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ABSTRACT

Scientific workloads running on current extreme-scale sys-
tems routinely generate tremendous volumes of data for post-
processing. This data movement has become a serious issue
due to its energy cost and the fact that I/O bandwidths have
not kept pace with data generation rates. In situ analytics is
an increasingly popular alternative in which post-simulation
processing is embedded into an application, running as part
of the same MPI job. This can reduce data movement costs
but introduces a new potential source of interference for the
application. Using a validated simulation-based approach,
we investigate how best to mitigate the interference from
time-shared in situ tasks for a number of key extreme-scale
workloads. This paper makes a number of contributions.
First, we show that the independent scheduling of in situ an-
alytics tasks can significantly degradation application per-
formance, with slowdowns exceeding 1000%. Second, we
demonstrate that the degree of synchronization found in
many modern collective algorithms is sufficient to signifi-
cantly reduce the overheads of this interference to less than
10% in most cases. Finally, we show that many applications
already frequently invoke collective operations that use these
synchronizing MPI algorithms. Therefore, the syncroniza-
tion introduced by these MPI collective algorithms can be
leveraged to efficiently schedule analytics tasks with mini-
mal changes to existing applications. This paper provides
critical analysis and guidance for MPI users and develop-
ers on the importance of scheduling in situ analytics tasks.
It shows the degree of synchronization needed to mitigate
the performance impacts of these time-shared coupled codes
and demonstrates how that synchronization can be realized
in an extreme-scale environment using modern collective al-
gorithms.
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1. INTRODUCTION

Next-generation extreme-scale computing systems are pro-
jected to be dramatically larger than current state-of-the-
art capability-class machines. MPI-based simulation work-
loads running on these systems routinely write tremendous
amounts of simulation output data per process to a paral-
lel filesystem for later use. This has become a serious is-
sue in large bulk-synchronous parallel applications. Because
typical I/O bandwidths on modern platforms have not kept
pace with data generation rates, significant contention forces
longer waits for I/O to complete and in turn lengthens sim-
ulation run times. Additionally, tight energy budgets are
raising concerns over the energy consumed by transporting
large quantities of data over the shared interconnect. A sys-
tem’s energy budget and I/O bandwidth are typically fixed
design quantities, which means that scaling data-intensive
MPI applications requires a strategy for reducing data vol-
umes.

As data produced for certain purposes (such as check-
points) cannot be abbreviated without jeopardizing simula-
tion correctness, developers of many leadership-class appli-
cations have begun to explore what can be done with the
large amounts of output data intended for processing by
post-simulation analysis tasks. In situ analytics is an in-
creasingly popular technique in which such post-simulation
processing is embedded into an application, running as part
of the same MPI job and processing data as it is generated.
This technique can have significant benefits, including the
elimination of the movement of large raw data files both be-
tween nodes and between the application and the filesystem.

There are potential drawbacks, however. The addition of
analytics tasks, which are periodically executed by the appli-
cation, introduces a new potential source of interference be-



tween processes. This interference may combine with other
scheduling factors to significantly impede performance at
scale. Complicating this is the manner in which in situ ana-
lytics are incorporated into the application. A space-sharing
approach isolates analytics processing from application pro-
cessing by dedicating cores to it, while time-sharing causes
each core to alternate between the main computation and
analytics. Space-sharing attempts to fully isolates applica-
tion performance from analytics at the cost of increased data
movement between cores. It also can result in resource allo-
cation imbalances where either the main computation or the
analytics are over-provisioned in terms of CPU cycles. Time-
sharing attempts to reduce data movement requirements by
placing both tasks on the same CPU core, but does so at
the cost of possibly interrupting the forward progress of the
simulation. Time-sharing has the better potential for mak-
ing efficient use of available resources, and for this reason it
is the focus of this work.

Coordinating the execution of the computation and ana-
lytics is a straightforward approach to mitigating interfer-
ence by globally isolating the two tasks’ computation and
communication from each other. Coordination can come in
many forms, from synchronized hardware clocks to message-
based collective operations. Each of these synchronization
methods comes with costs and an associated synchronization
resolution. However, the necessary degree of synchroniza-
tion required from the application to keep impacts low has
not yet been studied in detail. This guidance is necessary to
calibrate developer approaches to the design of applications
using in situ analytic processes, and can also inform feature
selection for next-generation hardware.

