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Motivation: What is coarse-graining and why

do it?

Coarse-graining is the process
of aggregating atoms into larger
representative particles

This reduces the number of
degrees of freedom needed for
simulating the molecular system

Consequential questions:
I What is the model?
I Is the model valid for predicting specific QoIs?
I How do we cope with and quantify uncertainties?
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The AA and CG Systems
AA System

r
1

r
n

rn = configuration, pn = momenta

H(r n,p n) = K (p n) + V (r n) =
∑n

i=1
pi ·pi
2mi

+ V (rn)

If q is a phase function describing the quantity of interest,

Q = 〈q〉 or Q = π(q)

CG System

R
1

R
N

RN = configuration, PN = momenta

HCG (RN ,PN)=K (PN) + VCG (RN)=
∑N

i=1
Pi ·Pi

2Mi
+VCG (RN)

If qCG is the corresponding phase function,

QCG = 〈qCG 〉 or QCG = π(qCG )

Determining VCG so that the CG model adequately represents, and therefore may
be used as a surrogate model for, the all-atom model is a main goal of this work
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The AA-to-CG Map
The QoI QCG = QCG (G ,θ) depends on the definition of VCG , with
parameters θ, which depends on the AA-to-CG map G

Choice of G may be influenced by

I Chemical intuition
I Computational limitations

For each Gi , the set of possible representations of VCG is denoted Mi
Non-bonded 
interaction 

Bond 

Angle 

Dihedral 

Pk1

Bond 

Angle 

Pk2

Non-bonded 
interaction 

Angle 

Dihedral 

Pk3

Non-bonded 
interaction 

Bond 

Pkm 5



Uncertainties in the CG Model

I The choice of G is not well-defined

I Once G is specified, VCG must be determined. Each Gi yields a
set of possible model classes representing VCG ,

Mi = {Pi1 (θi1) ,Pi2 (θi2) , . . . ,Pim (θim)} , i = 1, 2, . . . , k

I The parameters θij for each model Pij are unknown and are
uncertain, random vectors
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Bayes’ Rule
Cox’s Theorem ⇒ Every natural extension of Aristotelian logic with
uncertainties is Bayesian

Bayes’ Rule

π(θ|y)︸ ︷︷ ︸ =

︷ ︸︸ ︷
π(y|θ)×

︷︸︸︷
π(θ)

π(y)︸︷︷︸Posterior

Likelihood Prior

Evidence

π(θ) captures any information that is known about the parameters
before calibration

π(y|θ) is the probability of seeing the data y given parameters θ

π(y) measures the evidence of the model

Cox (1946), van Horn (2003), Jaynes (2003)
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Bayes’ Rule and the Prediction Pyramid
Sc

en
ar

io
s

O
bservations

QoI Prior
π(θ)

Calibration (Sc , yc)

π(θ|yc) =
π(yc |θ)π(θ)

π(yc)

Validation (Sv , yv )

π(θ|yv , yc) =
π(yv |θ, yc)π(θ|yc)

π(yv |yc)

Prediction (Sp, QoI)

π(Q) = π(Q|θ, Sv , Sc)
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The Prediction Process: Traveling up the

Prediction Pyramid
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Bayesian Model Validation
If the observable value is also a pdf, π(q), validity is determined by

DKL(π(q)‖π(Q|θ)) < γtol ,1

where

DKL (π (q) ‖π (Q|θ)) =

∫
π (q (ω)) log

π (q (ω))

π (Q (ω) |θ)
dω.

If the observable value is a scalar, q, validity is determined by

|q − Q| < γtol ,2

where

Q = Eπv [π(Q|θ)] =

∫
Θ

π(Q|θ)π(θ|yv , yc) dθ

A sequence of validation scenarios may be considered 10



Model Plausibility and Model Selection
M = set of parametric model classes = {P1,P2, . . . ,Pm}
Each P has its own likelihood and parameters θj

Bayes’ rule in expanded form:

π(θj |y,Pj ,M) =
π(y|θj ,Pj ,M)π(θj |Pj ,M)

π(y|Pj ,M)
, 1 ≤ j ≤ m

where

π(y|Pj ,M) =

∫
π(y|θj ,Pj ,M)π(θj |Pj ,M) dθj

Now apply Bayes’ Rule to the evidence:

ρj = π(Pj |y,M) =
π(y|Pj ,M)π(Pj |M)

π(y|M)
= model plausibility

m∑
j=1

ρj = 1
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Sensitivity Analysis

STi
measures the total contribution from parameter θi to the variance

in the output Y and indicates the importance of θi

Y (θ) = model output
V (Y ) = variance in Y
V (Y |θ∼i) = variance in Y when all parameters except θi are fixed

Total Sensitivity Index

STi
=

E [V (Y |θ∼i)]

V (Y )

STi
indicates which parameters are informed by the observables in the

calibration and validation scenarios

A. Saltelli, et al (2008)
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Occam’s Razor

Occam’s Razor
Among competing theories that lead to the same prediction, the
one that relies on the fewest assumptions is the best.

