
Photos placed in 
horizontal position  
with even amount 

of white space 
 between photos 

and header 

Photos placed in horizontal 
position  

with even amount of white 
space 

 between photos and header 

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP 

Evolving	
  the	
  message-­‐passing	
  
model	
  via	
  an	
  object-­‐oriented,	
  
fault-­‐tolerant	
  transport	
  layer	
  

Jeremiah	
  Wilke,	
  Janine	
  Benne<,	
  Hemanth	
  Kolla,	
  
Nicole	
  Sla<engren,	
  Keita	
  Teranishi,	
  David	
  Hollman	
  
	
  

	
  
FTXS	
  Workshop	
  at	
  HPDC	
  

Portland,	
  OR	
  
June	
  15,	
  2015	
  

	
  
	
  

SAND2015-4738C



ApplicaPons	
  should	
  focus	
  on	
  algorithm-­‐
specific	
  fault-­‐tolerance	
  problems	
  

2	
  

•  Fail-stop fault tolerance has a ``universal’’ solution, once 
checkpoint interface is defined 

•  LFLR (local-failure, local-recovery; Sandia)  
•  FMI (fault-management interface; LLNL) 
•  Fenix (Rutgers) 

•  Should silent data corruption be focus of algorithm-
specific approaches? 

•  Two choices (either may actually be end being correct) 
•  Ad hoc solutions engineered for specific problems 
•  General solutions that are broadly applicable 

•  Fault-tolerance and performance are a programming 
productivity problem 



Goals	
  of	
  the	
  talk/posiPon	
  paper	
  

3	
  

1) Sit down as quickly as possible so smarter 
people can give feedback/criticism 

 
2) Complimentary to, not critical of ULFM 

3) Engage current state of the art to avoid 
repeating efforts 



Shrinking	
  model	
  is	
  difficult,	
  app-­‐specific	
  
Non-­‐shrinking	
  model	
  is	
  universal,	
  runPme-­‐level	
  

4	
  

Shrinking model potentially requires complete repartitioning 

Non-shrinking model transparent – might be network topology consequences 



MPI	
  return	
  codes	
  create	
  messy	
  logic	
  if	
  
MPI	
  funcPons	
  can``fail’’	
  

5	
  

int rc = MPI_Send(...); 
if (rc == FAILED){ 
  //what to do here 
} 
 
rc = MPI_Recv(...); 
if (rc == FAILED){ 
  //what to do here 
} 
 
rc = MPI_Wait(...); 
if (rc == FAILED){ 
  //what to do here 
} 

If statements are bad! 



Our	
  posiPon	
  is	
  that	
  we	
  want	
  to	
  know	
  other	
  	
  
people’s	
  posiPons	
  

6	
  

1. Our group at Sandia has been looking at fault-
tolerance with task-based models 
-Fault-tolerance seems well-defined and 
straightforward in systems like TASCEL 

2.  Interactions with LFLR, Fenix projects 
-Fault-tolerance seems well-defined and 
“straightforward“ for non-shrinking MPI model 

3. Can we combine some basic aspects of many-task 
models into message passing (communicating 
sequential processes) to provide a performant and 
general-purpose fault-tolerance tool? 



Local	
  recovery	
  can’t	
  ever	
  really	
  be	
  strictly	
  local	
  

7	
  

Send(A) 

Send(B) 

Send(C) 

Recv(A) 

Recv(B) 

Failure 
Recovery 

Recv(A) 

Detect 

Rank 0 Rank 1 



Local	
  recovery	
  can’t	
  ever	
  really	
  be	
  strictly	
  local	
  

8	
  

Send(A) 

Send(B) 

Send(C) 

Recv(A) 

Recv(B) 

Failure 
Recovery 

Recv(A) 

Detect 

Rank 0 Rank 1 

How does Rank 1 get Message A to be resent? 
1)  Rank 0 rolls back 
2)  Rank 0 detects error and resends all messages from a log 
3)  Rank 0 carries on, Rank 1 requests messages as needed 



Local	
  recovery	
  can’t	
  ever	
  really	
  be	
  strictly	
  local	
  

9	
  

Send(A) 

Send(B) 

Send(C) 

Recv(A) 

Recv(B) 

Failure 
Recover 

Recv(A) 

Detect 

Rank 0 Rank 1 

How does Rank 1 get Message A to be resent? 
1)  Rank 0 rolls back 
2)  Rank 0 detects error and resends all messages from a log 
3)  Rank 0 carries on, Rank 1 requests messages as needed 

Question for the audience: Did I miss any options? 