In this paper, we show that not synchronizing analytics
at all can have, as might be expected, a significant negative
effect of performance. We also show that, perhaps counter
to intuition, tight synchronization on the order of that typi-
cally provided by hardware facilities does not provide perfor-
mance benefits commensurate with its potential cost. More
specifically, we discuss how the performance of applications
in which both simulation and in situ analytics tasks share
on-node resources is affected by the degree of synchroniza-
tion among their processes. Therefore, this paper makes the
following contributions:

e We describe a simulation-based approach to the anal-
ysis of time-shared MPI applications using in situ an-
alytics.

e We show that independent execution of analytics tasks
in such applications can result in severe performance
degradation, with slowdowns exceeding 1000% in some
cases.

e We demonstrate that specific implementations of com-
mon MPI collective operations can induce non-trivial
synchronziation between application processes.

e We demonstrate that relatively loose inter-process syn-
chronization, on the order of that may be introduced
by MPI collective algorithms for collectives that are
already being executed, can provide significant perfor-
mance benefits. In some cases reducing slowdowns to
less than 10%.

The remainder of this paper is structured as follows: Sec-
tion 2 provides general background on in situ analytics and

Section 3 describes our approach to simulating the impact
of these tasks on MPI applications. Section 4 then evaluates
the impact of analytics on MPI applications and the viabil-
ity of using the latent synchronization provided by collective
communication algorithms to mitigate this impact. Finally,
Section 5 describes related work and Section 6 concludes.

2. INSITU ANALYTICS

Output from computational simulations is used for several
purposes, including fault-tolerance, input to analysis and
steering, and to build visualizations for a more complete un-
derstanding of results. A prevalent approach to analysis is
for simulations to write their result data to networked par-
allel filesystems where they are then available for consumer
processes and analytics to read directly. This arrangement
has provided a separation of concerns between simulations
and their associated analysis tasks. Also, new analysis tasks
can be developed independently of the simulation, relying
solely upon the semantics and structure of the simulation
output data found on disk.

Parallel filesystem bandwidth, however, has not kept pace
with the rates at which extreme-scale applications can gen-
erate information. Consequently, applications must either
refrain from scaling to hardware limits, idle at large scales
while complete result data is being written (an understand-
ably unpopular choice), or find some way to write less data in
order to maintain computation rates (which disrupts “down-
stream” analytics processing). The overwhelming trend has
been for applications to preserve their scalability headroom
while keeping average CPU utilization as high as possible.
Attempts at addressing this problem have therefore empha-
sized reductions in the volume of data which must be stored.

Many analysis processes involve reductions from raw data,
either to produce summary or sampled information or to
convert into output formats more suitable for analytics run-
ning on desktop-scale systems instead of leadership-scale
supercomputers. At the same time, CPU cycles have be-
come a relatively cheap commodity on modern multi-core
processors. Conversion to in situ analytic processes exploits
both of these factors, providing reduced data output volume
(in turn reducing I/O bandwidth contention) by allocating
application-“owned” CPU cycles to analysis tasks.

Other approaches to locating data reduction or analysis
processing have also been studied. Among these are so-
called in-transit arrangements [4], where raw data is not
handled by the same cores that produce it. Instead, data is
relocated using an RDMA transfer to another node in the
system which performs the analysis task and writes data
to the filesystem. This avoids the bandwidth constraints
and contention imposed by a parallel filesystem (typically an
“analysis node” is shared as an RDMA target by a tunable
number of compute nodes) at the cost of sacrificing nodes
that would otherwise participate in the application.

2.1 Representative Workloads

A variety of analysis tasks, from different scientific dis-
ciplines and having differing computational characteristics,
have been implemented using in situ processing within large-
scale MPI-based application codes. We describe representa-
tive examples here.

Visualization and Steering.
For large-scale scientific simulations, in situ analytics codes



have been used to prepare visualizations of results [38]. With-
out an in situ component, data must be transferred either
to storage or to another machine so that it can be processed
and rendered for display. The quality of visualized infor-
mation available to scientists is then dependent on the vol-
ume of raw data that can be moved over the network. Be-
cause the volume of data that can be reasonably moved is a
fraction of the total, scientists are forced to select a subset
of timesteps or to eliminate features. Using in situ pro-
cessing addresses this issue by extracting and storing only
the visualization-relevant features for full-fidelity process-
ing later, or by producing rendered images directly without
incurring data transport costs. Steering the simulation (i.e.
selecting between available code paths) can be accomplished
by executing conditional statements based on the output of
in situ processing [38].

Cosmology Analytics.

A common task in cosmology is to manipulate particle
datasets produced by N-body simulations so that they may
be treated as a continuous field for the purposes of analyt-
ics. Due to the wide variance in particle densities in these
datasets, Voronoi tesselation [3] is used to produce unstruc-
tured meshes where mesh cell sizes correspond to particle
spacing. These meshes can then be used to estimate parti-
cle density and other quantities for the purposes of isolating
clusters and voids. Performing simulation-scale, parallel in
situ tesselation allows longitudinal observation of statistical
changes without incurring the I/O overhead of storing and
retrieving particle and tesselation data [29].

PreDatA - Preparatory Data Analytics.

