

Exceptional service in the national interest

Sandia
National
Laboratories

SAND2016-2559C

Model Selection Under Uncertainty: Coarse-Graining Atomistic Models

Kathryn Farrell-Maupin

[J. Tinsley Oden](#) and [Danial Faghihi](#)

SIAM UQ 2016
Lausanne, Switzerland

April 5-8, 2016

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XX0XP

Outline

1. Coarse-Graining Atomistic Systems

- ▶ Motivation
- ▶ The AA System
- ▶ The CG System
- ▶ Uncertainties in the CG model

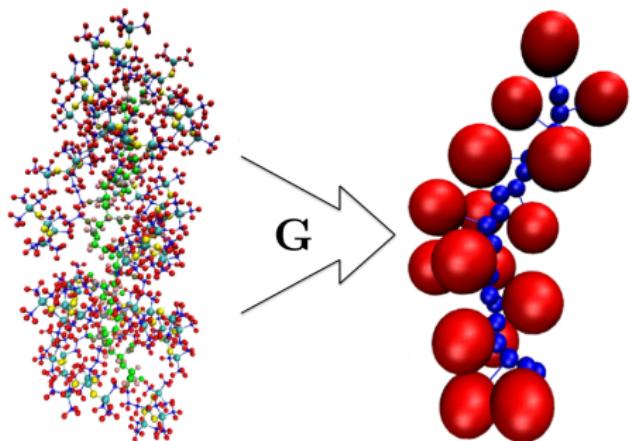
2. Bayesian Framework for Predictive Models

- ▶ Bayes' Rule and the Prediction Pyramid
- ▶ Model Plausibility and Model Selection

3. OPAL: The Occam-Plausibility ALgorithm

- ▶ The Algorithm
- ▶ Example: Polyethylene

Motivation: What is coarse-graining and why do it?



Coarse-graining is the process of aggregating atoms into larger representative particles

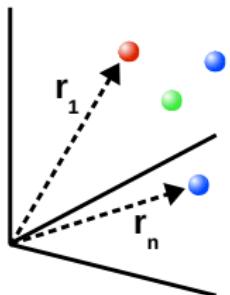
This reduces the number of degrees of freedom needed for simulating the molecular system

Consequential questions:

- ▶ What is the model?
- ▶ Is the model valid for predicting specific Qols?
- ▶ How do we cope with and quantify uncertainties?

The AA and CG Systems

AA System



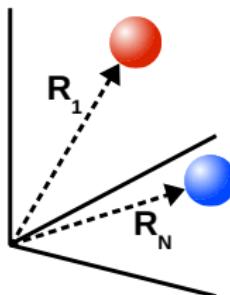
\mathbf{r}^n = configuration, \mathbf{p}^n = momenta

$$H(\mathbf{r}^n, \mathbf{p}^n) = K(\mathbf{p}^n) + V(\mathbf{r}^n) = \sum_{i=1}^n \frac{\mathbf{p}_i \cdot \mathbf{p}_i}{2m_i} + V(\mathbf{r}^n)$$

If q is a phase function describing the **quantity of interest**,

$$Q = \langle q \rangle \quad \text{or} \quad Q = \pi(q)$$

CG System



\mathbf{R}^N = configuration, \mathbf{P}^N = momenta

$$H_{CG}(\mathbf{R}^N, \mathbf{P}^N) = K(\mathbf{P}^N) + V_{CG}(\mathbf{R}^N) = \sum_{i=1}^N \frac{\mathbf{P}_i \cdot \mathbf{P}_i}{2M_i} + V_{CG}(\mathbf{R}^N)$$

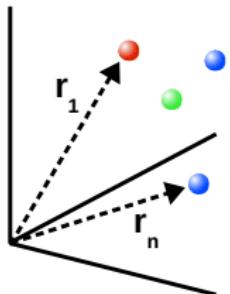
If q_{CG} is the corresponding phase function,

$$Q_{CG} = \langle q_{CG} \rangle \quad \text{or} \quad Q_{CG} = \pi(q_{CG})$$

Determining V_{CG} so that the CG model adequately represents, and therefore may be used as a surrogate model for, the all-atom model is a main goal of this work

The AA and CG Systems

AA System



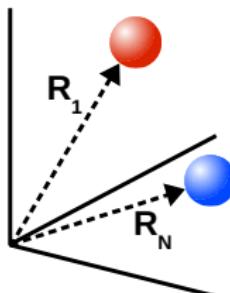
\mathbf{r}^n = configuration, \mathbf{p}^n = momenta

$$H(\mathbf{r}^n, \mathbf{p}^n) = K(\mathbf{p}^n) + V(\mathbf{r}^n) = \sum_{i=1}^n \frac{\mathbf{p}_i \cdot \mathbf{p}_i}{2m_i} + V(\mathbf{r}^n)$$

If q is a phase function describing the **quantity of interest**,

$$Q = \langle q \rangle \quad \text{or} \quad Q = \pi(q)$$

CG System



\mathbf{R}^N = configuration, \mathbf{P}^N = momenta

$$H_{CG}(\mathbf{R}^N, \mathbf{P}^N) = K(\mathbf{P}^N) + V_{CG}(\mathbf{R}^N) = \sum_{i=1}^N \frac{\mathbf{P}_i \cdot \mathbf{P}_i}{2M_i} + V_{CG}(\mathbf{R}^N)$$

If q_{CG} is the corresponding phase function,

$$Q_{CG} = \langle q_{CG} \rangle \quad \text{or} \quad Q_{CG} = \pi(q_{CG})$$

Determining V_{CG} so that the CG model **adequately represents**, and therefore may be used as a surrogate model for, the all-atom model is a main goal of this work

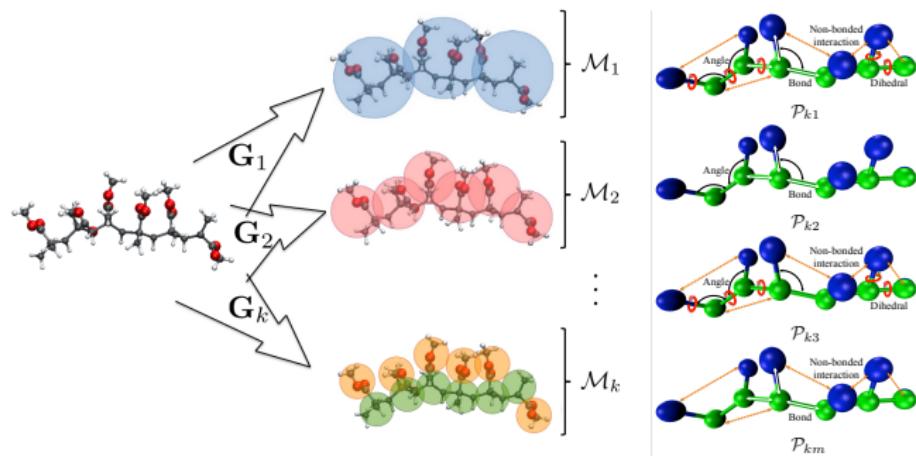
The AA-to-CG Map

The QoI $Q_{CG} = Q_{CG}(G, \theta)$ depends on the definition of V_{CG} , with parameters θ , which depends on the AA-to-CG map G

Choice of G may be influenced by

- ▶ Chemical intuition
- ▶ Computational limitations

For each G_i , the set of possible representations of V_{CG} is denoted \mathcal{M}_i



Uncertainties in the CG Model

- ▶ The choice of G is not well-defined
- ▶ Once G is specified, V_{CG} must be determined. Each G_i yields a set of possible model classes representing V_{CG} ,

$$\mathcal{M}_i = \{\mathcal{P}_{i1}(\boldsymbol{\theta}_{i1}), \mathcal{P}_{i2}(\boldsymbol{\theta}_{i2}), \dots, \mathcal{P}_{im}(\boldsymbol{\theta}_{im})\}, \quad i = 1, 2, \dots, k$$

- ▶ The parameters $\boldsymbol{\theta}_{ij}$ for each model \mathcal{P}_{ij} are unknown and are uncertain, random vectors

Bayes' Rule

Cox's Theorem \Rightarrow Every natural extension of Aristotelian logic with uncertainties is Bayesian

Bayes' Rule

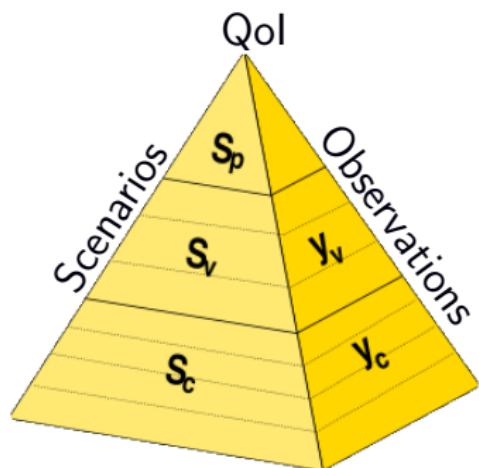
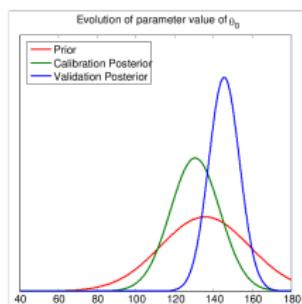
$$\underbrace{\pi(\theta|y)}_{\text{Posterior}} = \frac{\underbrace{\pi(y|\theta) \times \pi(\theta)}_{\text{Likelihood Prior}}}{\underbrace{\pi(y)}_{\text{Evidence}}}$$

$\pi(\theta)$ captures any information that is known about the parameters before calibration

$\pi(y|\theta)$ is the probability of seeing the data y given parameters θ

$\pi(y)$ measures the evidence of the model

Bayes' Rule and the Prediction Pyramid



Prior

$$\pi(\theta)$$

Calibration (S_c, \mathbf{y}_c)

$$\pi(\theta|\mathbf{y}_c) = \frac{\pi(\mathbf{y}_c|\theta)\pi(\theta)}{\pi(\mathbf{y}_c)}$$

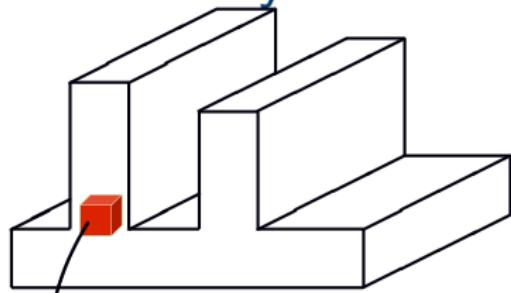
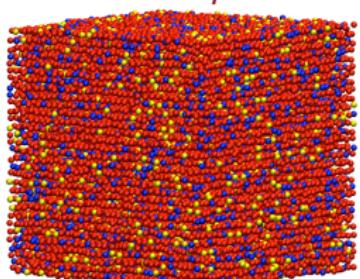
Validation (S_v, \mathbf{y}_v)

$$\pi(\theta|\mathbf{y}_v, \mathbf{y}_c) = \frac{\pi(\mathbf{y}_v|\theta, \mathbf{y}_c)\pi(\theta|\mathbf{y}_c)}{\pi(\mathbf{y}_v|\mathbf{y}_c)}$$

