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Project Overview
Problem: Cost competitive ionic liquids have high viscosities but
are promising for higher energy density redox flow batteries due
to higher metal concentrations and wider voltage windows.

Approach: Couple earth-abundant, tunable electrolytes with
custom-synthesis non-agueous membranes and rapidly test
them using laboratory-scale cell designs.
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Potential for four-fold improvement
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Increased renewables
penetration on the grid
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Pratt, Leonard, and Anderson, EESAT 2013.




lonic Liquids ()

Laboratories

lonic liquids are solvents that consist entirely of ions; they
conduct electricity by ion migration.
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F. Endres, ChemPhysChem, 2002, 144.



Synthesis of an Iron lonic Liquid () =,

(CF,S0,),Fe + 6 NH(CH,CH,OH), _2 +3 (CF,S0,)
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Anderson, Ingersoll, Rose, Staiger, and Leonard, Dalton Trans. 2010, 8609.



Metal lonic Liquid (MetiIL) Concept =
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- The “MetiLs” Family

Approach: MetlLs are synthesized in a single, high yield
procedure using low cost, commercial precursors.
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XANES/EXAFS’: In situ measurements
show reduction of iron does not result g0
in a decrease in iron-oxygen bond
lengths, suggesting a significant
shielding of the metal by the ligands

from the external environment.

"Apblett et al., Electrochimica Acta, 2015, 156.



Cu(NH(CH,CH,0H),).** Complexes

Anion: Influences ligand coordination and electrochemistry.

Ligand Coordination: Hydroxyl-coordinated complexes
display quasi-reversible Cu(ll) reduction at lower potentials
and have higher reversibility.
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Pratt, Rose, Staiger, Ingersoll, and Anderson, Dalton Trans. 2011, 11396.



Sandia

Role of the Anion

0 o ¢ |Ligand|Anion|Anion | State at c AE
/\/j)ko‘ Fgc—(:S:;—d FI'S;;F 25° C |[[mS/cm]|[mV]
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DEA diethanolamine EA Solid --- 158
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Pratt, Leonard, Steele, Staiger, and Anderson, Inorg. Chim. Acta. 2013, 78.



lonic Liquid Viscosity () s,

Approach: Temperature | Approach: New cell designs
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The back pressures from the viscous materials are minimized by increasing
the outlet to inlet ratio and by smoothing the turns in the flow field. g




Static Cell Testing

Partially irreversible copper
plating on the electrode
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Pratt, Ingersoll, Hudak, McKenzie, and Anderson, J. Electroanal. Chem. 2013, 153.



Copper Plating iy
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Significant improvements in the battery performance were achieved and
three oxidation states of copper have now been utilized. 10




lonic Liquid Battery Prototype

Laborato ry"

Negative Half-Cell Reaction

15V

* Initial tests on Cu-
MetIL/Fe-MetlIL system
used commercial
membranes.

* Neosepta AHA gave the
best initial results for
commercial membranes.

e Batteries were run at 50 °C
to improve the viscosity of
the MetlLs.
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Positive Half-Cell Reaction

Highlight: First ionic liquid flow battery patent awarded in 2015 11




Membrane Through-Plane Resistance  [@&=

Laboratories
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Different membranes in TEA-BF, illustrate a wide variability
in resistances that in turn are solvent dependent.
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Hudak, Small, Pratt, and Anderson, J. Electrochem. Soc. 2015, p. A2188.



Flow Cell Studies (1)
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Hudak, Small, Pratt, and Anderson, J. Electrochem. Soc. 2015, p. A2188.



Membranes
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Most commercially available, ion selective membranes are

not designed for non-aqueous use.
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Commercial

15t Generation Results:

* Coulombic efficiency
increased from 70% to 90%.

* Current density increased
from 0.5 to 10 mA/cm?.
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Membrane lon Content

Membranes contain a polyphenylene backbone with pendant
ionic groups; ionic content was varied qualitatively high,

medium, and low.

Low lon Content
Very brittle sample—no data

Medium lon Content
Best Coulombic efficiency
Best electrochemical yield
Least crossover

NMe3

High lon Content
Good Coulombic efficiency
High crossover

The membranes are prepared by a propriety process using Friedel
Crafts acylation with a ketone to add pendant ammonium groups
and simultaneously lightly crosslink the polymer backbone. 15

Small, Pratt, Fujimoto, and Anderson, J. Electrochem. Soc., 2016, A5106.



Cell Cycling High/Medium lon Content
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Small, Pratt, Fujimoto, and Anderson, J. Electrochem. Soc., 2016, A5106.



Post Cycling Studies B
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Theoretical electrochemical yield for a
static cell was determined from the OCP
and the Nernst equation.

* The overlay of the static and cycled data
show that crossover was responsible for
the lowered electrochemical yield.

Small, Pratt, Fujimoto, and Anderson, J. Electrochem. Soc., 2016, A5106.



Chemical taili () e
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Small, Pratt, Fujimoto, and Anderson, J. Electrochem. Soc., 2016, A5106.



Conclusions () i

Metallic ionic liquids address:

* Energy density through higher metal concentrations and wider
voltage windows

* Life cycle costs through earth abundant materials

* Round trip efficiency through high electrochemical reversibility and
conductive membranes

* Cycle life through chemically stable materials

Future Work:
* Move toward a more viable system through—
> Addressing capacity fade through tunable membranes

chemistries
> Further increasing cell voltages through new chemistries-Leo

Small’s talk is next.




Sandia
National
Laboratories

Thank you to the DOE OE and especially Dr. Imre Gyuk
for his dedication and support to the ES industry and
Sandia’s ES Program.

Questions?

Principal Investigator Contact Information:

Travis Anderson
Sandia National Laboratories
PO Box 5800

Albuguerque, NM 87185-0613
tmander@sandia.gov
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