PreDatA [39] is a component-based middleware that al-
lows user-defined custom processing to be inserted between
applications and storage. Examples of this processing in-
clude data sorting, filtering, and histogram generation. Sev-
eral large-scale applications have used PreDatAto implement
in situ analytics. These include the Gyrokinetic Toroidal
Code (GTC) [24], a computational-science application used
for 3D particle-in-cell simulations of plasma micro-turbulence;
and Pixie3D [6], a 3D MHD (Magneto Hydro-Dynamics)
solver.

SmartPointer.

SmartPointer [37] is a program for preparation and vi-
sualization of data generated by molecular dynamics appli-
cations. It provides a flexible framework with configurable
components. One of these components, Bonds, enhances
the LAMMPS simulation code [31] with in situ crack detec-
tion and tracking capabilities. Specifically, Bonds uses atom
bonding information from LAMMPS to conduct a compute-
intensive analysis that determines the location of adjacent
molecules in a simulated material which are no longer bonded
(i.e. a crack has formed). This information can then be an-
alyzed or visualized independently of LAMMPS.

2.2 Studying in-situ workload interference
The evaluation we describe in the remainder of this paper

uses a workload derived from the execution of Bonds within

SmartPointer. Several factors influenced this choice:

e The Bonds analysis component is freely available. Ad-
ditionally, the LAMMPS application codebase with

which Bonds works is also freely available and its be-
havior is well-understood thanks to its use in many re-
search efforts. Results using this combination should
be straightforwardly reproducible.

e The computational intensity of Bonds has been shown
to be comparable to other analytics workloads (such as
that generated in Goldrush [40] using PreDatA). We
therefore believe Bonds to be a reasonable proxy for
studying analytics workloads [27].

e Like the other representative workloads we have de-
scribed in this section, Bonds does no communication
of its own; it relies on communication performed by
LAMMPS to obtain ghost cell information from other
nodes in the simulation. A number of emerging analyt-
ics workloads do use a non-trivial amount of commu-
nication orthogonal to their respective main MPI ap-
plication computation tasks, including in many cases
MPT collectives. In this paper, we do not discuss such
communicating analysis workloads, although our re-
sults do provide general guidance on how to mitigate
their performance impacts as well and this remains a
topic of interest for future work.

3. EXPERIMENTAL APPROACH

In this section we outline the experimental approach used
to investigate the influence of synchronization in time-shared
analytics tasks. First, we describe our validated simulation
framework for examining analytics impact. This simulation
framework allows a level of detail and functionality not pos-
sible with actual implementations on most current systems.
For example, the simulator provides us with a global clock
that can be used to enforce precise synchronization limits.
In addition, we can determine precisely where slowdowns
are accumulating, at per-message and per-collective levels.
Second, we provide important guidance on interpreting our
results in the context of MPI collective operation semantics.
Finally, we conclude the section by detailing the important
scientific workloads and production analytics tasks used in
this evaluation.

3.1 Simulating the Performance Impact of
In Situ Analytics

Our simulation-based approach models the impact of an-
alytics on application performance by modeling the effect
of the CPU cycles that are taken from the application to
run the analytics code. This approach allows a level of fi-
delity and control not always possible in implementation-
based approaches. It also allows us to examine application
performance on systems that are much larger than those
that are generally available for systems research.

Our simulation framework is based on LogGOPSim [20].
LogGOPSim uses the LogGOPS model, an extension of the
well-known LogP model [7], to model the temporal cost
of communication events. An application’s communication
events are generated from traces of application execution.
These traces contain the sequence of MPI operations invoked
by each application process. LogGOPSim uses these traces to
reproduce all communication dependencies, including indi-
rect dependencies between processes which do not commu-
nicate directly. For collective operations, the communica-
tion dependencies depend on the collective algorithm that is



used. The collective algorithm that LogGOPSim uses is config-
urable. For example, the supported collective algorithms for
simulating MPI_Allreduce() include: binomial tree, dissemi-
nation, linear, and MPI_Reduce_scatter () /MPI_Allgather().

LogGOPSim can also extrapolate traces from small applica-
tion runs; a trace collected by running the application with
p processes can be extrapolated to simulate performance of
the application running with k - p processes. The extrapo-
lation produces exact communication patterns for MPI col-
lective operations and approximates point-to-point commu-
nications [20]. The validation of LogGOPSim and its trace
extrapolation features have been documented elsewhere [19,
20]. To simulate the impact of depriving the application of
CPU cycles in order to run in situ analytics codes, Log-
GOPSim accepts an execution trace: an ordered list of an
analytics code’s execution, expressed as the start time and
duration of each of its computation periods.