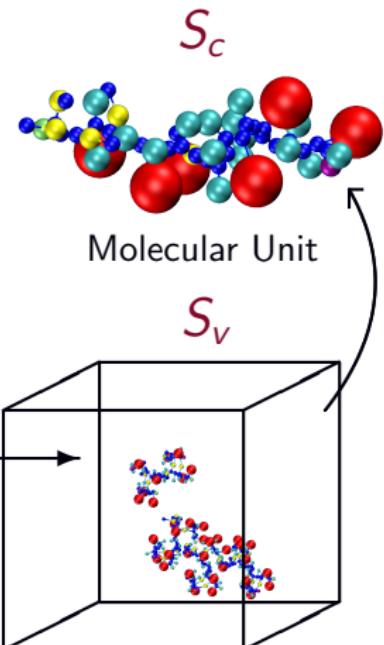
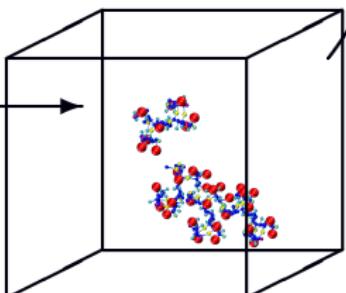
Prediction (S_p , QoI)

$$\pi(Q) = \pi(Q|\theta, S_v, S_c)$$

The Prediction Process: Traveling up the Prediction Pyramid


 S_p


Q = total energy per unit volume


 S_v


Polymer chains and crosslinks = RPCs

Bayesian Model Validation

If the observable value is also a pdf, $\pi(q)$, validity is determined by

$$D_{KL}(\pi(q) \| \pi(Q|\theta)) < \gamma_{tol,1}$$

where

$$D_{KL}(\pi(q) \| \pi(Q|\theta)) = \int \pi(q(\omega)) \log \frac{\pi(q(\omega))}{\pi(Q(\omega) | \theta)} d\omega.$$

If the observable value is a scalar, q , validity is determined by

$$|q - Q| < \gamma_{tol,2}$$

where

$$Q = \mathbb{E}_{\pi_v} [\pi(Q|\theta)] = \int_{\Theta} \pi(Q|\theta) \pi(\theta | \mathbf{y}_v, \mathbf{y}_c) d\theta$$

A sequence of validation scenarios may be considered

Model Plausibility and Model Selection

\mathcal{M} = set of parametric model classes = $\{\mathcal{P}_1, \mathcal{P}_2, \dots, \mathcal{P}_m\}$

Each \mathcal{P} has its own likelihood and parameters θ_j

Bayes' rule in expanded form:

$$\pi(\theta_j | \mathbf{y}, \mathcal{P}_j, \mathcal{M}) = \frac{\pi(\mathbf{y} | \theta_j, \mathcal{P}_j, \mathcal{M}) \pi(\theta_j | \mathcal{P}_j, \mathcal{M})}{\pi(\mathbf{y} | \mathcal{P}_j, \mathcal{M})}, \quad 1 \leq j \leq m$$

where

$$\pi(\mathbf{y} | \mathcal{P}_j, \mathcal{M}) = \int \pi(\mathbf{y} | \theta_j, \mathcal{P}_j, \mathcal{M}) \pi(\theta_j | \mathcal{P}_j, \mathcal{M}) d\theta_j$$

Now apply Bayes' Rule to the evidence:

$$\begin{aligned} \rho_j &= \pi(\mathcal{P}_j | \mathbf{y}, \mathcal{M}) = \frac{\pi(\mathbf{y} | \mathcal{P}_j, \mathcal{M}) \pi(\mathcal{P}_j | \mathcal{M})}{\pi(\mathbf{y} | \mathcal{M})} \\ &= \text{model plausibility} \end{aligned}$$

$$\sum_{j=1}^m \rho_j = 1$$

Sensitivity Analysis

S_{T_i} measures the **total contribution** from parameter θ_i to the variance in the output Y and indicates the **importance** of θ_i ,

$Y(\theta)$ = model output

$V(Y)$ = variance in Y

$V(Y|\theta_{\sim i})$ = variance in Y when all parameters except θ_i are fixed

Total Sensitivity Index

$$S_{T_i} = \frac{\mathbb{E}[V(Y|\theta_{\sim i})]}{V(Y)}$$

S_{T_i} indicates which parameters **are informed by** the observables in the calibration and validation scenarios

Occam's Razor

Occam's Razor

Among competing theories that lead to the same prediction, the one that relies on the fewest assumptions is the best.

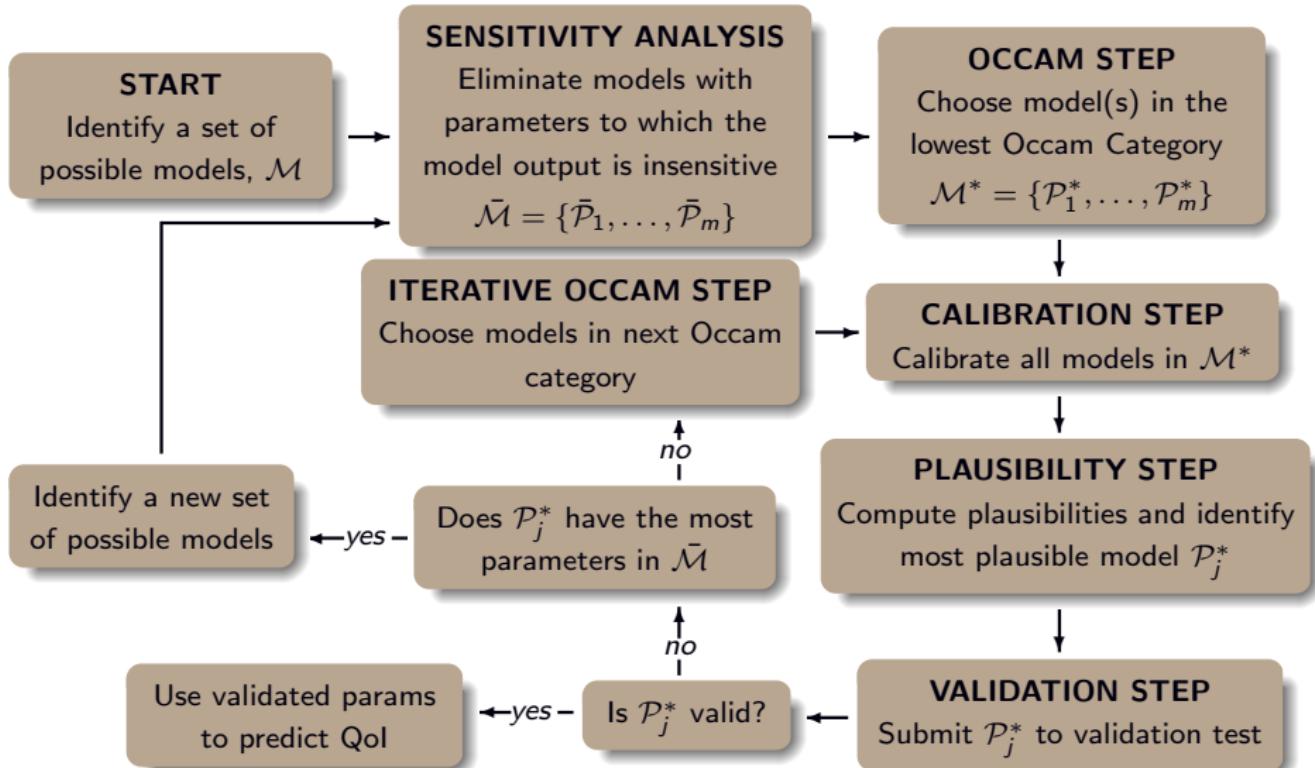
When choosing among a set of models:

The simplest valid model is the best choice.

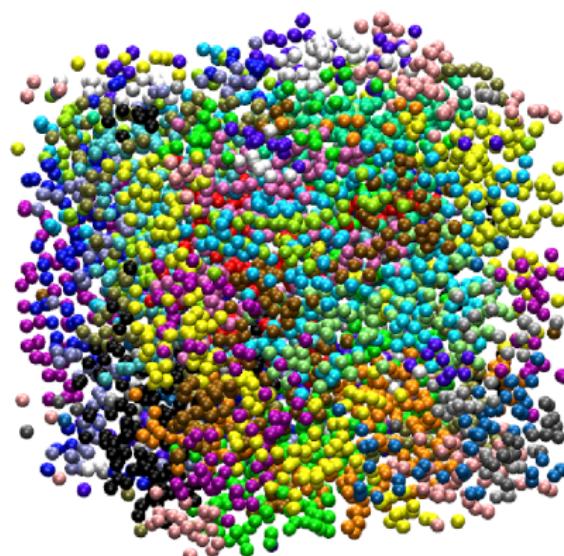
- ▶ simple \Rightarrow number of parameters
- ▶ valid \Rightarrow passes Bayesian validation test

How do we choose a model that adheres to this principle?

