT: Radiation, convection, 

discrete phase particles, turbulence

 Features modeled

 Alternative geometries

 Particle recirculation

 Air curtain

 Particle size, mass flow rate, release patterns

42
1 mm particle size 100 m particle size 10 m particle size



Obstructed Flow Designs
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Staggered Chevron 
Mesh Array

Patent Pending

Al Ansary, H. et al., United States Patent Application 2013/0068217 A1, Solid Particle Receiver with Porous Structure 
for Flow Regulation and Enhancement of Heat Transfer, K.S. University, March 21, 2013.



Staggered Array of Chevron Mesh Structures
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Particle Flow over Chevron Meshes

45

Pros:  particle velocity 
reduced for increased 
residence time and heating

Cons:  Mesh structures 
exposed to concentrated 
sunlight (~1000 suns)



Prototype System Design
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Particle Release Configurations
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Lifting the system to the top of the tower –
June 22, 2015
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Lifting the system to the top of the tower

49
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Lifting the system to the top of the tower



On-Sun Tower Testing
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On-Sun Tower Testing

52
Over 300 suns on receiver

(June 25, 2015)



On-Sun Tower Testing
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Over 600 suns peak flux on receiver

(July 20, 2015)



On-Sun Tower Testing

54

Particle Flow Through Mesh Structures
(June 25, 2015)



Irradiance Measurements
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Measured Simulated using Ray Tracing 
(SolTrace)



Temperature Measurements
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Particle Temperature Rise
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Thermal Efficiency
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Energy Storage
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Energy Storage

 Sensible (single-phase) storage
 Low temperature melting-point molten salts

 Reduce heating needs at night to prevent freezing

 Stability of heat transfer fluids at higher 
temperatures

 Solid storage (particles, graphite, concrete, 
ceramics)

 Phase-change materials
 Use latent heat to store energy

 Thermochemical storage
 Converting solar energy into chemical bonds (e.g., 

sulfur thermochemical cycle)

Molten-salt storage tanks at 
Andasol parabolic trough 

plant in Spain
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Summary

 Concentrating Solar Power (CSP) provides utility-scale 
electricity

 Uses mirrors to concentrate solar flux onto receiver

 Hot working fluid converts heat to mechanical energy via heat 
engine (e.g., steam turbine, Stirling engine), which spins a 
generator for electricity

 Extra heat can be used for thermal storage to generate electricity 
during night or cloudy periods
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Summary

 Market and Economics of CSP

 Currently, only ~1% of U.S. energy consumption is from solar energy

 ~90% from PV, ~10% from CSP

 Current cost of CSP is significantly higher than fossil-fuel power plants

 DOE SunShot goal is to reduce LCOE to $0.06/kWh by 2020

 LCOE (levelized cost of energy) = annualized cost / annual energy 
production 
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Summary

 Some Research Needs for CSP

 Collectors (Mirrors) and Optical Performance

 High-Temperature Receivers

 Energy Storage

 Efficient power cycles



Questions?
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Cliff Ho, (505) 844-2384, ckho@sandia.gov

mailto:ckho@sandia.gov


Backup Slides
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Particle Velocities – Free fall vs. 
Obstructed

68
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Error bars for measured free-fall data 
represent  minimum and maximum values
Error bars for measured fall over chevron 
screens represent one standard deviation Ho, C.K., J. Christian, D. 

Romano, J. Yellowhair, 
and N. Siegel, 2015, 
Characterization of 
Particle Flow in a Free-
Falling Solar Particle 
Receiver, in Proceedings 
of the ASME 2015 Power 
and Energy Conversion 
Conference, San Diego, 
CA, June 28 - July 2, 
2015.



Sintering Potential

Al-Ansary et al., “Characterization and Sintering Potential of Solid Particles for Use in High 
Temperature Thermal Energy Storage System,” SolarPACES 2013
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Design of Experiments

 Factors

 Particle size

 Particle mass flow rate

 Particle release location

 Air curtain blower speed

 External wind

 Metrics

 Particle loss

 Particle curtain spread

70



Impact of Air Curtain on Convective Heat Loss

 The air curtain 
generally increased 
convective losses in 
the system by ~0.5-1% 
for low initial particle 
temperatures of 25 C

 When the simulated 
initial particle 
temperature was 
increased to 600 C, the 
convective losses were 
reduced by 3.5 
percentage

71



Failure of Mesh Structures
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Failure of 316 SS mesh structures on July 24, 2015 
~700 suns at ~1000 C (steel)



Receiver Mesh Structures
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SS316 Mesh Failure Analysis
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Mesh located far from failed region Mesh located within failed region

(ceramic particles sintered on mesh)



SS316 Mesh Failure Analysis
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SEM of oxidized mesh



SS316 Mesh Failure Analysis
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FESEM/EDS of oxidized mesh



SS316 Mesh Failure Analysis
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Top left:  cross-
sectional view of intact 
wire mesh

Top right: cross-
sectional view of 
oxidized wire mesh



SS316 Mesh Failure Analysis
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Cross-sectional view of oxidized wire mesh; wire ruptured and “leaked” molten steel out of 
oxidized shell (white is stainless steel, rough gray area is oxidized mesh)
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Need to reduce the levelized cost of 
electricity (LCOE) from solar
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What is LCOE?

 Levelized Cost of Electricity (Energy) in $/kWh

Annualized Cost of Power Plant ($)

Annual Net Energy Production (kWh)

Energy [Joule] = [Watt] * [second] = [kW] * [hour] * (1000 W/kW) * (3600 sec/hour)

Power [Watt] = [Joules / second]

where:

LCOE =