We use the Linux ftrace utility [33] to collect an execu-
tion trace of the Bonds function of SmartPointer analysis.
ftrace allows us to measure the computational requirements
of analytics running in-line with the application. Specifi-
cally, the sched_switch events provide a trace of CPU time
slices used by the analytics code. A portion of Bonds’ execu-
tion pattern is shown in Figure 1. These data show periodic-
ity in the execution of Bonds; every few seconds it executes
for tens of milliseconds, but is otherwise largely idle.
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Figure 1: Execution pattern of the Bonds function of Smart-
Pointer analysis. Each impulse represents the duration of a
single execution interval.

LogGOPSim can simulate the degree of synchronization be-
tween analytics codes running in different application pro-
cesses by adding an initial offset to the replay of the exe-
cution trace. Using an initial offset of zero for application
processes will simulate analytics execution that is tightly
synchronized across application processes. At the other ex-
treme, choosing the initial offset for each simulated process
uniformly at random will simulate uncoordinated execution
of analytics. Choosing the starting point from a normal dis-
tribution will simulate different degrees of synchronization
of analytics execution. The standard deviation of the distri-
bution controls the degree of synchronization.

3.2 Collective Synchronization in MPI

In this paper, we consider how collective algorithms may
impact the degree to which application processes will syn-
chronize. However, we observe that these results need to be
carefully interpreted. Guidance provided in the MPI Stan-
dard, version 3.0, cautions against the perils of relying on

the synchronizing effect of collective operations [16, §5.1].
In accordance with the MPI standard, we do not rely on
synchronization for correctness. Rather, we examine how
particular implementations of common MPI collective oper-
ations may influence the synchronization of application pro-
cesses. Therefore, while we refer in the text to the degree of
synchronization of MPI collective operations, we are actu-
ally referring to the degree of synchronization of the modern
point-to-point collective algorithms [17,32,35] used by cur-
rent MPI libraries to perform these operations. The MPI
specification itself makes no such synchronization guaran-
tees.

3.3 Application Workload Details

In the remainder of the paper, we present results from
simulation experiments based on the behavior of a set of
five workloads. These workloads were chosen to be repre-
sentative of scientific applications that are currently in use
and computational kernels thought to be important for fu-
ture extreme-scale computational science. They include:

e LAMMPS: A scientific application developed in Sandia
National Laboratories to perform molecular dynamics
simulations. We used the LAMMPS 2D crack and
Lennard-Jones potentials [31].

e CTH: A code developed at Sandia National Laborato-
ries for modeling complex problems that are charac-
terized by large deformations or strong shocks [9].

e HPCCG: A simple conjugate gradient solver from the
Mantevo suite of mini-applications [18,34].

e LULESH: An application that represents the behavior
of a typical hydrocode [23].

CTH and LAMMPS are important U.S. DOE applications
which run for long periods of time on production machines
and exhibit a range of different communication structures.
HPCCG represents an important computational pattern in
key HPC applications. LULESH is an exascale application
proxy from the DOE ExMatEx co-design center [11].

4. EXPERIMENTAL RESULTS

In this section, we discuss our experimental evaluation of
the extent to which latent synchronization introduced by
MPI communication algorithms can be used to ameliorate
interference from computational in situ analytics tasks. To
measure inter-process synchronization, we record the global
simulated time when the first and last processes enter and
exit the collective operation.’ From these data, we deter-
mine how synchronized the application processes by com-
puting the temporal distance between the fastest and slowest
processes.

Subsection 4.1 quantifies the potential impact of in situ an-
alytics tasks when they are scheduled at the two extremes of
synchronization: totally unsynchronized and perfectly syn-
chronized. These results show that uncoordinated execu-
tion has potentially catastrophic performance results, while
globally synchronized scheduling of analytics, which is ex-
pensive to implement in practice, can eliminate virtually

!The exit order may differ from the entry order. For exam-
ple, the first process to enter the collective may not be the
first process to exit the collective.



Collective operation microbenchmark

interval_duration € {50ms, 500ms, 5s,50s}

collective_operation € {27pt stencil, MPI_Allreduce(), MPI_Bcast(), MPI_Reduce() }

procedure COLLECTIVE_MICRO (interval_duration, collective_operation)

for all intervals do
ezecute collective_operation
sleep interval_duration
end for
end procedure

Algorithm 1: Pseudocode of collective operation microbenchmark.

all analytics-based interference. The subsections that follow
describe our use of microbenchmarks and full-fledged MPI
applications to quantify the degree to which different MPI
collective algorithms induce inter-process synchronization.
Finally, Subsection 4.5 evaluates the degree to which this
latent synchronization may ameliorate the impact of ana-
lytics interference on MPI applications. These results show
that leveraging even approximate synchronization can sig-
nificantly reduce the performance interference of in situ an-
alytics.