The Occam-Plausibility Algorithm

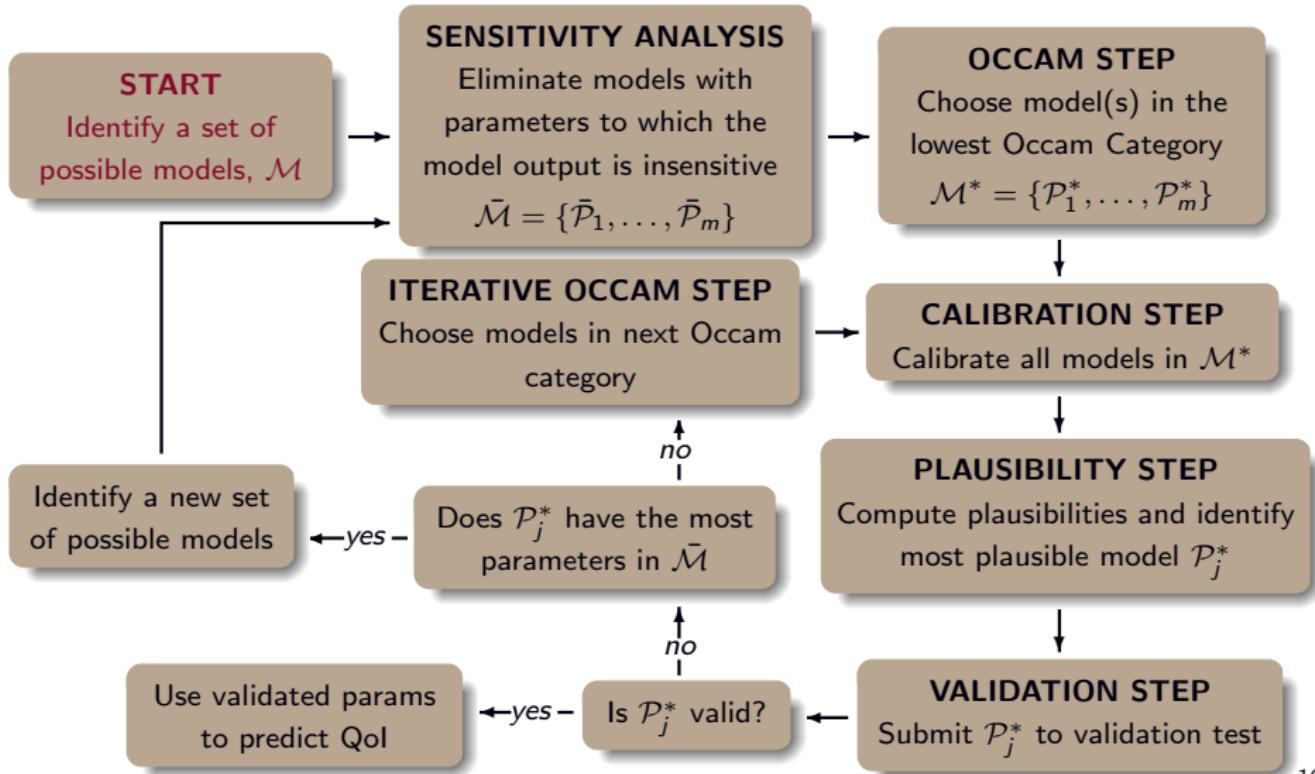


Example Application: Polyethylene



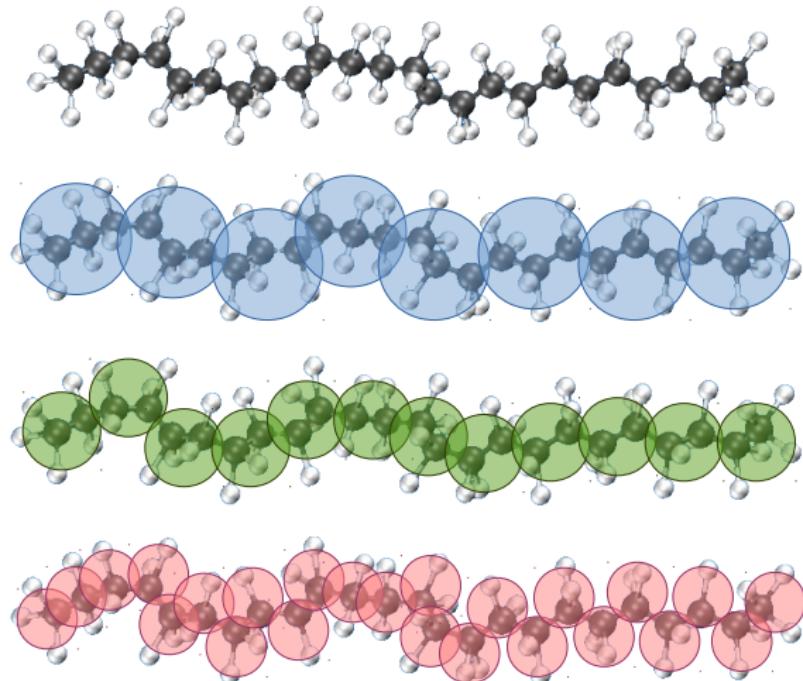
Prediction scenario contains 25 chains of $C_{80}H_{162}$ and the QoI is the potential energy of the system

The Occam-Plausibility Algorithm



OPAL Step 1: Initialization

What is the CG map?



OPAL Step 1: Initialization

How is the potential energy represented?

Assume the OPLS functional form,

$$\begin{aligned}
 V(\mathbf{R}^n) = & \sum_{bonds} K_R (R - R_0)^2 + \sum_{angles} K_\theta (\theta - \theta_0)^2 \\
 & + \sum_{dihedrals} \sum_{n=1}^4 \frac{V_n}{2} [1 + (-1)^{n-1} \cos(n\psi)] \\
 & + \sum_{i=1}^{N-1} \sum_{j=i+1}^N 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] f
 \end{aligned}$$

Alternatively, we may use

$$\sum_{i=1}^{N-1} \sum_{j=i+1}^N 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^9 - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] f$$

OPAL Step 1: Initialization

How is the potential energy represented?

Assume the OPLS functional form,

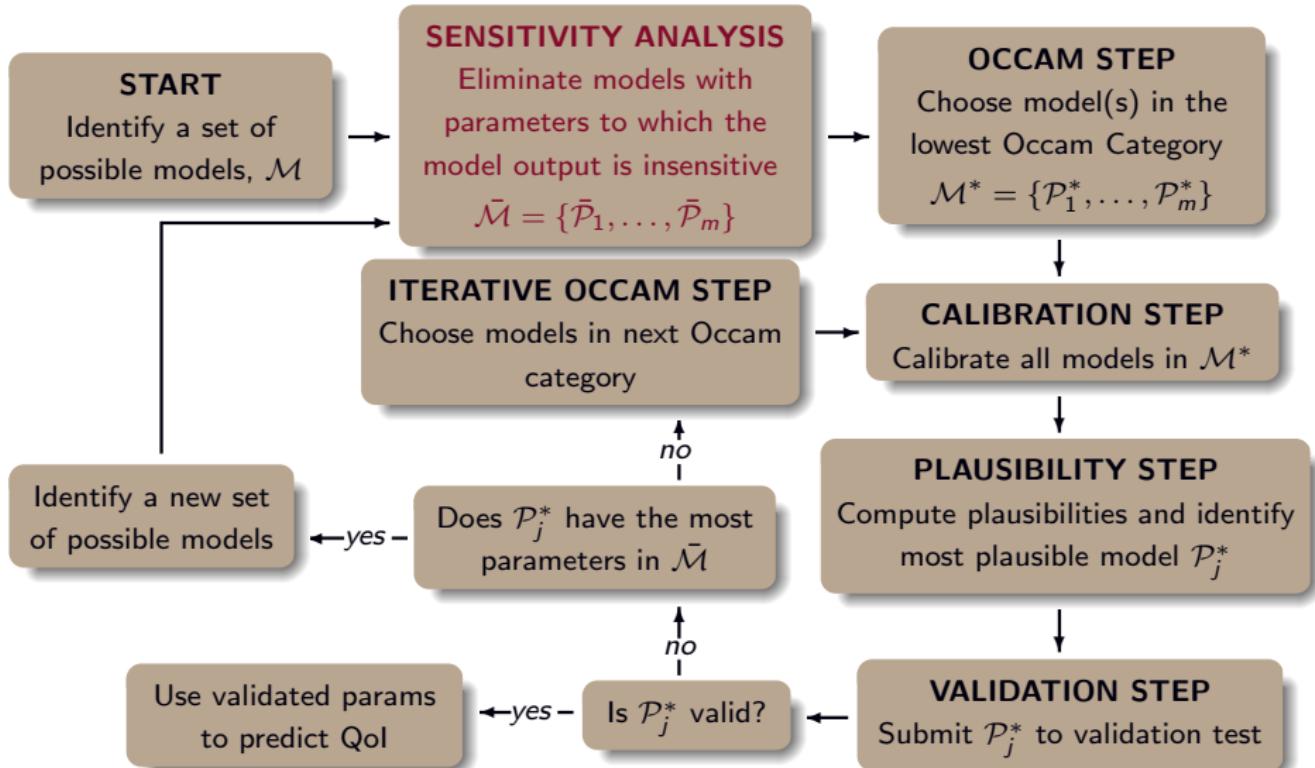
$$\begin{aligned}
 V(\mathbf{R}^n) = & \sum_{bonds} K_R (R - R_0)^2 + \sum_{angles} K_\theta (\theta - \theta_0)^2 \\
 & + \sum_{dihedrals} \sum_{n=1}^4 \frac{V_n}{2} [1 + (-1)^{n-1} \cos(n\psi)] \\
 & + \sum_{i=1}^{N-1} \sum_{j=i+1}^N 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] f
 \end{aligned}$$

Alternatively, we may use

$$\sum_{i=1}^{N-1} \sum_{j=i+1}^N 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^9 - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] f$$

Model	Bonds	Angles	Dihedrals	LJ 12-6	LJ 9-6	Params
\mathcal{P}_1	✓					3
\mathcal{P}_2		✓				3
\mathcal{P}_3				✓		3
\mathcal{P}_4					✓	3
\mathcal{P}_5	✓	✓				5
\mathcal{P}_6	✓			✓		5
\mathcal{P}_7	✓				✓	5
\mathcal{P}_8		✓		✓		5
\mathcal{P}_9		✓			✓	5
\mathcal{P}_{10}			✓			7
\mathcal{P}_{11}	✓	✓		✓		7
\mathcal{P}_{12}	✓	✓			✓	7
\mathcal{P}_{13}	✓		✓			7
\mathcal{P}_{14}		✓	✓			7
\mathcal{P}_{15}			✓	✓		7
\mathcal{P}_{16}			✓		✓	7
\mathcal{P}_{17}	✓	✓	✓			9
\mathcal{P}_{18}	✓		✓	✓		9
\mathcal{P}_{19}	✓		✓		✓	9
\mathcal{P}_{20}		✓	✓	✓		9
\mathcal{P}_{21}		✓	✓		✓	9
\mathcal{P}_{22}	✓	✓	✓	✓		11
\mathcal{P}_{23}	✓	✓	✓		✓	11

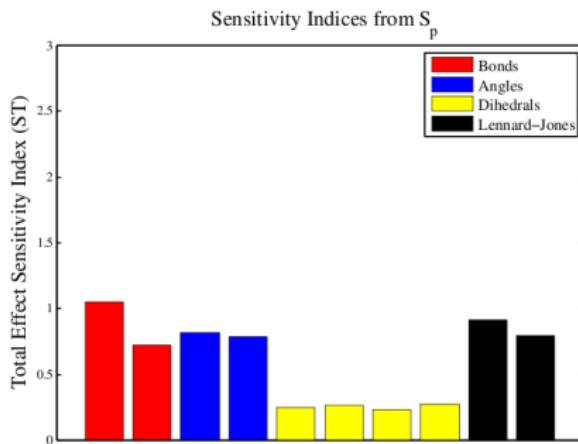
The Occam-Plausibility Algorithm



OPAL Step 2: Sensitivity Analysis

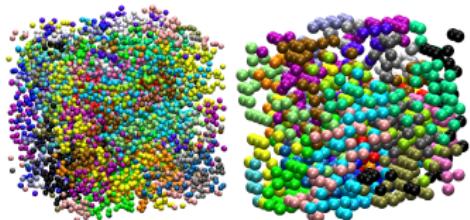
Sensitivity analysis is performed in the prediction scenario with the QoI as the observable