Matrix	
  of	
  choices	
  and	
  tradeoffs	
  for	
  
“transparent”	
  fault-­‐tolerance	
  in	
  MPI	
  

10	
  

Explicitly 
Coordinated 
Checkpoint 

Restart 

Implicitly 
Coordinated 
Checkpoint 

Restart 

Fully 
Uncoordinated 

Checkpoint Restart 

All Processes 
Rollback 

No special 
bookkeeping, 

Eager protocols 
preserved 

Synchronous 
rollback 

Not viable, 
Domino effect 

Only Failed 
Process Rolls 

Back 

Message 
logging, 

Rendezvous 
protocol 
required 

 

Message 
logging, 
Garbage 
collection 

Message logging, 
More complicated 
garbage collection 



Matrix	
  of	
  choices	
  and	
  tradeoffs	
  for	
  
“transparent”	
  fault-­‐tolerance	
  in	
  MPI	
  

11	
  

Explicitly 
Coordinated 
Checkpoint 

Restart 

Implicitly 
Coordinated 
Checkpoint 

Restart 

Fully 
Uncoordinated 

Checkpoint Restart 

All Processes 
Rollback 

No special 
bookkeeping, 

Eager protocols 
preserved 

Synchronous 
rollback 

Not viable, 
Domino effect 

Only Failed 
Process Rolls 

Back 

Message 
logging, 

Rendezvous 
protocol 
required 

 

Message 
logging, 
Garbage 
collection 

Message logging, 
More complicated 
garbage collection 

Is there a way to enhance recovery 
strategies when only the failed process 
rolls back and restarts? 



Every	
  applicaPon	
  has	
  logical	
  regions,	
  	
  
a	
  data	
  model,	
  and	
  physical	
  mapping	
  

12	
  

stack

Logical
Regions

Data 
Model

Physical
Arrays



Every	
  applicaPon	
  has	
  logical	
  regions,	
  	
  
a	
  data	
  model,	
  and	
  physical	
  mapping	
  

13	
  

stack

Logical
Regions

Data 
Model

Physical
Arrays

Application 
 

Runtime 
 

MPI: What apps and runtime interact with 



Every	
  applicaPon	
  has	
  logical	
  regions,	
  	
  
a	
  data	
  model,	
  and	
  physical	
  mapping	
  

14	
  

stack

Logical
Regions

Data 
Model

Physical
Arrays

Application 
 

Runtime 
 

PGAS: What apps and runtime interact with 



Every	
  applicaPon	
  has	
  logical	
  regions,	
  	
  
a	
  data	
  model,	
  and	
  physical	
  mapping	
  

15	
  

stack

Logical
Regions

Data 
Model

Physical
Arrays

Application 
 

Runtime 
 

(Some) many-task models 



Every	
  applicaPon	
  has	
  logical	
  regions,	
  	
  
a	
  data	
  model,	
  and	
  physical	
  mapping	
  

16	
  

stack

Logical
Regions

Data 
Model

Physical
Arrays

Application 
 

Runtime 
 

MPI: Is there any value in having the 
runtime know logical identity of data? 



Originally	
  proposed	
  publish/subscribe	
  
funcPons...	
  let’s	
  start	
  with	
  MPI	
  tags...	
  

17	
  



Message	
  passing	
  (CSPs)	
  means	
  (usually)	
  two-­‐
sided,	
  private	
  address	
  spaces,	
  copy-­‐on-­‐read	
  

18	
  

X X X X 

Copy-on-read 

ACK 

Compute on disjoint data Compute on disjoint data 



•  MPI message matching is “transparent” to the 
application, based on in-order message delivery  

•  MPIX + key-value extensions would logically identify 
all data sent with unique tag, checkpoint as you go 

 
•  Register buffer with checkpoint beforehand 

Every	
  message	
  in	
  MPI	
  is	
  ``logically’’	
  idenPfied	
  
Swap	
  message	
  order	
  for	
  logical	
  idenPfiers	
  

19	
  

MPI_Send(buffer, count, type, dest, tag, comm);!
!->implicit order number!