4.1 Examining the extremes in
analytics scheduling

We begin by considering the performance impact of the
two extremes of analytics scheduling: allowing analytics tasks
to be independently scheduled within each application pro-
cess vs. perfectly synchronizing the execution of analytics
tasks across processes. The former is both simple to imple-
ment and minimizes added communication, while the lat-
ter relies on expensive hardware capabilities, for example, a
global hardware clock. Each simulated process begins at an
offset from the beginning of the Bonds execution trace (see
Figure 1). To simulate independently-scheduled analytics
tasks, the offset for each process is randomly generated; for
perfectly-synchronized execution, the offsets of all processes
are identical.

The results of these experiments are shown in Figure 2.
For some applications (e.g., CTH-st, HPCCG, and LAMMPS-
crack) totally unsynchronized scheduling of Bonds can have
a disastrous effect on application performance. Perfectly
synchronizing Bonds execution does eliminate this perfor-
mance overhead, but in practice, achieving sufficiently tight
synchronization on large-scale distributed systems is pro-
hibitively expensive.

4.2 Communication Algorithm-induced
Synchronization

We next evaluate the degree to which MPI collective com-
munication algorithms effectively synchronize process exe-
cution. Our hypothesis is that this latent synchronization
is sufficient to provide most of the benefits of perfectly-
synchronized scheduling of analytics. To do so, we developed
a set of microbenchmarks to determine how much inter-
process synchronization might be introduced by the com-
munication dependencies generated by MPI collective algo-
rithms. The MPI standard describes the high-level seman-
tics of each supported collective operation; it does not spec-

ify inter-process communication dependencies. As a result,
MPI collective operations are not guaranteed to synchro-
nize application execution (see Section 3.2). However, the
structure of the communication pattern created by a par-
ticular implementation may influence inter-process synchro-
nization. Our microbenchmarks allow us to examine the
degree to which specific implementations of MPI collective
operations cause application processes to synchronize.

We use these microbenchmarks to study the synchroniza-
tion impact of four common collective communication motifs
in MPI applications: (i) dissemination (e.g., a common mo-
tif for MPI_Allreduce()); (ii) binomial tree dispersal (e.g., a
common motif for MPI_Bcast()); (iii) binomial tree aggre-
gation (e.g., a common motif for MPI_Reduce()); and (iv)
stencil communication. For the stencil communication ex-
periments, the microbenchmarks use a three-dimensional 27-
point stencil. In MPI, stencil communication can be imple-
mented using a communicator with topology information
attached, like MPI_Cart_create(), and a neighborhood col-
lective like MPI_Neighbor_alltoall(). For the binomial tree
experiments the microbenchmark uses the process with rank
0 as the root of the collective operation. To evaluate the
impact of collective frequency, we conducted a set of ex-
periments in which we considered the impact of four inter-
collective periods: every 50 milliseconds, 500 milliseconds,
5 seconds and 50 seconds. Pseudocode for our microbench-
mark is shown in Algorithm 1.

We collected a trace of the execution of each benchmark.
We then ran each trace in LogGOPSim in conjunction with the
execution trace collected from SmartPointer analysis run-
ning the Bonds function. We then measured the tempo-
ral distance between each simulated process, leveraging the
global clock provided by the simulator.

The results of these experiments are shown in Figure 3.
Although each microbenchmark runs for more than six min-
utes, we show only the first two minutes of execution here
to highlight the fine-grained behavior of each. This figure
shows that each of these communication motifs results in
significantly different amounts of inter-process synchroniza-
tion. MPI_Bcast () is only able to synchronize the processes to
within a few seconds. The stencil communication introduces
more inter-process dependencies and is able to keep the pro-
cesses within a few hundred milliseconds of each other. MPI_-
Allreduce() creates more rigid dependencies and is able to
tightly synchronize the processes. At the completion of an
MPI_Allreduce(), the processes are synchronized to within a
few tens of milliseconds, depending on the interval between
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Figure 2: Impact of the extremes (totally unsynchronized and perfectly synchronized) of the synchronization of analytics

execution on application performance.

collectives. At the initiation of the next MPI_Allreduce(),
the processes are not as tightly synchronized but are still
within a few hundred milliseconds of each other.

4.3 Application-level Synchronization

We next quantify the degree to which MPI collective algo-
rithms synchronize the execution of real applications. The
results of these experiments are shown in Figures 4 and
5. Figure 4 shows the synchronization effect of the dis-
semination algorithm. As a whole, this figure confirms the
data in Section 4.2. Specifically, it shows that MPI col-
lectives that use the dissemination algorithm (e.g., MPI_-
Allreduce()) have a tendency to tightly synchronize appli-
cation processes. Although there are outliers, the applica-
tion’s processes are within a few tens of milliseconds of each
other following most calls to MPI_Allreduce(). This is true
even when the application’s processes are not well synchro-
nized before the collective (see e.g., Figure 4b (HPCCG) and
Figure 4e (LULESH)). Figure 5 shows the same data for
the binomial dispersal algorithm (e.g., an implementation
of MPI_Bcast()). In contrast to the dissemination algorithm,
the binomial dispersal algorithm has very little impact on
process synchronization. The distributions of the temporal
distances between the fastest and slowest process in all five
applications are essentially the same before and after the
execution of collectives that use this algorithm.