Output $Y = \langle V_{CG}(\theta) \rangle$

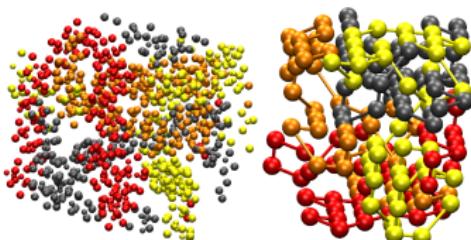


Scenarios

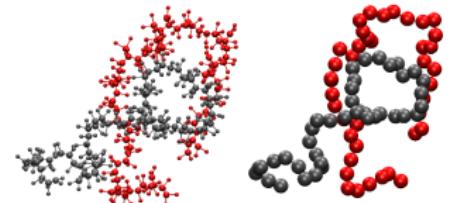
Prediction Scenario



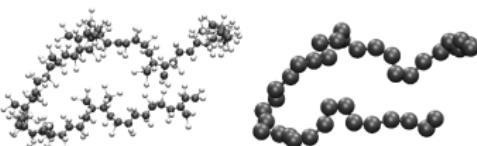
Validation Scenario # 2



Validation Scenario # 1

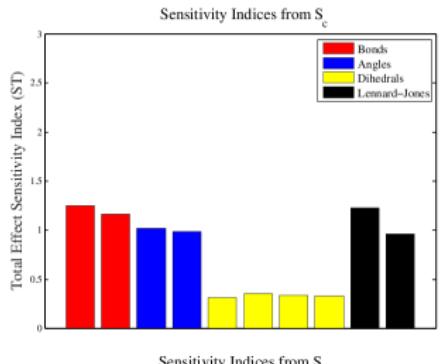
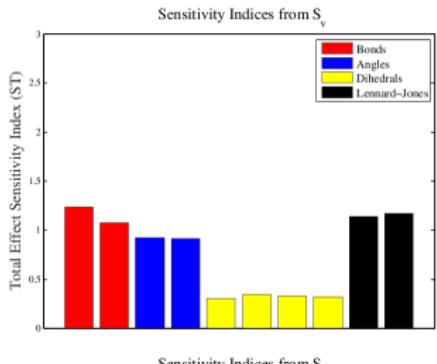
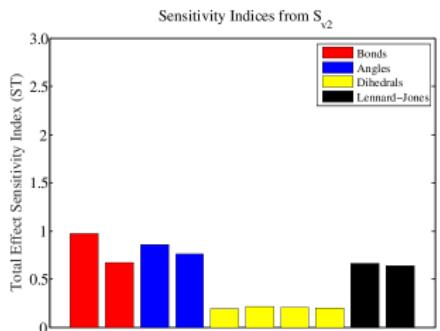
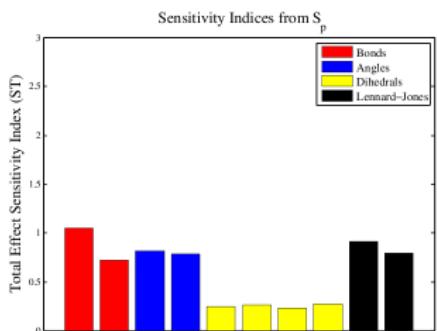


Calibration Scenario



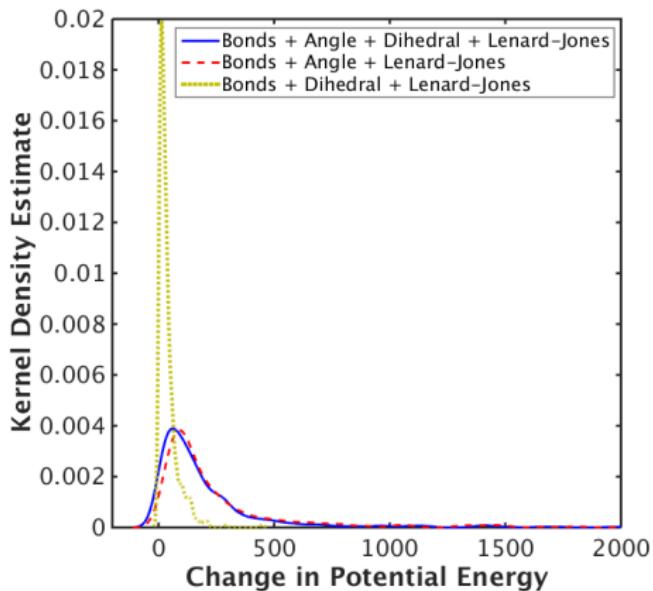
OPAL Step 2: Sensitivity Analysis

Output: $Y = \langle V_{CG}(\theta) \rangle$



OPAL Step 2: Sensitivity Analysis

The sensitivity indices show that the dihedral parameters are unimportant, but how important are they?



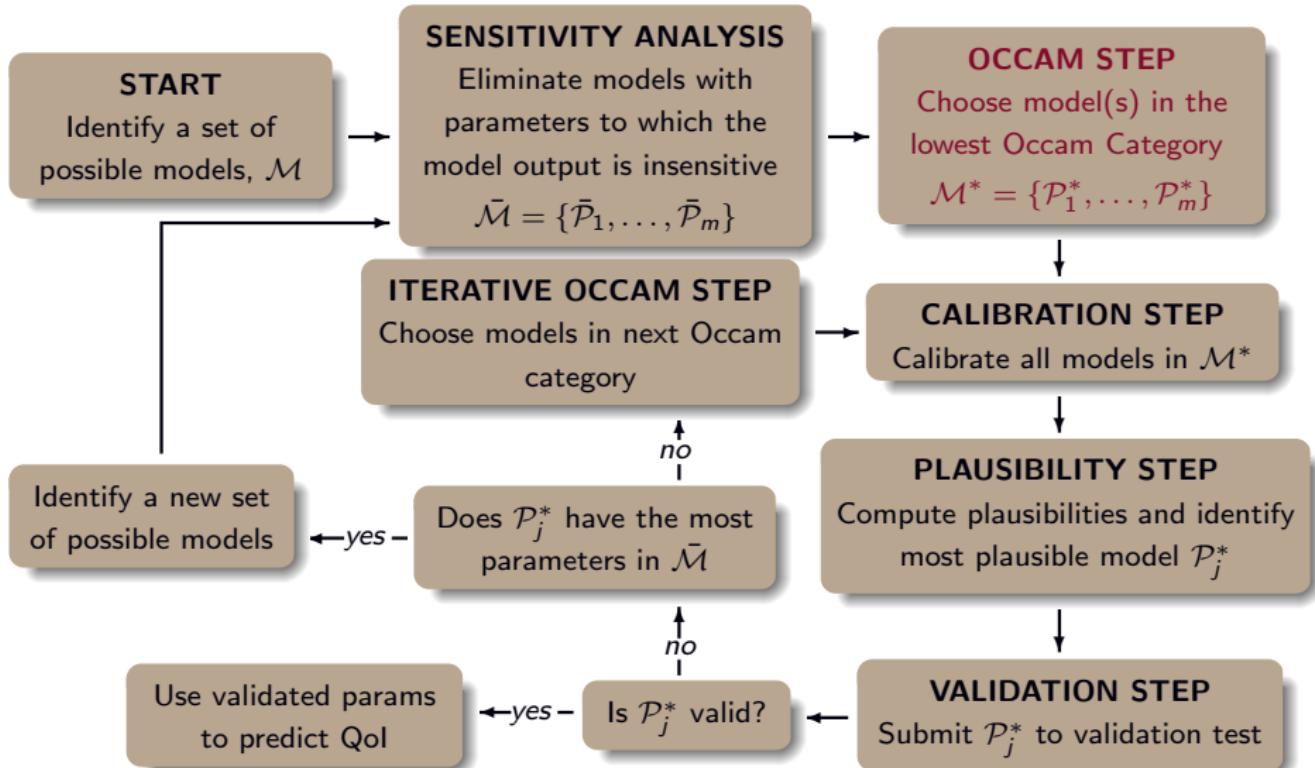
Model	Bonds	Angles	Dihedrals	LJ 12-6	LJ 9-6	Params
\mathcal{P}_1	✓					3
\mathcal{P}_2		✓				3
\mathcal{P}_3				✓		3
\mathcal{P}_4					✓	3
\mathcal{P}_5	✓	✓				5
\mathcal{P}_6	✓			✓		5
\mathcal{P}_7	✓				✓	5
\mathcal{P}_8		✓		✓		5
\mathcal{P}_9		✓			✓	5
\mathcal{P}_{10}			✓			7
\mathcal{P}_{11}	✓	✓		✓		7
\mathcal{P}_{12}	✓	✓			✓	7
\mathcal{P}_{13}	✓		✓			7
\mathcal{P}_{14}		✓	✓			7
\mathcal{P}_{15}			✓	✓		7
\mathcal{P}_{16}			✓		✓	7
\mathcal{P}_{17}	✓	✓	✓			9
\mathcal{P}_{18}	✓		✓	✓		9
\mathcal{P}_{19}	✓		✓		✓	9
\mathcal{P}_{20}		✓	✓	✓		9
\mathcal{P}_{21}		✓	✓		✓	9
\mathcal{P}_{22}	✓	✓	✓	✓		11
\mathcal{P}_{23}	✓	✓	✓		✓	11

OPAL Step 2: Sensitivity Analysis

Models with insensitive parameters may be eliminated, yielding a new set of possible models

Model	Bonds	Angles	Dihedrals	LJ 12-6	LJ 9-6	Params	Category
\bar{P}_1	✓					3	1
\bar{P}_2		✓				3	
\bar{P}_3				✓		3	
\bar{P}_4					✓	3	
\bar{P}_5	✓	✓				5	2
\bar{P}_6	✓			✓		5	
\bar{P}_7	✓				✓	5	
\bar{P}_8		✓		✓		5	
\bar{P}_9		✓			✓	5	3
\bar{P}_{10}	✓	✓		✓		7	
\bar{P}_{11}	✓			✓	✓	7	