Tuple<dest,tag,comm,order> -> unique identifier!

MPIX_KV_Tag tag(mesh, 0, 0, 0);!
MPIX_Checkpoint(tag, buffer);!
MPI_Datatype subsetType = …;!
MPIX_Send(buffer, count, subsetType, dest, subtag, comm);!
!

MPIX_KV_Tag tag(matrixBlock, 0, 0);!
MPI_Send(buffer, count, type, dest, tag, comm);!
!



Logical	
  tags	
  are	
  a	
  general-­‐purpose,	
  
applicaPon-­‐specific	
  soluPon	
  

20	
  

Local, Not Sent 

Sent 
Once 

Sent 
Once 

Sent Twice 

Ghost exchange application 
Optimum checkpoint interval = 10 iterations 
Small stencil = N(ghost) << N(local) 

Logical data model provides little 
benefit beyond pessimistic 

message logging 



Logical	
  tags	
  are	
  a	
  general-­‐purpose,	
  
applicaPon-­‐specific	
  soluPon	
  

21	
  

X = 

Tensors dominant part of electronic structure codes 
Matrix-multiplication might send the same block many times 

Logical data model cheaper than message logging when 
same data is sent multiple times 



Logical	
  tags	
  are	
  a	
  general-­‐purpose,	
  
applicaPon-­‐specific	
  soluPon	
  

22	
  

Local, Not Sent 

Sent 
Once 

Sent 
Once 

Sent Twice 

Ghost exchange application 
Previous iterations are kept for later analysis 

Logical data model allows 
framework to avoid keeping 
message logs unnecessarily 



Commercial	
  break	
  

23	
  

Failure Masking and Local Recovery for Stencil-based 
Applications at Extreme Scales  

Marc Gamell (Rutgers University ) 

10:35 AM  HPDC 



Simple	
  object-­‐oriented	
  transport	
  layer	
  aims	
  to	
  
expose	
  underlying	
  protocols,	
  direct	
  control	
  of	
  

messages,	
  for	
  rapid	
  prototyping	
  

24	
  

class message : public ptr { 
  typedef intrusive_ptr<message> ptr; 
}; 
 
/** “Direct” functions – physical actions */ 
void smsg_send(message::ptr, int dst, …); 
void rdma_put(message::ptr, int dst, …); 
void rdma_get(message::ptr, int dst, …); 
 
/** ``Indirect” function, runtime chooses appropriately */ 
void send(message::ptr msg, int dst); 
 
/** Non-blocking collectives */ 
allreduce(…); -> returns collective_message::ptr to poll() function 
 
/** Polling functions */ 
message::ptr blocking_poll(); 
message::ptr nonblocking_poll(); 



Log-­‐scaling	
  agreement	
  algorithm	
  

25	
  

0

1 2

3 4 5 6

0

1 2

3 4 5 6

0
1

2
3 4

5 6

class VoteFunctor { 
  operator()(void* newData); 
} 
 
class collective_message { 
  std::set<int> failedProcs; 
  … 
} 

void vote(VoteFunctor* fxn); 
 
message::ptr msg = blocking_poll(); 
If (msg->cls() == collective){ 
  handleCollective(msg); 
} 

Everyone returns with same set of failed processes 



Log-­‐scaling	
  agreement	
  algorithm	
  

26	
  

0

1 2

3 4 5 6

0

1 2

3 4 5 6

0
1

2
3 4

5 6

class VoteFunctor { 
  operator()(void* newData); 
} 
 
class collective_message { 
  std::set<int> failedProcs; 
  … 
} 

void vote(VoteFunctor* fxn); 
 
message::ptr msg = blocking_poll(); 
If (msg->cls() == collective){ 
  handleCollective(msg); 
} 

Simulated failures – RDMA get (ping) returns enum 
API for “failing” nodes 



Transport	
  layer	
  aims	
  to	
  provide	
  well-­‐defined,	
  
simple	
  semanPcs	
  for	
  reliable	
  message	
  delivery	
  

27	
  

send(M{type=payload}) 

blocking_poll() 
 ->M{type=payload} 

blocking_poll() 
 ->M{type=ack} 

Bytes = serialize(M) 
TID = newTransaction() 
outgoing[TID] = M 
M->type(payload) 

