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Motivation for a Low-Cost Sensor

= Currently used solar irradiance sensors are expensive
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pyranometers with high accuracy (relevant for annual energy

estimates).

= Low-cost sensors can have similar precision (relevant for solar
variability measurements), even if they are not as accurate.

Name Class Cost Name Cost Datalogger Cost

Apogee SP- Second $1952 CR200X
110 Class' LI-1500G
Licor LI- CR200X

1 4
—— First Class $295 L1-1500G
Secondary . CR200X
Eppley PSP [y BIETE LI-1500G

$6503
$17504
$6503
$17504
$6503
$17504

! The Apogee SP-110 is not rated on the ISO 9060 standard, but is expected to be similarto a “second class” instrument.

2 Apogee Instruements: http://www.apogeeinstruments.com/pyranometer-sp-110/, accessed 8/28/2014

3 Campbell Scientific 2010 price list, accessed at http://tge2008-2.wikispaces.com/file/view/March 2010-macs-Price.pdf on 8/28/2014.

4 Price Quote from LI-COR Biosciences received Aug. 28, 2014.

$845

$1945
$945
$2045
$2625
$3725

31997 prices listed in Masters Thesis “An Improved Multipyranometer Array for the Measurement of Direct and Diffuse Solar Radiation” accessed at

http://esl.tamu.edu/docs/publications/thesis_dissertations/ESL-TH-97-12-02.pdf on 8/28/2014.
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Variability Sensor Requirements @i

= Based on previous experience and literature review, Sandia
established baseline hardware, operational, and data
requirements for the variability sensor.

= Hardware Requirements (partial list)
= Low-cost components where practical (maintain solar variability measurements)
= |rradiance sensitivity between 0-1400 Wm™
= Detector response time sufficient for 1-second measurements
= Spectral response similar to silicon PV modules
= Wide thermal operating range and weatherized casing
= Battery Powered; GPS receiver for location and time synchronization

= Operational and Data Reporting Requirements (partial list)
= Measure only during daytime to conserve battery and data storage
= Wireless (Wifi and/or cell modem) transmission of data
= Store up to 30 days of time-stamped measurement data in case on communication
failures.

= |n summary, final device will be inexpensive, easy to install and
network, and require no maintenance during operating year. ,



Tested Components

= |ninitial testing, considered 5 basic
designs based on either PV cells or

photodiodes.

= All PV cells/photodiodes cost <515.

= Deployed all 5 test devices and a
LICOR pyranometer for validation.

Serial Number Sensor type Diffuser
Material

PV01 PV cell N/A
(KXOB22-12X1L)

PV02 PV cell N/A
(KXOB22-12X1L)

PDO1 Photodiode Teflon
(Thorlabs FDS100)

PDO02 Photodiode FEP
(Thorlabs FDS100)

PDO03 Photodiode Teflon

(Thorlabs FDS100)

Distance,

PD -> Diffuser
N/A

N/A

4 .13mm

4.13mm

1.40mm

Glass Window
Mounting
Inside

Outside
N /A
N/A

N/A
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Comparison to LICOR: Irradiance @

= Tested from 13:00 to 20:00 on a highly variable day in Austin, TX.
= Most deviation in the evening, especially for PD02.

Irradiance Timeseries Differences from LICOR
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Comparison to LICOR: Variability =~ @&,
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Alpha Prototype h) .

PV02 device was used as basis for alpha variability sensor prototype.

= Good test performance vs. LICOR
= Possibility for charging off of PV cell

Alpha prototype was fast-tracked to allow for field testing of

irradiance / variability measurements.
= No battery power or wireless communications.

Costs: PV cell $2.05, sensor casing ~$51, computer board TBD
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Alpha prototype showing (left) PV cell and casing and Alpha prototype deployed on test rack with PSPs
(right) computer board and power supply in box. undergoing calibration. 7




Compare to CMP 11

Deployed at the Sandia’s PSEL (Albuquerque, NM)
= compared to CMP 11 (secondary standard) pyranometer at PSEL.