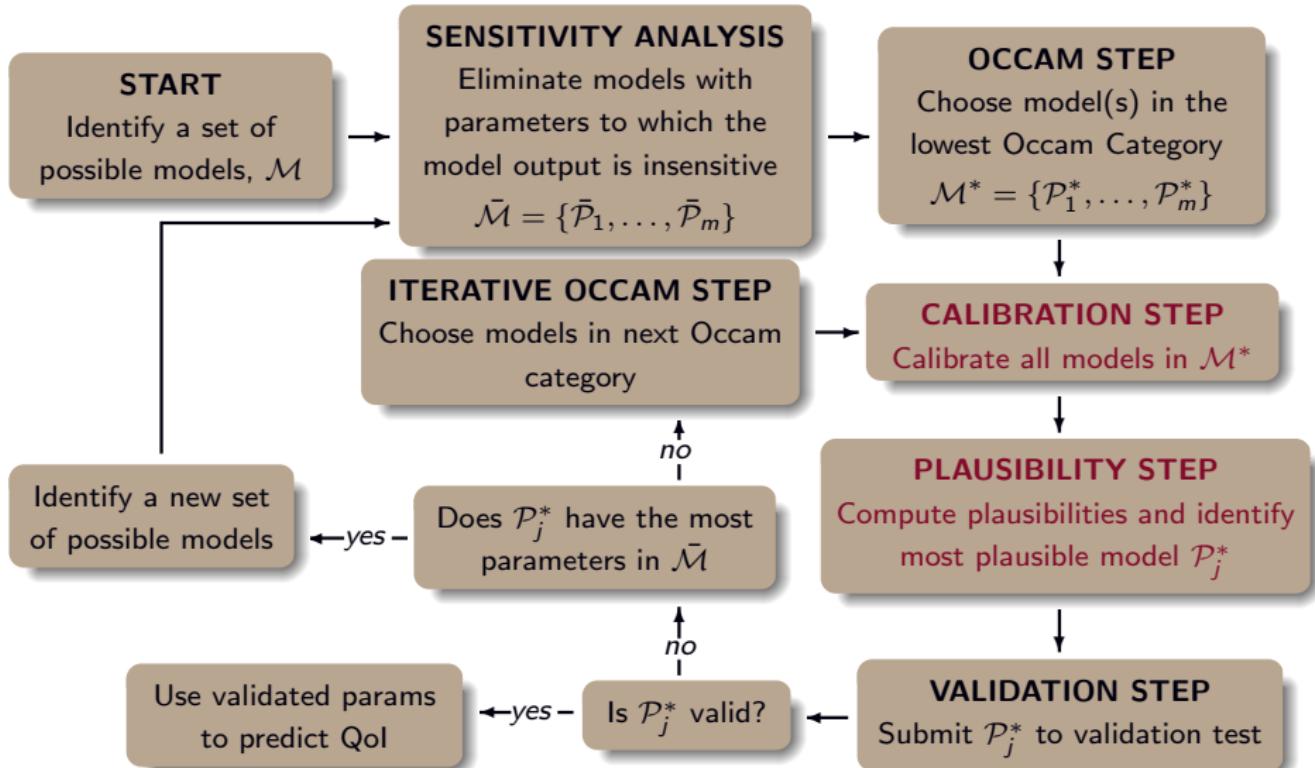
The Occam-Plausibility Algorithm



OPAL Step 3: Occam Step

Model	Bonds	Angles	Dihedrals	LJ 12-6	LJ 9-6	Params	Category
\bar{P}_1	✓					3	1
\bar{P}_2		✓				3	
\bar{P}_3				✓		3	
\bar{P}_4					✓	3	
\bar{P}_5	✓	✓				5	2
\bar{P}_6	✓			✓		5	
\bar{P}_7	✓				✓	5	
\bar{P}_8		✓		✓		5	
\bar{P}_9		✓			✓	5	3
\bar{P}_{10}	✓	✓		✓		7	
\bar{P}_{11}	✓			✓	✓	7	

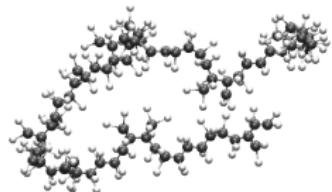
The Occam-Plausibility Algorithm



OPAL Step 4: Calibration

Calibration

$$\pi(\theta_j^* | \mathbf{y}, \mathcal{P}_j^*, \mathcal{M}^*) = \frac{\pi(\mathbf{y} | \theta_j^*, \mathcal{P}_j^*, \mathcal{M}^*) \pi(\theta_j^* | \mathcal{P}_j^*, \mathcal{M}^*)}{\pi(\mathbf{y} | \mathcal{P}_j^*, \mathcal{M}^*)}$$



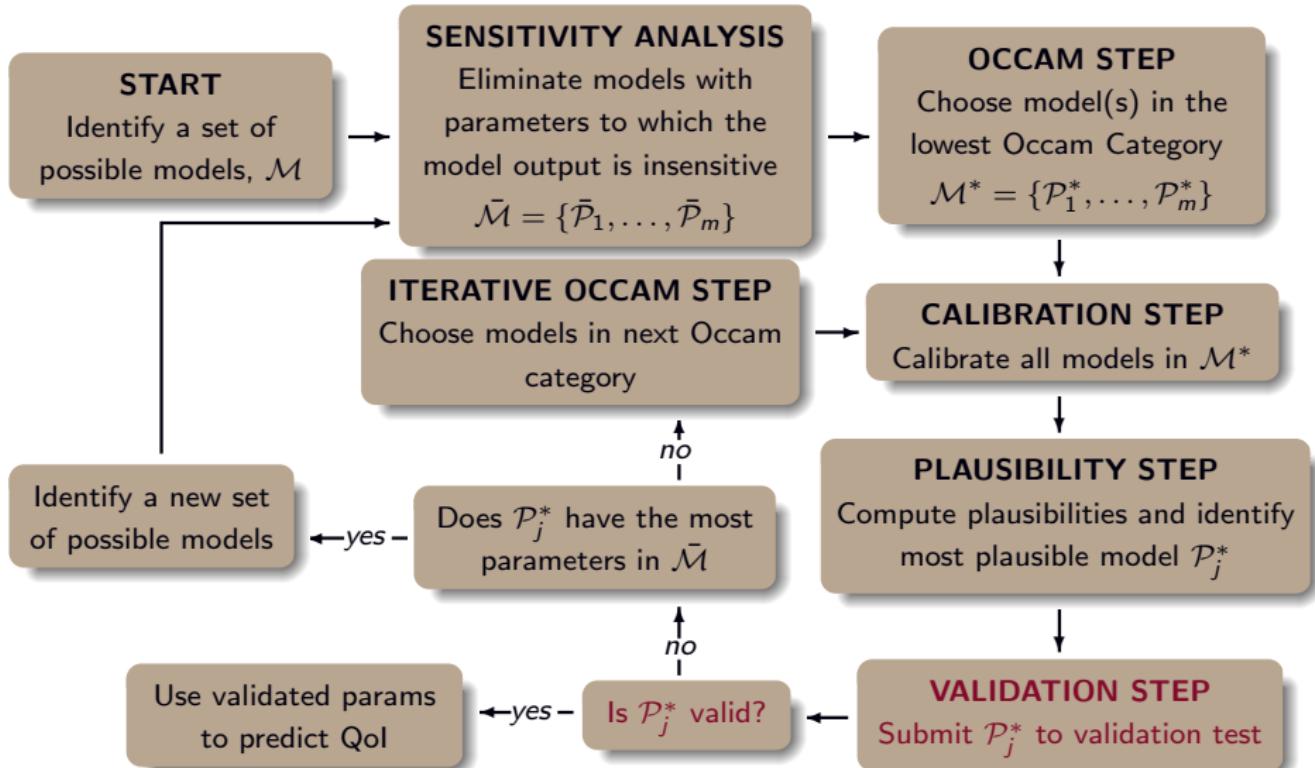
Here, \mathbf{y} = potential energy of $\text{C}_{80}\text{H}_{162}$

Plausibility

$$\rho_j^* = \pi(\mathcal{P}_j^* | \mathbf{y}, \mathcal{M}^*) = \frac{\pi(\mathbf{y} | \mathcal{P}_j^*, \mathcal{M}^*) \pi(\mathcal{P}_j^* | \mathcal{M}^*)}{\pi(\mathbf{y} | \mathcal{M}^*)}$$

Model	Bonds	Angles	Dihedrals	LJ 12-6	LJ 9-6	Params	Plausibility
\mathcal{P}_1^*	✓					3	1
\mathcal{P}_2^*		✓				3	0
\mathcal{P}_3^*				✓		3	0
\mathcal{P}_4^*					✓	3	0

The Occam-Plausibility Algorithm



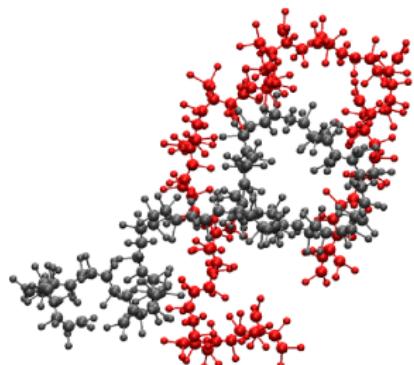
OPAL Step 5: Validation

As a validation scenario, we consider 2 chains at $T = 300K$ in a canonical ensemble.

Validation

$$\pi(\theta_1^* | \mathbf{y}_v, \mathbf{y}_c) = \frac{\pi(\mathbf{y}_v | \theta_1^*, \mathbf{y}_c) \pi(\theta_1^* | \mathbf{y}_c)}{\pi(\mathbf{y}_v)}$$

Here, \mathbf{y}_v is the potential energy

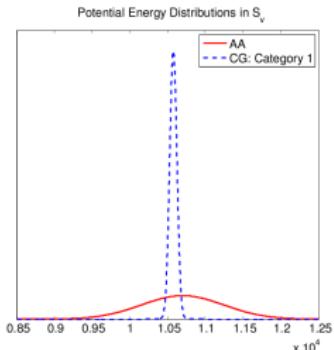


How well does this updated model reproduce the desired observable?