When choosing among a set of models:
The simplest valid model is the best choice.

I simple ⇒ number of parameters

I valid ⇒ passes Bayesian validation
test

How do we choose a model that adheres to this principle?
13



The Occam-Plausibility Algorithm
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Example Application: Polyethylene

Prediction scenario contains 25 chains of C80H162 and the QoI is the
potential energy of the system
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The Occam-Plausibility Algorithm
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OPAL Step 1: Initialization
What is the CG map?
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OPAL Step 1: Initialization
How is the potential energy represented?

Assume the OPLS functional form,

V (Rn) =
∑
bonds

KR(R − R0)2 +
∑
angles

Kθ(θ − θ0)2

+
∑

dihedrals

4∑
n=1

Vn

2
[1 + (−1)n−1 cos(nψ)]

+
N−1∑
i=1

N∑
j=i+1

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
f

Alternatively, we may use
N−1∑
i=1

N∑
j=i+1

4εij

[(
σij
rij

)9

−
(
σij
rij

)6
]
f

18



OPAL Step 1: Initialization
How is the potential energy represented?

Assume the OPLS functional form,

V (Rn) =
∑
bonds

KR(R − R0)2 +
∑
angles

Kθ(θ − θ0)2

+
∑

dihedrals

4∑
n=1

Vn

2
[1 + (−1)n−1 cos(nψ)]

+
N−1∑
i=1

N∑
j=i+1

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
f

Alternatively, we may use
N−1∑
i=1

N∑
j=i+1

4εij

[(
σij
rij

)9

−
(
σij
rij

)6
]
f

18



Model Bonds Angles Dihedrals LJ 12-6 LJ 9-6 Params

P1 X 3

P2 X 3

P3 X 3

P4 X 3

P5 X X 5

P6 X X 5

P7 X X 5

P8 X X 5

P9 X X 5

P10 X 7

P11 X X X 7

P12 X X X 7

P13 X X 7

P14 X X 7

P15 X X 7

P16 X X 7

P17 X X X 9

P18 X X X 9

P19 X X X 9

P20 X X X 9

P21 X X X 9

P22 X X X X 11

P23 X X X X 11
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OPAL Step 2: Sensitivity Analysis

Sensitivity analysis is performed in the prediction scenario with the
QoI as the observable

Output Y = 〈VCG (θ)〉

21



Scenarios
Prediction Scenario

Validation Scenario # 2

Validation Scenario # 1

Calibration Scenario
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OPAL Step 2: Sensitivity Analysis
Output: Y = 〈VCG (θ)〉
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OPAL Step 2: Sensitivity Analysis
The sensitivity indices show that the dihedral parameters are
unimportant, but how important are they?
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Model Bonds Angles Dihedrals LJ 12-6 LJ 9-6 Params

P1 X 3

P2 X 3

P3 X 3

P4 X 3

P5 X X 5
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OPAL Step 2: Sensitivity Analysis
Models with insensitive parameters may be eliminated, yielding a new
set of possible models

Model Bonds Angles Dihedrals LJ 12-6 LJ 9-6 Params Category

P̄1 X 3 1
P̄2 X 3

P̄3 X 3

P̄4 X 3

P̄5 X X 5 2
P̄6 X X 5

P̄7 X X 5

P̄8 X X 5

P̄9 X X 5

P̄10 X X X 7 3
P̄11 X X X 7
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The Occam-Plausibility Algorithm
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OPAL Step 3: Occam Step

Model Bonds Angles Dihedrals LJ 12-6 LJ 9-6 Params Category

P̄1 X 3 1
P̄2 X 3

P̄3 X 3

P̄4 X 3

P̄5 X X 5 2
P̄6 X X 5

P̄7 X X 5

P̄8 X X 5

P̄9 X X 5

P̄10 X X X 7 3
P̄11 X X X 7
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OPAL Step 4: Calibration

Calibration

π(θ∗j |y,P∗j ,M∗) =
π(y|θ∗j ,P∗j ,M∗)π(θ∗j |P∗j ,M∗)

π(y|P∗j ,M∗)

Here, y = potential energy of C80H162

Plausibility

ρ∗j = π(P∗j |y,M∗) =
π(y|P∗j ,M∗)π(P∗j |M∗)

π(y|M∗)

Model Bonds Angles Dihedrals LJ 12-6 LJ 9-6 Params Plausibility

P∗1 X 3 1

P∗2 X 3 0

P∗3 X 3 0

P∗4 X 3 0
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OPAL Step 5: Validation
As a validation scenario, we consider 2
chains at T = 300K in a canonical ensemble.