Sun

Mon

May, 2015

Tues

Wed

Thurs

Fri

— CMP 11

— var. sensor

=

==

6 12 18

6 12 18

6 12 18

6 12 18

6 12 18

6 12 18
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May 4th, 2015 )

= Variability sensor matches CMP 11 well on highly variable day

04-May-2015

1500 7T+ _ 1400
1400 | CMP 11 T
1300 r Variablity Sensor O 1200 orr coef = 0.999
o1 | : *
@ 1000
£ 1000 2 A Scatter plot
= 900 K ™ 800 o H HH
GHI 3 & 5 # of variability
. . : S 600 :
@ 600 (7] .
timeseries ¢ &9 fl ) Sensor vs.
o =
g o | z CMP 11 GHI
200 -% 200 3
0 2 4 6 8 101214 16 18 20 22 24 0 200 400 600 800 1000 1200 1400
CMP 11 30s avg. GHI
700 CMP 11 50%
600 ﬂ Variablity Sensor o
500 » CM.P 1 1 vsH s :|305) =63
= 400 W o Variablity Sensor VSRRdist(303)=60 1
£ 00 n - 30s ramp
o 200 ' 1 " - e .
30s ram £ 100 & 60% distributions
0 H A
p E-']OO r o MAD (CMP11 vs. Var Sens) = 0.11% and
. . x € 20%
timeseries -2 T bilit
g 3% o variability 1
-500 \\ ( )
500 o score (VS
-700 0%
0 2 4 6 8 101214 16 18 20 22 24 0 200 400 600 800 1000
30s R, [Wm™/min]
'see VS definitionin M. Lave, M. J. Reno, and R. J. Broderick, “Characterizing local high-frequency solar variability and its impact to distribution studies,” 9

Solar Energy, vol. 118, no. 0, pp. 327 — 337, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0038092X 15002881
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= Variability sensor matches CMP 11 well on highly variable day
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= Variability sensor matches distribution of 30s ramps in May 2015

very well.

= Ramps are highly correlated.

= MAD of 0.05% is much smaller than differences due to e.g., GHI vs. POA,

differences by location, etc.
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Beta Prototype ) o,
= Coming soon!

= Will have same or better variability measurement accuracy as
alpha, but will incorporate features such as battery power,
wireless data transmission, etc.

= One, self-contained device

= Sensor mounting cost expected to be similar to alpha (~$S50),
low-cost PC board used to minimize additional costs

= Will be deployed at 3+ locations

= Continue to validate variability sensor measurements against commercial
pyranometers

= gain high-frequency variability measurements in locations of interest
(e.g., Florida)

12
-



Use for Grid Integration Studies ) .
= Local measurements from a solar variably sensor can be used as

inputs for accurate grid integration studies.

= Other studies use proxy data (from a different location) or artificial ramps
and may over or underestimate the impact of PV variability.

= Up to 300% differences in the number of tap changes in a week found for
different locational variability samples, showing importance of local data.
= To facilitate grid integration studies with variability sensor data, we
have developed a GUI in data analysis program MATLAB.
= User loads in variability sensor data and feeder layout (or default feeder).
= User inputs PV tilt and azimuth (or tracking).
= GUI uses GridPV toolbox to run distribution grid simulation.

= Qutputs include power through each voltage regulator, regulator tap
position, cumulative number of tap changes, and minimum and maximum

feeder voltage.

13



GUI Example: Clear Day ) .

= Tap change operations reduced when PV added to feeder!
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GUI Example: Cloudy Day

= Tap change operations significantly increased when PV added.
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I '11 ﬁg?igi?al
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= We are developing a low-cost solar variability sensor to encourage

ubiquitous solar variability measurements for a better
understanding of the impact of solar PV on the electric grid.

= PV cell and photodiode based sensor designs tested.
= Alpha prototype fabricated to test PV cell variability measurements.

= Variability measurements closely match secondary standard CMP
11 pyranometer, even with layer of condensation on window.

= Beta device will maintain variability measurement quality while
incorporating wireless data transmission, battery power, etc.

= Value of data to grid integration studies easily determined through
GUI tool.

= Qverall, the variability sensor will reduce uncertainty about the
impact of solar photovoltaic and so will encourage greater PV
penetrations (where appropriate). 16