4.4 Application Inter-collective Times

We have shown that modern collective communication al-
gorithms have the side effect of introducing a non-trivial
amount of synchronization into the application’s execution.
To better understand the viability of using this synchroniza-
tion to coordinate the execution of analytics tasks, we next
investigate how frequently MPI applications invoke collec-
tive operations that use these algorithms.

Figure 6 shows the discrete cumulative distribution func-
tions (CDF') of the inter-collective times of MPI collective
operations for each of our workloads. This CDF shows
the distribution of the inter-collective times for each of five
workloads. In this figure, a point at (z,y) indicates that,
for a given application, at least (x * 100)% of the inter-

collective times are smaller than y seconds. For example,
Figure 6e demonstrates that 100% of the inter-collective
times for MPI_Allreduce() in LULESH are less than 150 mil-
liseconds.

The first thing we observe in these data is that MPI_-
Allreduce() is the most common collective operation for all
five workloads. In fact, for LULESH and HPCCG, MPI_-
Allreduce() is the only collective operation used.? The next
observation is that the rate of MPI_Allreduce() varies signif-
icantly between applications:

e in CTH-st, the inter-collective time for 80% of MPI_-
Allreduce() operations is less than 125 milliseconds;

e in HPCCG, the inter-collective times for MPI_Allreduce ()
are bimodal: approximately half are between 40 and
50 milliseconds, and approximately half are between
300 and 500 milliseconds;

e in LAMMPS-crack, 80% of the MPI_Allreduce() inter-
collective times are between 9 and 10 milliseconds, but
there is also a small number that are in excess of 150
milliseconds; and

e in LAMMPS-1j, half of the MPI_Allreduce () inter-collec-
tive times are between 10 and 100 microseconds, but
more than 10% are in excess of 5 seconds.

Of the remaining collective operations, only MPI_Bcast ()
is called more than a handful of times during the execu-
tion of these five applications. CTH-st, LAMMPS-crack,
and LAMMPS-]j call MPI_Bcast () frequently (i.e., the inter-
collective times tend to be small). Collectively, these data
demonstrate that collective operations that use the dissem-
ination (e.g., MPI_Allreduce()) and binomial tree dispersal
(e.g., MPI_Bcast()) are common in important MPI workloads
and are done frequently enough in many applications to be
utilized to schedule analytics tasks.

2While MPI_Allreduce() is the only collective operation that
we observed for these applications in our experiments, the
occurrence of MPI collective operations may depend on the
inputs provided to the application.
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Figure 3: Microbenchmark results with Bonds interference. Maximum inter-process synchronization during the execution of

three simple microbenchmarks.

4.5 Performance Impact of Synchronizing
Analytics Execution

Based on the preceding experiments that characterize the
extent to which MPI collective algorithms may synchronize
application execution, we turn to the potential performance
impact of leveraging existing synchronization to schedule an-
alytics. We use our simulation framework to examine the
impact of synchronizing the execution of the analytics code
across application processes. For each of our five workloads,
we simulate the degree of analytics execution synchroniza-
tion by staggering the starting point of each simulated pro-
cess in the analytics execution trace. We randomly select
each offset from a normal distribution with mean 0. The
standard deviation of the distribution corresponds to how
tightly synchronized the set of processes in each trial are;
based on the results presented above we use the values 0
seconds (perfectly synchronized), 10 milliseconds, 100 mil-
liseconds, 1 second, and oo (totally unsynchronized).

The results of these experiments are shown in Figure 7.
These data show that perfect synchronization of analytics
execution is not necessary. Approximate synchronization is

sufficient to dramatically reduce the performance impact of
analytics execution. Specifically, if the scheduling of each
execution period of the analytics execution is normally dis-
tributed with a standard deviation of 100 milliseconds (i.e.
on average, 95% of the processes will be within 200 mil-
liseconds of ideal), then the performance impact will be less
than 20% for all but LAMMPS-crack, even for 64Ki pro-
cesses. The data in Figure 3 suggest that this degree of
synchronization can be obtained by leveraging latent syn-
chronization in applications that regularly invoke the MPI
collectives that use the dissemination algorithm (e.g. MPI_-
Allreduce()). Moreover, these data show that if the ana-
lytics can be scheduled within 20 milliseconds of ideal (i.e.,
if the standard deviation of the distribution is less than 10
milliseconds), which might be possible by leveraging the ex-
isting frequent calls to MPI_Allreduce() many applications
already do (see Figure 3a), then the application slowdown
drops below 10%.