Validation

π(θ∗1|yv , yc) =
π(yv |θ∗1, yc)π(θ∗1|yc)

π(yv )

Here, yv is the potential energy

How well does this updated model reproduce the desired observable?

Let

I π(Q) = π(VAA) ⇒ π(VCG |θ∗) = π(VCG (θ∗))
γtol ,1 = 0.15σ2

AAO (E [π(VAA)])

I Q = 〈VAA〉 ⇒ E [π(VCG |θ∗)] = 〈VCG (θ∗)〉
γtol ,2 = 0.1Q
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OPAL Step 5: Validation

If we compare the distributions,
DKL(π(VAA)‖π(VCG |θ∗)) = 0.0622σ2

AAO (E [π(VAA)])
< γ1,tol

If we compare the ensemble average,
|〈VAA〉 − 〈VCG (θ∗)〉| = 0.0118 〈VAA〉 < γ2,tol

If we compare the distributions,
DKL(π(VAA)‖π(VCG |θ∗)) = 0.0826σ2

AAO (E [π(VAA)])
< γ1,tol

If we compare the ensemble average,
|〈VAA〉 − 〈VCG (θ∗)〉| = 0.0181 〈VAA〉 < γ2,tol

Model is NOT invalid
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Prediction
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Prediction

What if we set

γ1,tol = 0.06σ2
AAO (E [π(VAA)])?

Then this model is also invalid
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OPAL Step 3: Occam Step

Model Bonds Angles Dihedrals LJ 12-6 LJ 9-6 Params Category

P̄1 X 3 1
P̄2 X 3

P̄3 X 3

P̄4 X 3

P̄5 X X 5 2
P̄6 X X 5

P̄7 X X 5

P̄8 X X 5

P̄9 X X 5

P̄10 X X X 7 3
P̄11 X X X 7
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OPAL Steps 4 & 5: Calibration, Plausibility,

and Validation
Model Bonds Angles Dihedrals LJ 12-6 LJ 9-6 Params Plausibility

P∗1 X X 5 1

P∗2 X X 5 0

P∗3 X X 5 0

P∗4 X X 5 0

P∗5 X X 5 0

How well does this updated model reproduce the desired observable?

Let
I π(Q) = π(VAA) ⇒ π(VCG |θ∗) = π(VCG (θ∗))

γtol ,1 = 0.06σ2
AAO (E [π(VAA)])

I Q = 〈VAA〉 ⇒ E [π(VCG |θ∗)] = 〈VCG (θ∗)〉
γtol ,2 = 0.1Q

41



OPAL Step 5: Validation
If we compare the distributions,

DKL(π(VAA)‖π(VCG |θ∗)) = 0.044σ2
AAO (E [π(VAA)])

< γ1,tol

If we compare the ensemble average,

|〈VAA〉 − 〈VCG (θ∗)〉| = 0.0115 〈VAA〉 < γ2,tol

If we compare the distributions,

DKL(π(VAA)‖π(VCG |θ∗)) = 0.0587σ2
AAO (E [π(VAA)])

< γ1,tol

If we compare the ensemble average,

|〈VAA〉 − 〈VCG (θ∗)〉| = 0.0178 〈VAA〉 < γ2,tol

Model is NOT invalid
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Prediction
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Deterministic Model Selection
In the deterministic setting, we seek Pi such that

DKL(g‖π(y|θ†i ,Pi ,M)) < DKL(g‖π(y|θ†j ,Pj ,M)) ∀Pj ∈M

However, the true value of DKL(·‖·) is usually impossible to compute,
but can be approximated by the Akaike Information Criterion,

AICi = −2 log π(y|θi ,Pi ,M) + 2Ki

where
Ki = number of parameters in Pi

θ†i = MLE
This can be used as a model selection criterion in OPAL

Akaike (1973, 1974)
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The Occam-Plausibility Algorithm
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no6

yes�

no6

yes�
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START

Identify a set of

possible models, M

SENSITIVITY ANALYSIS

Eliminate models with

parameters to which the

model output is insensitive

M̄ = {P̄1, . . . , P̄m}

OCCAM STEP

Choose model(s) in the

lowest Occam Category

M∗ = {P∗1 , . . . ,P∗m}

ITERATIVE OCCAM STEP

Choose models in next Occam

category

CALIBRATION STEP

Calibrate all models in M∗

Identify a new set

of possible models
Does P∗j have the most

parameters in M̄

AIC STEP

Compute AICs and identify most

plausible model P∗j

Use validated params

to predict QoI
Is P∗j valid?

VALIDATION STEP

Submit P∗j to validation test
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Conclusions

I OPAL adaptively selects the simplest valid model in the presence
of uncertainties by combining the notions of Occam’s Razor and
Bayesian calibration, validation, and selection

I Sensitivity analysis can be used to determine appropriate
scenario/observable pairs for calibration and validation

I OPAL can also be paired with other methods of model selection
and calibration/validation
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