
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2016-0933PE

Performance Portability for Linear Algebra with Kokkos
Christian Trott, Carter Edwards, Nathan Ellingwood, Si Hammond

Mehmet Deveci, Erik Boman, Andrew Bradley, Mark Hoemmen, Siva Rajamanickam

crtrott@sandia.gov
Center for Computing Research

Sandia National Laboratories, NM

SAND2016-2672C

Kokkos: Performance, Portability and Productivity

2

DDR

HBM

DDR

HBM

DDRDDR

DDR

HBMHBM

Kokkos

LAMMPS Sierra AlbanyTrilinos

Kokkos: Performance, Portability and Productivity

 A programming model implemented as a C++ library

 Abstractions for Parallel Execution and Data Management
 Execution Pattern: What kind of operation (for-each, reduction, scan,

task)

 Execution Policy: How to execute (Range Policy, Team Policy, DAG)

 Execution Space: Where to execute (GPU, Host Threads, PIM)

 Memory Layout: How to map indicies to storage (Column/Row Major)

 Memory Traits: How to access the data (Random, Stream, Atomic)

 Memory Space: Where does the data live (High Bandwidth, DDR, NV)

 Supports multiple backends: OpenMP, Pthreads, Cuda,
Qthreads, Kalmar (experimental)

 Sandia application teams committed to Kokkos as its path for
transitioning legacy codes, and as part of its new codes
 Trilinos, LAMMPS, Albany, Sierra Mechanics, …

3

Going Production

 Kokkos released on github in March 2015
 Develop / Master branch system => merge requires application passing

 Testing Nightly: 11 Compilers, total of 90 backend configurations, warnings as errors

 Extensive Tutorials and Documentation > 300 slides/pages

 Trilinos NGP stack uses Kokkos as only backend
 Tpetra, Belos, MueLu etc.

 Working on threading all kernels, and support GPUs

 Sandia Sierra Mechanics going to transition to Kokkos
 Decided to go with Kokkos instead of OpenMP (only other realistic choice)

 FY 2016: prototyping threaded algorithms, explore code patterns

 Data management postponed to FY 2017 and follow on

 Sandia ATDM has Kokkos as big component
 All ATDM Apps are using Kokkos

 Add System level Tasking with Dharma later
4

KokkosP Profiling Interface
 Dynamic Runtime Linkable profiling tools

 Not LD_PRELOAD based (horray!)

 Profiling hooks are always enabled (i.e. also in release builds)

 Compile once, run anytime, profile anytime, no confusion or recompile!

 Tool Chaining allowed (many results from one run)

 Very low overhead if not enabled

 Simple C Interface for Tool Connectors
 Users/Vendors can write their own profiling tools

 VTune, NSight and LLNL-Caliper

 Parallel Dispatch can be named to improve context mapping

 Initial tools: simple kernel timing, memory profiling, thread
affinity checker, vectorization connector (APEX-ECLDRD)

 Contact: Simon Hammond (sdhammo@sandia.gov) 5

Enhancing Productivity: Using C++ Lambdas

 C++11 Feature which simplify using abstraction layers

6

Pragma Based OpenMP:
#pragma omp parallel for
for(int i=0; i<N; i++) {
a[i] += b[i];

}

Functor Based Kokkos:
struct vector_add {

View<double*> a;
View<double*> b;
vector_add(View<double*> a_, View<double*> b_):
a(a_),b(b_){}

KOKKOS_INLINE_FUNCTION
void operator() (const int&i) const {

a(i) += b(i);
}

};

parallel_for(N, vector_add(a,b));

LAMBDA Based Kokkos:
parallel_for(N, KOKKOS_LAMBDA (const int& i) {
a[i] += b[i];

});

Under development: KokkosKernels
 Provide BLAS (1,2,3); Sparse; Graph and Tensor Kernels

 No required dependencies other than Kokkos

 Local kernels (no MPI)

 Hooks in TPLs such as MKL or CuBlas/CuSparse if applicable

 Provide kernels for all levels of hierarchical parallelism:
 Global Kernels: use all execution resources available

 Team Level Kernels: use a subset of threads for execution

 Thread Level Kernels: utilize vectorization inside the kernel

 Serial Kernels: provide elemental functions (OpenMP declare SIMD)

 Work started based on customer priorities; expect multi-year
effort for broad coverage