Let

- ▶ $\pi(Q) = \pi(V_{AA}) \Rightarrow \pi(V_{CG} | \theta^*) = \pi(V_{CG}(\theta^*))$
 $\gamma_{tol,1} = 0.15\sigma_{AA}^2 \mathcal{O}(\mathbb{E}[\pi(V_{AA})])$
- ▶ $Q = \langle V_{AA} \rangle \Rightarrow \mathbb{E}[\pi(V_{CG} | \theta^*)] = \langle V_{CG}(\theta^*) \rangle$
 $\gamma_{tol,2} = 0.1Q$

OPAL Step 5: Validation

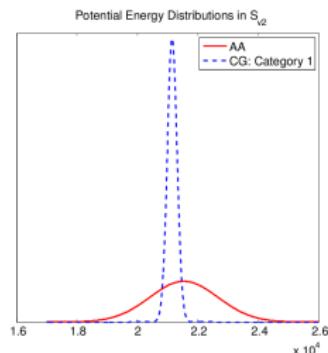


If we compare the distributions,

$$D_{KL}(\pi(V_{AA})\| \pi(V_{CG}|\theta^*)) = 0.0622\sigma_{AA}^2 \mathcal{O}(\mathbb{E}[\pi(V_{AA})]) < \gamma_{1,tol}$$

If we compare the ensemble average,

$$|\langle V_{AA} \rangle - \langle V_{CG}(\theta^*) \rangle| = 0.0118 \langle V_{AA} \rangle < \gamma_{2,tol}$$



If we compare the distributions,

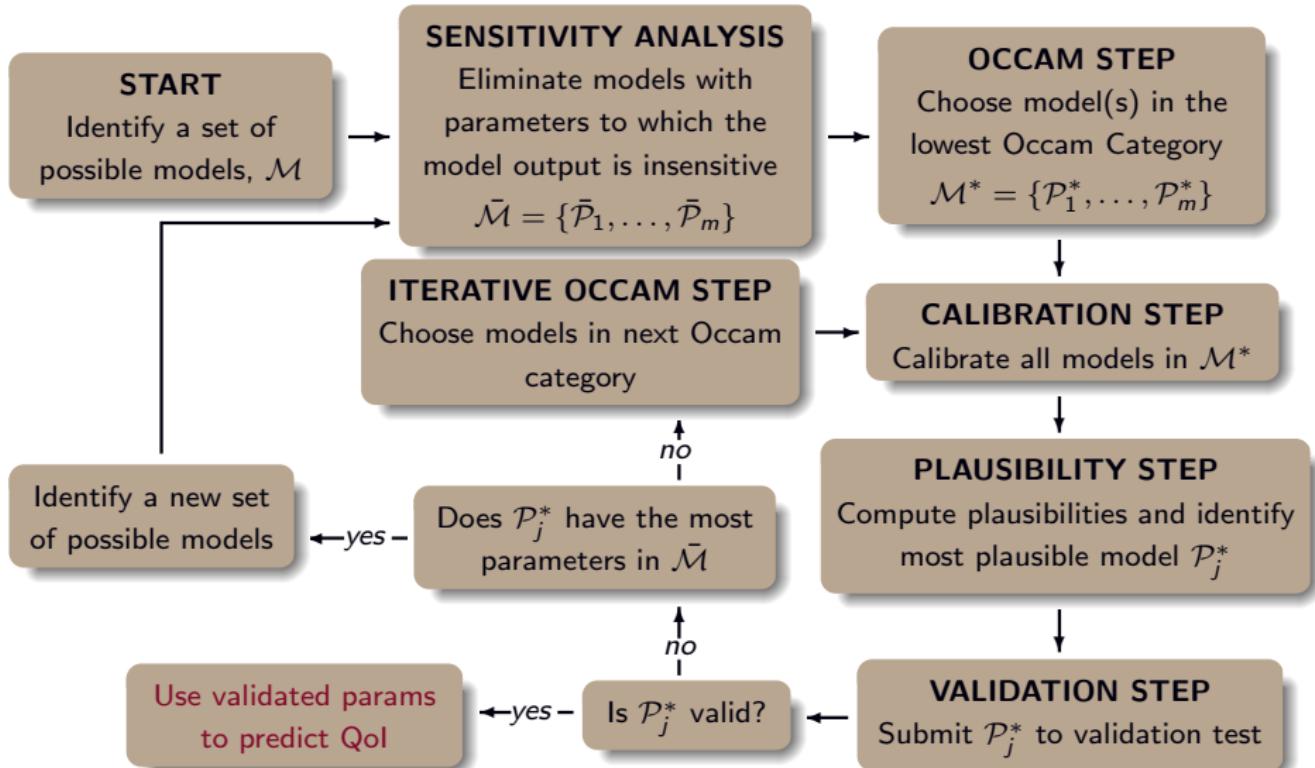
$$D_{KL}(\pi(V_{AA})\| \pi(V_{CG}|\theta^*)) = 0.0826\sigma_{AA}^2 \mathcal{O}(\mathbb{E}[\pi(V_{AA})]) < \gamma_{1,tol}$$

If we compare the ensemble average,

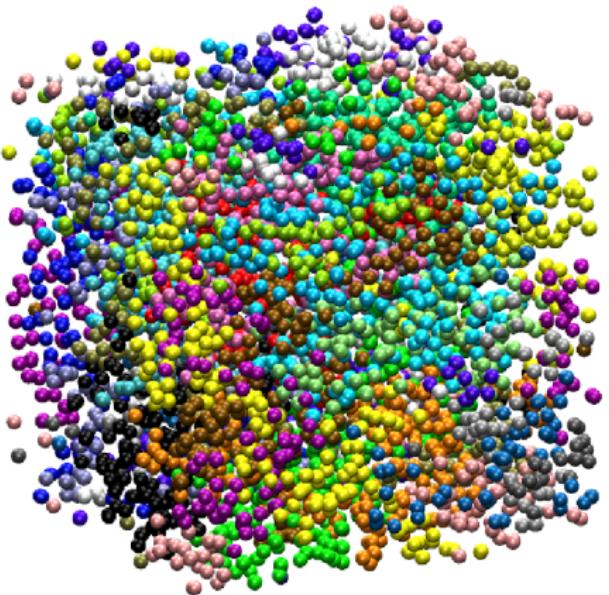
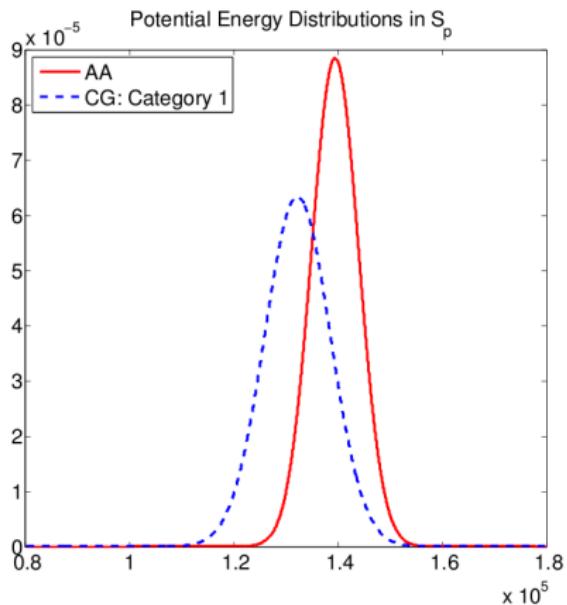
$$|\langle V_{AA} \rangle - \langle V_{CG}(\theta^*) \rangle| = 0.0181 \langle V_{AA} \rangle < \gamma_{2,tol}$$

