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Motivation: What is coarse-graining and why
do it?

Coarse-graining is the process
of aggregating atoms into larger
representative particles

This reduces the number of
degrees of freedom needed for
simulating the molecular system

Consequential questions:
» What is the model?
» Is the model valid for predicting specific Qols?
» How do we cope with and quantify uncertainties? s
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The AA and CG Systems o
AA System

r" = configuration, p” = momenta

H(r"p") = K(p") + V(r") = 3L, 5t + V(")

i=1 2m;
If g is a phase function describing the quantity of interest,

Q=(q) o Q=n(q)
CG System

RN = configuration, P"Y = momenta
Hes(RY,PM)=K(P") + Veo(RY) =1L, %l + Veo (RY)
If gcg is the corresponding phase function,

Qcc = (qce) or Qce = m(qce)

Determining Vg so that the CG model adequately represents, and therefore may
be used as a surrogate model for, the all-atom model is a main goal of this work ,
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The AA-to-CG Map

The Qol Qcc = Qc(G, 0) depends on the definition of V¢, with
parameters 6, which depends on the AA-to-CG map G

Choice of G may be influenced by

> Chemical intuition
» Computational limitations

For each G;j, the set of possible representations of V¢ is denoted M;

Non-bonded




Uncertainties in the CG Model

» The choice of G is not well-defined

» Once G is specified, Vc must be determined. Each G; yields a
set of possible model classes representing Vg,

Mi - {Pil (ail) >Pi2 (0i2) PI 7Pim (Olm)} ) | = 1727 ) k

» The parameters 6; for each model P;; are unknown and are
uncertain, random vectors
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Bayes’ Rule

Cox’s Theorem =- Every natural extension of Aristotelian logic with
uncertainties is Bayesian

Bayes' Rule

7(0) captures any information that is known about the parameters
before calibration

7(y|@) is the probability of seeing the data y given parameters 0
7(y) measures the evidence of the model

7
—

Cox (1946), van Horn (2003), Jaynes (2003)
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Bayes' Rule and the Prediction Pyramid

Prior
m(0)

Calibration (S.,y.)
(yc|0)m(6)
m(y.)

Validation (S,,y,)

m(y,[0,y.)7(0]y.)
m(y,ly.)

m(0ly.) =

w0y, yc) =

Prediction (S,, Qol)

7T(Q) = 7T(Q|9, 5V7 Sc)
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The Prediction Process: Traveling up the

Prediction Pyramid
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Q@ =total energy per unit Polymer chains and
volume crosslinks = RPCs 9
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Bayesian Model Validation )
If the observable value is also a pdf, 7(q), validity is determined by

where

Die (7 (a) 7 (Q16)) = [ 7 (=)o - (q( (v ))|)9)

If the observable value is a scalar, g, validity is determined by

Q =E..[7(Ql0)] = /e ~(QI6)r(Bly,.y.) d6

A sequence of validation scenarios may be considered

where

10
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Model Plausibility and Model Selection i

M = set of parametric model classes = {P1, P,

.y Pm}
Each P has its own likelihood and parameters 6;
Bayes’ rule in expanded form:
7(y|6), P, M) (6,|P;, M) ,
WB-y,P',M = ) 1<J<m
( J| J ) 7T(Y|PJ,M)

where

7415 M) = [ (31657 M)n(6[P5. M) 0B,
Now apply Bayes' Rule to the evidence:



Sensitivity Analysis

St, measures the total contribution from parameter 6; to the variance
in the output Y and indicates the importance of 6;

Y (6) = model output
V(Y') = variance in Y
V(Y]6.;) = variance in Y when all parameters except 6; are fixed

Total Sensitivity Index

St, indicates which parameters are informed by the observables in the
calibration and validation scenarios

12

A. Saltelli, et al (2008)




Occam’s Razor

Occam'’s Razor

When choosing among a set of models:
The simplest valid model is the best choice.

» simple = number of parameters

» valid = passes Bayesian validation
test

How do we choose a model that adheres to this principle?