 People: Many developers from Trilinos contribute
 Consolidate node level reusable kernels previously distributed over

multiple packages 7

SPMV – Using Hierarchical Parallelism

8

Basic Algorithm y = Ax:

for irow in rows { // Distribute over Threads
for j in length(irow) { // Vectorize reduction
col = A.column(irow,j)
val = A.values(irow,j)
y(irow) += val * x(col);

}
}

Better Work Setting for better Cache Locality of x:

for set in row_sets { // Distribute over Thread-Teams
for irow in rows(set) { // Distribute over Threads
for j in length(irow) { // Vectorize Reduction

col = column(irow,j)
val = values(irow,j)
y(irow) += val * x(col);

}
}

}

SPMV – Using Hierarchical Parallelism

9

void spmv(Matrix A, Scalar alpha, XType x, Scalar beta, YType y) {
int nnz_per_team = 2048;
int conc = execution_space::concurrency();
while((conc * nnz_per_team * 4> A.nnz())&&(nnz_per_team>256)) nnz_per_team/=2;

int nnz_per_row = A.nnz()/A.numRows();
int rows_per_team = (nnz_per_team+nnz_per_row-1)/nnz_per_row;
int vector_length = GetVectorLength(A);
const int nworkset = (y.dimension_0()+rows_per_team-1)/rows_per_team;

parallel_for(TeamPolicy<Schedule<Dynamic> >(nworkset, AUTO(),vector_length),
KOKKOS_LAMBDA (const TeamPolicy<>::member_type& team) {
const int startRow = team.league_rank() * rows_per_team;
const int endRow = startRow + rows_per_team < A.numRows() ?

startRow + rows_per_team : A.numRows()

parallel_for(TeamThreadRange(team,startRow,endRow), [&] (const int& loop) {
const SparseRowViewConst<MatrixType,SizeType> row = A.template rowConst<SizeType>(iRow);
const int row_length = row.length;
Scalar sum = 0;

parallel_reduce(ThreadVectorRange(team,row_length), [&] (const int& iEntry, Scalar& lsum) {
const Scalar val = conjugate ?

ATV::conj (row.value(iEntry)) :
row.value(iEntry);

lsum += val * x(row.colidx(iEntry));
},sum);

single(PerThread(team), [&] () {
sum *= alpha;
y(iRow) = beta * y(iRow) + sum;

});
});

}

10

11

High Bandwidth Memory

 Main Problem: How to decide who can put things in scarce HBM

 Strategy One: Stage in individual linear systems temporarily
 Most of our Apps solve multiple linear systems at the same time

 Aggregate Memory footprint > HBM, but individual linear system < HBM

 Can be supported by TPetra today: Keep copies of all systems in capacity
memory, create temporary copies in HBM for individual solves

 Strategy Two: Domain Decomposition Solvers
 Divide full problem into subdomains

 Develop solvers which can work on individual subdomains with enough
data reuse to amortize data transfer

 Copy in one subdomain at a time

 Advantage: Relatively straight forward, No persistent HBM usage
 No need for inter-package arbitration on HBM usage quotas

12

High Bandwidth Memory

13

Capacity

HBM

Processor

Cost Estimate (Bandwidth Bound):

Run From Capacity Memory
Time = Niter * Size / BWCapacity

Run From HBM
Time = Niter * Size / BWHBM +

Size / BWCapacity

Expect
BWHBM/BWCapacity ~ 5-20

Question: Generally need higher parallelism to achieve BWHBM vs BWCapacity

=> What about Direct Solvers?

The Way Forward

 Stabilize Kokkos Capabilities
 Support tasking on all platforms

 Make sure compilers optimize through layers

 Harden KNL support for High Bandwidth Memory

 Broaden Implementation Coverage for Kokkos Kernels

 Support Production Teams in Adoption

 Develop more Documentation

 Extend profiling tools to help with transition

14

www.github.com/kokkos/kokkos: Kokkos Core Repository
www.github.com/kokkos/kokkos-tutorials: Kokkos Tutorial Material
www.github.com/kokkos/kokkos-tools: Kokkos Profiling Tools
www.github.com/trilinos/Trilinos: Trilinos Repository

http://www.github.com/trilinos/Trilinos
http://www.github.com/kokkos/kokkos-profiling
http://www.github.com/kokkos/kokkos-profiling
http://www.github.com/kokkos/kokkos-profiling
http://www.github.com/kokkos/kokkos-tutorials
http://www.github.com/kokkos/kokkos-tutorials
http://www.github.com/kokkos/kokkos-tutorials
http://www.github.com/kokkos/kokkos