Finally, we compare the performance of existing synchro-
nization methods with the approximate synchronization that
is induced by MPI collectives that are implemented with the
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dissemination algorithm. We examine two common hardware-
based synchronization mechanisms. First, systems like the
IBM BlueGene series have a separate global interconnect for
high performance time synchronization [1]. For these sys-
tems, the variance in global time has been shown to be less
than 10 microseconds. For some machine configurations it
may be possible to synchronize within 1 microsecond by us-
ing the global interrupt network [2,21]. Another hardware-
based approach is to use highly accurate and self-adjusting
clocks on each node, for example the clock provided by a
Global Positioning System (GPS) card [26]. This approach
has been shown to be able to synchronize per-node clocks to
within 1 microsecond. Software-based techniques are also
common. For example, running the network time proto-
col (NTP) on a leadership-class system has been shown to
be able synchronize per-node clocks to within 100 microsec-
onds [21]. In this paper, we have shown that leveraging the
synchronization induced by the dissemenation algorithm in
applications that rely on frequent calls to MPI_Allreduce()
may be able to synchronize application processes to within
10 milliseconds (see Figure 3a).

Figure 7b is a magnified view of the results in Figure 7a
for tight synchronization. This figure is annotated to show
the approximate degree of synchronization that is achiev-
able using: hardware mechanisms (e.g., the BlueGene global
interrupt network), software mechanisms (e.g., NTP), and
the dissemination algorithm that is commonly used to im-
plement collectives such as MPI_Allreduce(). Although the
synchronization induced by the dissemination algorithm is
much looser than the other mechanisms, this figure shows
that the impact of each of these techniques on application
performance is comparable. For all three types of synchro-
nization, the application slowdown is less than 10%. The
advantage of leveraging the dissemination algorithm is that
it allows the scheduling of analytics to be integrated into the
natural execution of the application (e.g., at the completion
of a MPI_Allreduce() operation) rather than by the arbitrary

expiration of a timer. Moreover, leveraging collective oper-
ations does not require the addition of expensive hardware
features.

S. RELATED WORK

Characterizing time-sharing impacts.

The effects of time-sharing CPU cores between applica-
tions and background system activities have been exten-
sively studied [13,14,28,30]. Additionally, the time-sharing
of resources between application and potentially more harm-
ful workloads have been studied, including asynchronous
checkpointing [15,25], and n situ analytics systems [40].
In contrast, our work focuses on understanding the effects
of time-shared in-situ analytics applications and the require-
ments of mitigation techniques based on global synchroniza-
tion, and without the assumption that significant serial por-
tions exist that can be exploited as in [40]. Most closely re-
lated, Mondragon et al. [27] outline the challenges involved
in scheduling independent in situ analytic tasks in emergent
HPC applications. Using an optimistic analytic model, this
work compares the overheads in time- verses space-shared
analytics tasks. Overall, this brief work shows that the per-
formance impact of space-shared tasks is greatly reduced
in comparison to that of time-shared ones, at the cost of
dedicating additional hardware to analytics. In comparison,
our work demonstrates how the synchronization inherent in
many modern collective algorithms, applications, and hard-
ware can be exploited to reduce the performance impact of
time-shared analytics to a level comparable to that of space-
shared without requiring dedicated hardware.

Simulating time-sharing impacts.

LogGOPSim [20] has been used previously to study the im-
pact of time-sharing on application performance. Hoefler et
al. [19] used this simulator to evaluate the impact of back-



ground system activities on application performance. Levy
et al. [25] extended LogGOPSim and demonstrated that this
extension could be used to accurately predict the impact of
resilience mechanisms on applications performance. Ferreira
et al. [15] subsequently used LogGOPSim to demonstrate the
impact of asynchronous checkpoint/restart on application
performance at scale. Similarly, Widener et al. [36] used
LogGOPSim to study how non-blocking collectives might be
used to reduce the performance penalties associated with
asynchronous checkpoint/restart. In this work, we leverage
LogGOPSim to study the impacts of time-sharing analytics
codes and the ability of the global synchronization latent
in many current MPI collective operations to mitigate over-
heads.