The Occam-Plausibility Algorithm
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Example Application: Polyethylene

Prediction scenario contains 25 chains of CgyH16> and the Qol is the
potential energy of the system




The Occam-Plausibility Algorithm
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OPAL Step 1: Initialization
What is the CG map?
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OPAL Step 1: Initialization

How is the potential energy represented?
Assume the OPLS functional form,

VR") = > Ke(R—Ro)’+ > Ko(6 —60)

bonds angles

£ S Y (1) cos(nw)]

dihedrals n=1

N-1 N o 12 O 6

¥ e <_> _<_u) f

z_:z U! rij Fij

Alternatively, we may use
N—-1 N o\ o\ 0
>3 |(2) - (2]
i=1 j=i+1 lij Tij
S
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OPAL Step 1: Initialization

How is the potential energy represented?
Assume the OPLS functional form,

V(R) = Y Ke(R—Ro)>+ > K0 —0h)

bonds angles

+ Z Z%[l-l—(—l)”_lcos(nw)]

dihedrals n=1
N-1 N o 12 o 6
+ 46," . — 2 f

Alternatively, we may use

>3 (2) - (2)]r




Model Bonds Angles Dihedrals LJ 12-6 LJ 9-6 Params
P1 v 3
P2 v 3
P3 4 3
Pa v 3
Ps v v 5
Pe v v 5
Pr v v 5
Pg v 4 5
Po v v 5
P1o v 7
P11 v v v 7
P12 v 4 v 7
P13 v v 7
Pi1a v v 7
P15 v v 7
P16 v v 7
P17 v 4 v 9
Pi1s v v v 9
P19 v v v 9
Pao v v v 9
Po1 v v v 9
Pao v v v v 11
P23 v v v v 11
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The Occam-Plausibility Algorithm
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OPAL Step 2: Sensitivity Analysis

Sensitivity analysis is performed in the prediction scenario with the
Qol as the observable

Output Y = <VCG (0)>

Sensitivity Indices from SP

i

Total Effect Sensitivity Index (ST)




Scenarios

Prediction Scenario

Validation Scenario # 2

Validation Scenario # 1

Calibration Scenario




OPAL Step 2: Sensitivity Analysis
Output: Y = <VCG (0)>

Total Effect Sensitivity Index (ST)

ffect Sensitivity Index (ST)

Total El

Sensitivity Indices from Sc

Sensitivity Indices from S

Sensitivity Indices from S,

Total Effect Sensitivity Index (ST)

Sensitivity Indices from SI
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OPAL Step 2: Sensitivity Analysis
The sensitivity indices show that the dihedral parameters are
unimportant, but how important are they?

0.02
——Bonds + Angle + Dihedral + Lenard-Jones
0.018 - - -Bonds + Angle + Lenard-Jones
Tl E | Bonds + Dihedral + Lenard-Jones

0 500 1000 1500 2000
Change in Potential Energy




Model Bonds Angles Dihedrals LJ 12-6 LJ 9-6 Params
P1 v 3
P2 v 3
P3 4 3
Pa v 3
Ps v v 5
Pe v v 5
Pr v v 5
Pg v 4 5
Po v v 5
P10 v 7
P11 v v v 7
P12 v 4 v 7
P13 v v 7
P1a v v 7
P15 v v 7
P16 v v 7
P17 v v v 9
P1g v v v 9
P19 v v v 9
Pao v v v 9
Po1 v v v 9
P2 v v v v 11
Pasz v v v v 11
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OPAL Step 2: Sensitivity Analysis

Models with insensitive parameters may be eliminated, yielding a new
set of possible models
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Model | Bonds | Angles | Dihedrals | LJ 12-6 | LJ 9-6 | Params | Category
P v 3 1
P v 3
Ps v 3
P v 3
Ps v v 5 2
756 v v 5
Pr v v 5
P v v 5
Po v v 5
Pio v v v 7 3
Pu v v v 7




The Occam-Plausibility Algorithm




OPAL Step 3: Occam Step

Sandia
National
Laboratories

Model | Bonds | Angles | Dihedrals | LJ 12-6 | LJ 9-6 | Params | Category
P1 v 3 1
2 % 3
Ps3 v 3
P v 3
Ps v v 5 2
'ﬁe v v 5
'ﬁ7 v v 5
P v v 5
Po v v 5
P1o v v v 7 3
Pu v v v 7




The Occam-Plausibility Algorithm




OPAL Step 4: Calibration

Calibration

Here, y = potential energy of CgoHie
Plausibility

Model | Bonds | Angles | Dihedrals | LJ 12-6 | LJ 9-6 | Params | Plausibility
P v 3 1
P v 3 0
P3 v 3 0
Pr v 3 0

30




The Occam-Plausibility Algorithm




OPAL Step 5: Validation o

As a validation scenario, we consider 2
chains at T = 300K in a canonical ensemble.