Model is NOT invalid

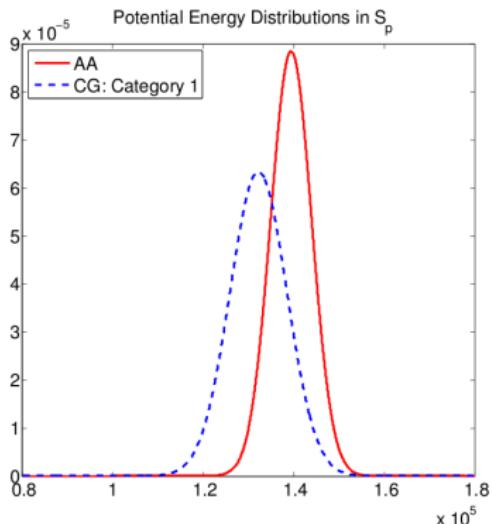
The Occam-Plausibility Algorithm



Prediction



Prediction

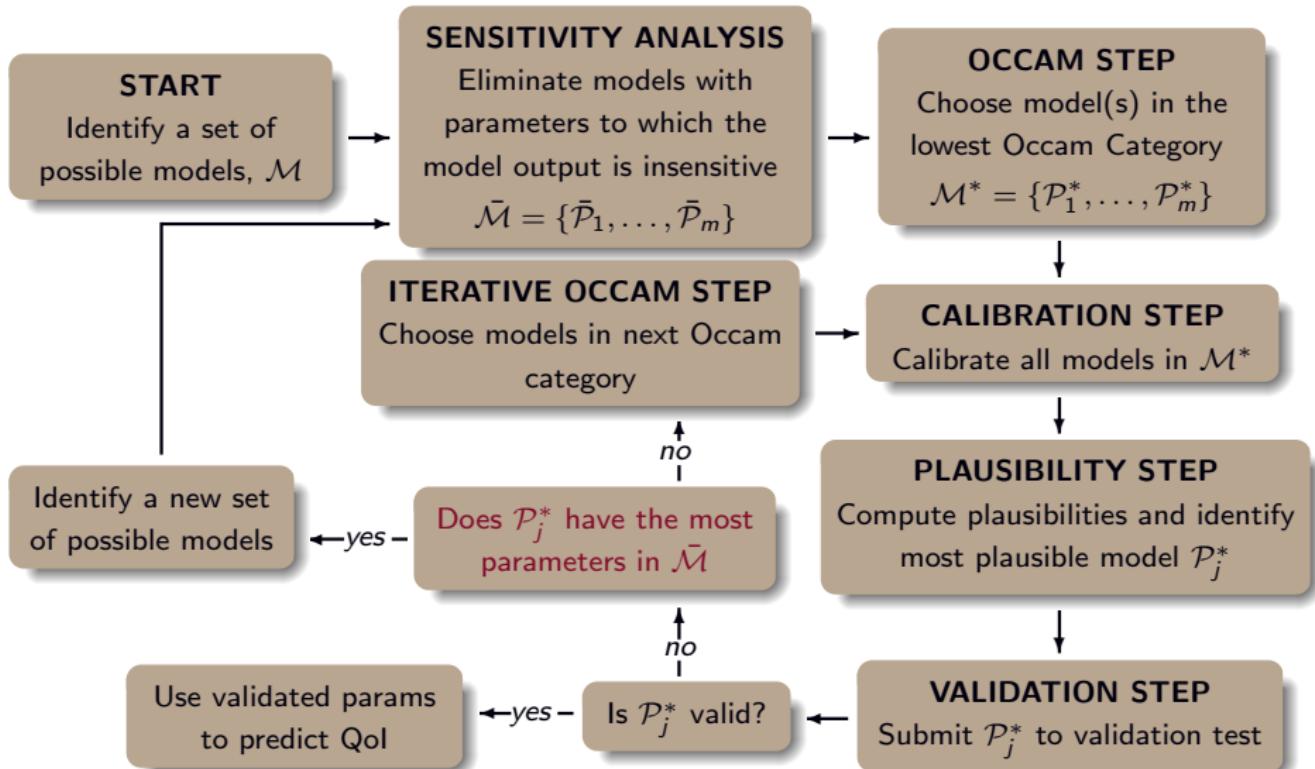


What if we set

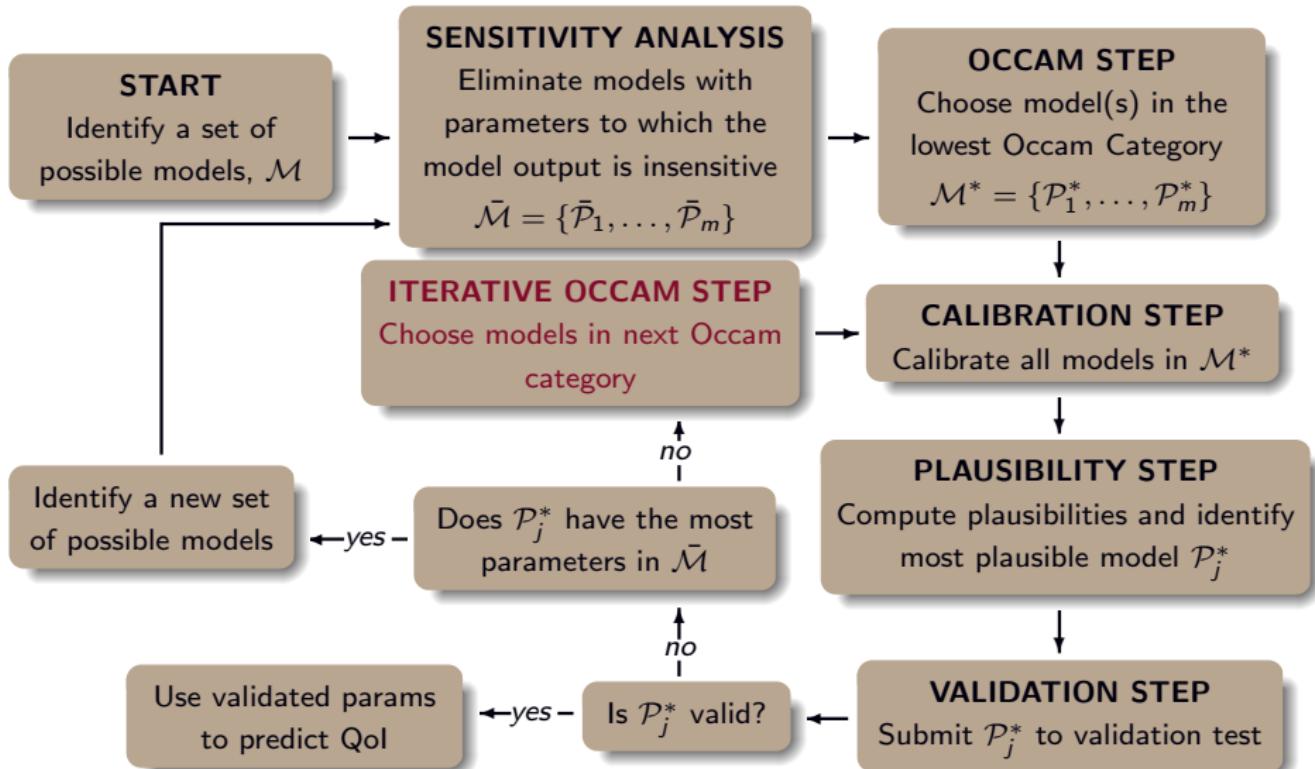
$$\gamma_{1,tol} = 0.06\sigma_{AA}^2 \mathcal{O}(\mathbb{E}[\pi(V_{AA})])?$$

Then this model is also *invalid*

The Occam-Plausibility Algorithm



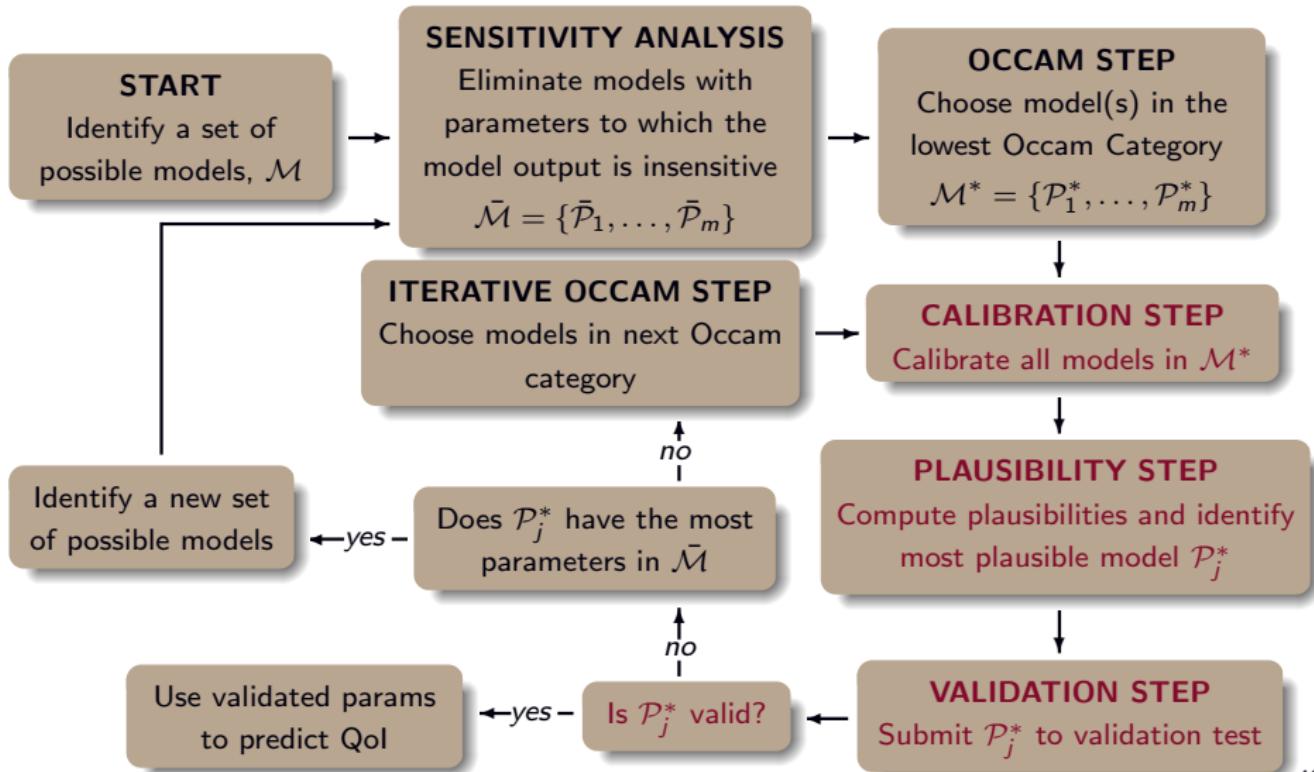
The Occam-Plausibility Algorithm



OPAL Step 3: Occam Step

Model	Bonds	Angles	Dihedrals	LJ 12-6	LJ 9-6	Params	Category
\bar{P}_1	✓					3	1
\bar{P}_2		✓				3	
\bar{P}_3				✓		3	
\bar{P}_4					✓	3	
\bar{P}_5	✓	✓				5	2
\bar{P}_6	✓			✓		5	
\bar{P}_7	✓				✓	5	
\bar{P}_8		✓		✓		5	
\bar{P}_9		✓			✓	5	
\bar{P}_{10}	✓	✓		✓		7	3
\bar{P}_{11}	✓			✓	✓	7	

The Occam-Plausibility Algorithm



OPAL Steps 4 & 5: Calibration, Plausibility, and Validation

Model	Bonds	Angles	Dihedrals	LJ 12-6	LJ 9-6	Params	Plausibility
\mathcal{P}_1^*	✓	✓				5	1
\mathcal{P}_2^*	✓			✓		5	0
\mathcal{P}_3^*	✓				✓	5	0
\mathcal{P}_4^*		✓		✓		5	0
\mathcal{P}_5^*		✓			✓	5	0

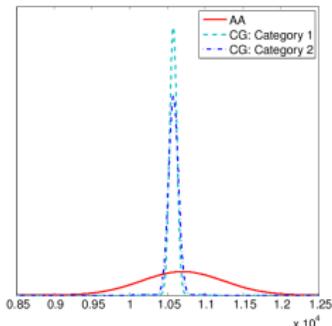
How well does this updated model reproduce the desired observable?

Let

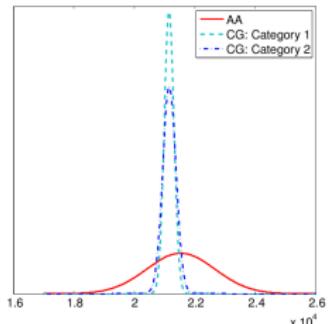
- ▶ $\pi(Q) = \pi(V_{AA}) \Rightarrow \pi(V_{CG}|\boldsymbol{\theta}^*) = \pi(V_{CG}(\boldsymbol{\theta}^*))$
 $\gamma_{tol,1} = 0.06\sigma_{AA}^2 \mathcal{O}(\mathbb{E}[\pi(V_{AA})])$
- ▶ $Q = \langle V_{AA} \rangle \Rightarrow \mathbb{E}[\pi(V_{CG}|\boldsymbol{\theta}^*)] = \langle V_{CG}(\boldsymbol{\theta}^*) \rangle$
 $\gamma_{tol,2} = 0.1Q$

OPAL Step 5: Validation

Potential Energy Distributions in S_v



Potential Energy Distributions in S_{v2}



If we compare the distributions,

$$D_{KL}(\pi(V_{AA}) \| \pi(V_{CG} | \theta^*)) = 0.044 \sigma_{AA}^2 \mathcal{O}(\mathbb{E}[\pi(V_{AA})]) \\ < \gamma_{1,tol}$$

If we compare the ensemble average,

$$|\langle V_{AA} \rangle - \langle V_{CG}(\theta^*) \rangle| = 0.0115 \langle V_{AA} \rangle < \gamma_{2,tol}$$