ACK TID 

Send bytes 

M = deserialize(bytes) 

M = outgoing[TID] 
M->type(ack) 



Transport	
  layer	
  aims	
  to	
  provide	
  research	
  tool	
  
for	
  fail-­‐stop	
  fault	
  tolerance	
  studies	
  

28	
  

send(A) 

send(B)->canceled 

recv(A) 

start_recovery() 

get(A) 

recv(B) 

finish_recovery() 

ack(A) 

ack(B) 

resend(A) 
recv(A) 

send(B) 

get(A) 

get(B) 

get(B) 
FAILURE 

ack(A) 

Node 0, Rank 0 Node 2, Rank 1 

Node 1, Rank 1 Node 0, Rank 0 Node 2, Rank n/a 



Transport	
  layer	
  aims	
  to	
  provide	
  research	
  tool	
  
for	
  fail-­‐stop	
  fault	
  tolerance	
  studies	
  

29	
  

send(A) 

send(B)->canceled 

recv(A) 

start_recovery() 

get(A) 

recv(B) 

finish_recovery() 

ack(A) 

ack(B) 

resend(A) 
recv(A) 

send(B) 

get(A) 

get(B) 

get(B) 
FAILURE 

ack(A) 

Node 0, Rank 0 Node 2, Rank 1 

Node 1, Rank 1 Node 0, Rank 0 Node 2, Rank n/a 

Recovert in runtime,  
not exposed at user-level 
Avoids invalidation of 
communicators? 



TNSAAFL:	
  Eager	
  protocols	
  now	
  complicated	
  

30	
  

send(A) 

send(B)->delayed 

recv(A) 

start_recovery() 

get(A) 

recv(B) 

finish_recovery() 

ack(A) 

ack(B) 

resend(A) 
recv(A) 

send(B) 

FAILURE 

ack(A) 

Node 0, Rank 0 Node 2, Rank 1 

Node 1, Rank 1 Node 0, Rank 0 Node 2, Rank n/a 

How do you know 
when eager protocol is 

valid again? 



Key-­‐value	
  store	
  overheads	
  are	
  small	
  
compared	
  to	
  network	
  overheads	
  

	
  
	
  
	
  

31	
  



System	
  noise	
  makes	
  scaling	
  studies	
  hard	
  

32	
  

Edison Cray XC30, 4 procs/node 



Ignoring	
  “outliers”,	
  mostly	
  log	
  scaling	
  

33	
  

Edison Cray XC30, 4 procs/node 



Publish/subscribe	
  is	
  extension	
  to	
  1-­‐sided	
  

	
  
	
  
	
  

34	
  

MPIX_KV_Tag tag(“mesh”, 0, 0, 0); 
MPIX_Publish(tag, buffer); 
 
MPIX_Subscribe(tag, buffer); 
 
MPIX_Delivery_fence(); 
MPIX_Delivery_fence(tag); 
 
MPIX_Wait_delivery(tag); 
 



Conclusions	
  (and	
  quesPons)	
  

§  Is	
  there	
  a	
  right/wrong	
  way	
  to	
  do	
  “transparent”	
  fail-­‐stop	
  fault-­‐
tolerance?	
  Non-­‐shrinking	
  model	
  with	
  no	
  error	
  codes	
  seems	
  so	
  
much	
  easier...	
  

§  Should	
  the	
  standard	
  be	
  no	
  standard?	
  Same	
  core	
  API/
programming	
  model	
  with	
  mulPple	
  implementaPons	
  
underneath	
  for	
  applicaPon	
  

§  General-­‐purpose,	
  applicaPon-­‐specific	
  soluPons!	
  

35	
  



Acknowledgments	
  
This work was supported by the U.S. Department of Energy (DOE) National Nuclear 
Security Administration (NNSA) Advanced Simulation and Computing program and the 
DOE Office of Advanced Scientific Computing Research. SNL is a multi-program 
laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of 
Lockheed Martin Corporation, for the DOE NNSA under contract DE-AC04-94AL85000. 



QuesPons?	
  

37	
  