Validation

Here, y, is the potential energy

How well does this updated model reproduce the desired observable?
Let
> m(Q) =7(Vaa) = 7(Vegl0™) = m(Ves(67))
Vtol,1 = 0.1503\/40 (E [W(VAA)])
» Q= (Vaa) = E[r(Vce|07)] = (Vee(67))
Vtol2 = 0.1Q




OPAL Step 5: Validation o

yiwsw If we compare the distributions,
5": Dii(7(Vaa)||7(Veg|07)) = 0.062203,0 (E [7(Vaa)))
< M1, tol
If we compare the ensemble average,
|<VAA> — <VCG(0*)>| =0.0118 <VAA> < Y2, tol

085 09 095 1 105 11 115 12 125
x10°

wa—wiw If we compare the distributions,
i Dk (m(Van)||7m(Veg|6%)) = 0.082605,0 (E [7(Van)])
< M1,tol
If we compare the ensemble average,
|<VAA> — <VCG(0*)>| =0.0181 <VAA> < Y2, tol

16 8 2 22 24 26
x10°
33




The Occam-Plausibility Algorithm
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Prediction

Potential Energy Distributions in Sp




Prediction

5 Potential Energy Distributions in Sp

ox 10
9

—AA
8|~~~ CG: Category 1

What if we set
Y1.t0f = 0.0603,0 (E [1(Vaa)])?

Then this model is also invalid




The Occam-Plausibility Algorithm




The Occam-Plausibility Algorithm




OPAL Step 3: Occam Step
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Model | Bonds | Angles | Dihedrals | LJ 12-6 | LJ 9-6 | Params | Category
Py v 3 1
P v 3
Ps v 3
P v 3
Ps v v 5 2
P v v 5
Py v v 5
Ps v v 5
Po v v 5
P1o v v v 7 3
Pu v v v 7




The Occam-Plausibility Algorithm
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OPAL Steps 4 & 5: Calibration, Plausibility,
and Validation

Model | Bonds | Angles | Dihedrals | LJ 12-6 | LJ 9-6 | Params | Plausibility
Pi v v 5 1
P5 v v 5 0
P3 v v 5 0
P v v 5 0
Ps v v 5 0

How well does this updated model reproduce the desired observable?
Let
> m(Q) =m(Vaa) = 7(Veel07) = m(Vea(67))
Yior1 = 0.060%,0 (E [11(Van)])
> Q= (Vax) = E[r(Vcl07)] = (Ves(67))
Yeol2 = 0.1Q
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OPAL Step 5: Validation

Pots sy s in5, If we compare the distributions,
Dyt (m(Vaa)[7(Vcg|6*)) = 0.04455,0 (E [7(Vaa)])

< Y1,tol
If we compare the ensemble average,

[(Vaa) — (Ve (07))| = 0.0115 (Vaa) < 72,t01

085 09 095 1 105 14 15 12 125
x10"

S— If we compare the distributions,
Dyt (m(Vaa)llm(Ves|67)) = 0.058703,40 (E [7(Vaa)])

i < V1, tol
[N
i If we compare the ensemble average,

[(Vaa) — (Ve (07))| = 0.0178 (Vaa) < 72,101




The Occam-Plausibility Algorithm
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Prediction

5 Potential Energy Distributions in S
ox 10 P
9
—AA
gl| - - - CG: Category 1 ]
---CG: Categroy 2
7| 1
6 4
5 o
4 ]
3 4
2 4
1 i 1
Kl
K
o
88 1 1.2 1.8




Deterministic Model Selection

In the deterministic setting, we seek P; such that
Dc(gllm(y|0}, Pi, M)) < Die(gllm(y|0], P;, M)) VP; € M

However, the true value of Dy, (+||-) is usually impossible to compute,
but can be approximated by the Akaike Information Criterion,

where

K; = number of parameters in P;
6! = MLE
This can be used as a model selection criterion in OPAL
45

Akaike (1973, 1974)




The Occam-Plausibility Algorithm
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Conclusions

» OPAL adaptively selects the simplest valid model in the presence
of uncertainties by combining the notions of Occam'’s Razor and
Bayesian calibration, validation, and selection

» Sensitivity analysis can be used to determine appropriate
scenario/observable pairs for calibration and validation

» OPAL can also be paired with other methods of model selection
and calibration /validation
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