If we compare the distributions,

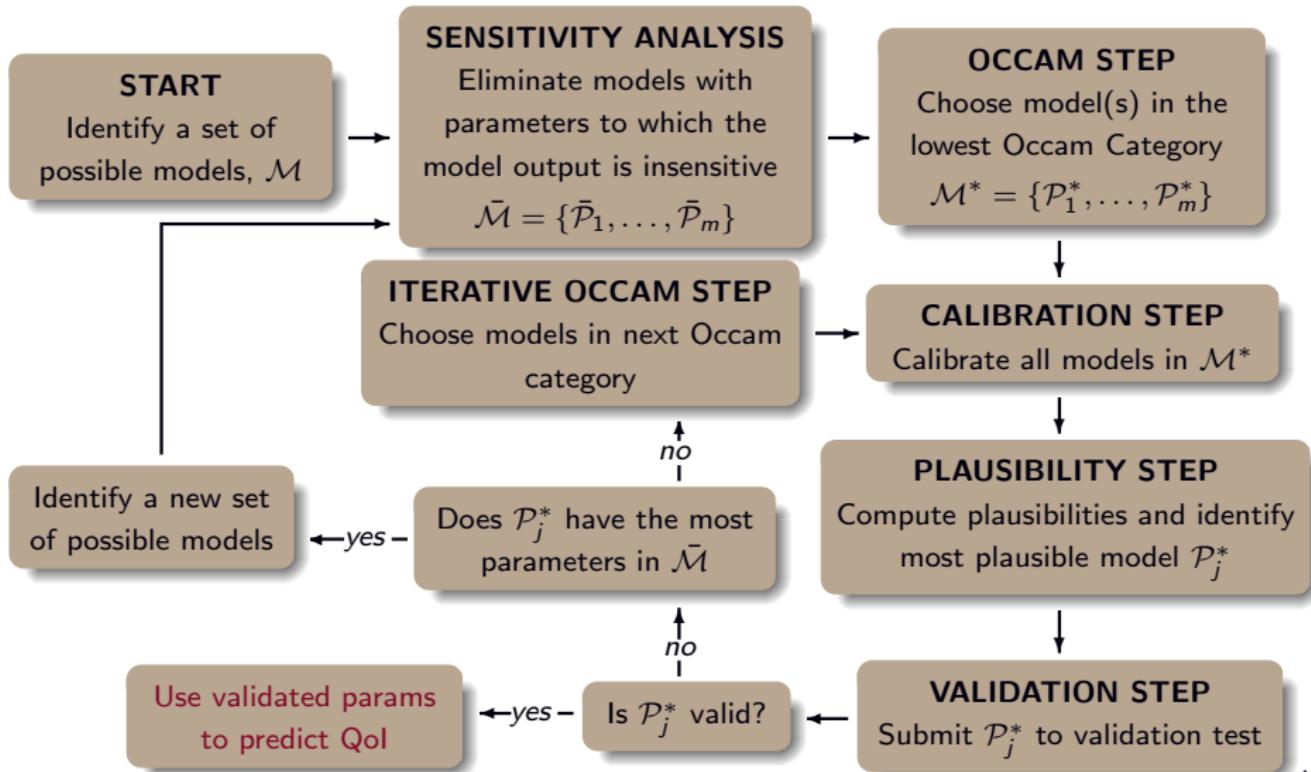
$$D_{KL}(\pi(V_{AA}) \| \pi(V_{CG} | \theta^*)) = 0.0587 \sigma_{AA}^2 \mathcal{O}(\mathbb{E}[\pi(V_{AA})]) \\ < \gamma_{1,tol}$$

If we compare the ensemble average,

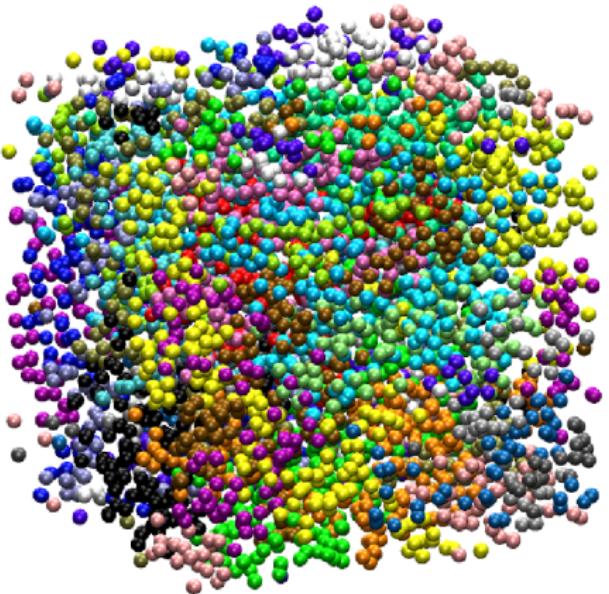
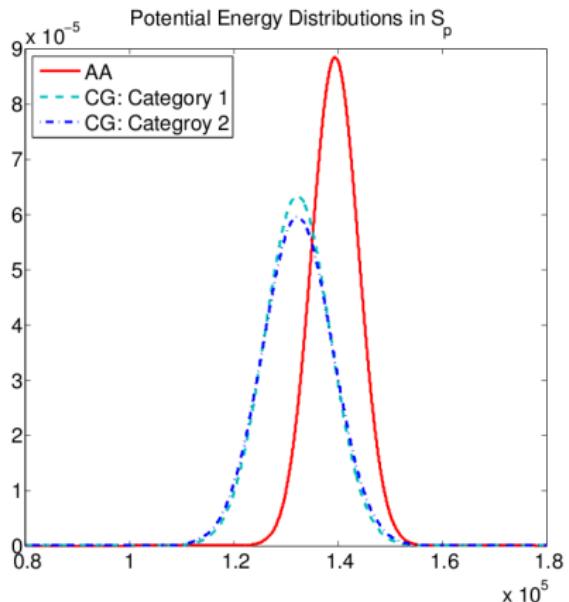
$$|\langle V_{AA} \rangle - \langle V_{CG}(\theta^*) \rangle| = 0.0178 \langle V_{AA} \rangle < \gamma_{2,tol}$$

Model is NOT invalid

The Occam-Plausibility Algorithm



Prediction



Deterministic Model Selection

In the deterministic setting, we seek \mathcal{P}_i such that

$$D_{KL}(g\|\pi(\mathbf{y}|\boldsymbol{\theta}_i^\dagger, \mathcal{P}_i, \mathcal{M})) < D_{KL}(g\|\pi(\mathbf{y}|\boldsymbol{\theta}_j^\dagger, \mathcal{P}_j, \mathcal{M})) \quad \forall \mathcal{P}_j \in \mathcal{M}$$

However, the true value of $D_{KL}(\cdot\|\cdot)$ is usually impossible to compute, but can be approximated by the Akaike Information Criterion,

$$AIC_i = -2 \log \pi(\mathbf{y}|\boldsymbol{\theta}_i, \mathcal{P}_i, \mathcal{M}) + 2K_i$$

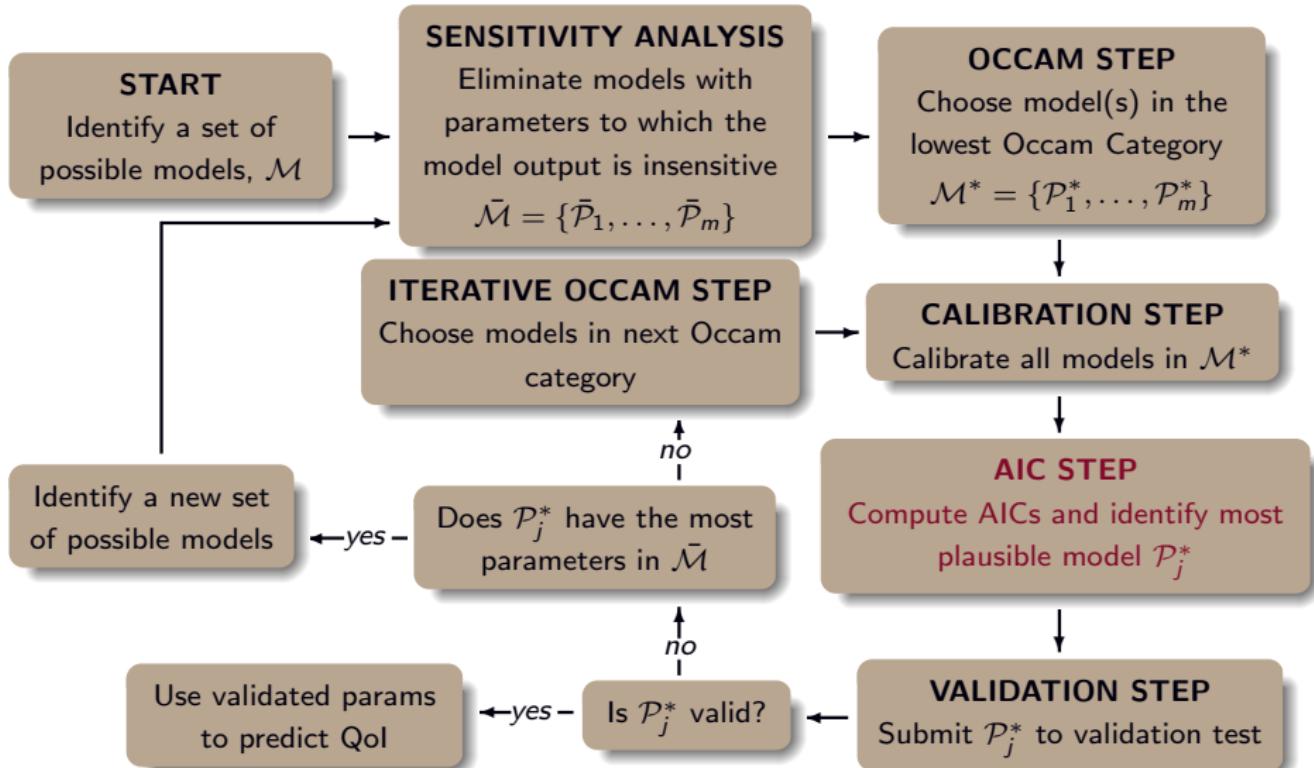
where

K_i = number of parameters in \mathcal{P}_i

$\boldsymbol{\theta}_i^\dagger$ = MLE

This can be used as a model selection criterion in OPAL

The Occam-Plausibility Algorithm



Conclusions

- ▶ OPAL adaptively selects the simplest valid model in the presence of uncertainties by combining the notions of Occam's Razor and Bayesian calibration, validation, and selection
- ▶ Sensitivity analysis can be used to determine appropriate scenario/observable pairs for calibration and validation
- ▶ OPAL can also be paired with other methods of model selection and calibration/validation

Thank you!

UT Funding Through:
DOE-DE-SC009286 MMICC
AFOSR: FA9550-12-1-0484
DOE Eureka: DE-SC0010518