Other works have used simulation- and emulation-based
approaches to study time-sharing. Engelmann et. al. [10]
use an over-subscription method in their extreme scale sim-
ulator xSim [5] to investigate the effects of time-sharing CPU
cores among short-lived system tasks on HPC systems with
up to 2M nodes and 1 billion cores. They study the effects of
interference amplification and absorption on MPI collectives
and propose this framework as a tool to be used in hard-
ware/software co-design of future HPC systems. Pradipta
De et. al. [8] propose an emulation-based approach to study
similar performance impacts. These over-subscription and
emulation approaches, however, have significant limitations
which do not apply to our work. First, while these ap-
proaches can potentially provide a tremendous amount of de-
tail about the performance of applications, significant costs
exist. Due to limits on the degree of over-subscription and
detail in emulation, the physical system size required for
their execution increases proportionally to the size of the
studied application. Moreover, as the size of the simulated
system grows and the degree of over-subscription therefore
increases, the required simulation time increases dramati-
cally. Lastly, over-subscription and system emulation can
place significant limits on the size of the problem that can
be studied as the memory for each simulated node must ex-
ist in the memory of one physical node. In contrast, our ap-
proach allows us to simulate interference overheads for sys-
tems comprised of tens or hundreds of thousands of nodes on
very modest hardware (e.g., a single node). In many cases,
this simulation completes in less time than it would take
to run the application itself, but at the cost of producing
possibly less detail about the computation [25].

Synchronization Mechanisms.

Feitelson et. al. [12], in one of the first works that stud-
ied gang-scheduling, compared two synchronization tech-
niques: a busy-waiting-based gang-scheduling technique im-
plemented by the runtime, which allowed applications pro-
cesses to be scheduled at the same time; and a blocking,
with uncoordinated scheduling, synchronization mechanism.
They show that fine-grained parallel applications benefit
from using the gang-scheduling policy and otherwise incur
context switching overheads while blocking (i.e., the proces-
sor switches to another thread during each block) to perform
synchronization.

More recently, Jones et al. [22] proposed a mitigation ap-
proach based on co-scheduling system background tasks.
They show the performance benefits of this approach on
BSP applications. By decreasing interference, this approach
facilitates the communication between application processes

and reduces the amount of time that the fastest processes
spend waiting for group operations (e.g. MPI collectives).
In this work, we focus on the performance impact of cou-
pled application and analytics workloads and leveraging the
side-effect global coordination existing in current production
workloads to mitigate impacts.

6. CONCLUSION AND FUTURE WORK

As data-intensive MPI applications become more preva-
lent, understanding the performance implications of tech-
niques such as in situ analytics will also become critical
for accurate performance prediction on next-generation sys-
tems. Using a simulation-based approach, we have in this
paper examined how the synchronization of time-shared in
situ analysis tasks can affect overall application performance.
We have demonstrated that some degree of synchronization
is desirable in order to prevent severe slowdowns. We have
shown that, perhaps counter to intuition, that strong per-
formance benefits are possible without necessarily resorting
to expensive tight synchronization solutions. In particular,
our results show that even relatively loose synchronization
(e.g. within a few hundred milliseconds of ideal) of the ex-
ecution of in situ analysis tasks is sufficient to significantly
reduce slowdowns due to interference. For many important
MPI applications, these benefits may be realizable simply
by relying on the latent synchronization induced by existing
invocations of MPI collectives implemented with the dissem-
ination algorithm, like MPI_Allreduce().

More work is needed along several axes for a complete
understanding of the types of performance interference we
have studied here. While introducing fast “nearby” storage
such as NVRAM into supercomputer designs may reduce
contention for I/O bandwidth, issues surrounding data vol-
ume and how to most efficiently reduce it are unlikely to
disappear completely for large-scale MPI applications and
their associated analytic codes. In situ analysis is part of
a spectrum of techniques being researched to address these
issues, and the performance impact of interference between,
for instance, processes involved in an “in-transit” arrange-
ment have not been explored in any detail. Also, increas-
ing core counts mean that some applications may choose to
use a space-sharing approach for their in situ data analysis,
with effects that remain to be explored. Finally, analysis
codes that perform non-trivial communication of their own
(independent of the main simulation) may in turn become
more commonplace; characterizing the degree to which such
communication may provide even tighter inter-process syn-
chronization is part of our ongoing and future work.

7. REFERENCES

[1] N. R. Adiga, G. Almési, Y. Aridor, R. Barik, D. K.
Beece, R. Bellofatto, G. Bhanot, R. Bickford, M. A.
Blumrich, A. A. Bright, J. R. Brunheroto,

C. Cascaval, J. G. Castanos, W. Chan, L. Ceze,

P. Coteus, S. Chatterjee, D. Chen, G. L. Chiu, T. M.
Cipolla, P. Crumley, K. M. Desai, A. Deutsch,

T. Domany, M. B. Dombrowa, W. E. Donath,

M. Eleftheriou, C. C. Erway, J. Esch, B. G. Fitch,

J. Gagliano, A. Gara, R. Garg, R. S. Germain,

M. Giampapa, B. Gopalsamy, J. A. Gunnels,

M. Gupta, F. G. Gustavson, S. Hall, R. A. Haring,
D. F. Heidel, P. Heidelberger, L. Herger, D. Hoenicke,



R. D. Jackson, T. Jamal-Eddine, G. V. Kopcsay,

E. Krevat, M. P. Kurhekar, A. P. Lanzetta, D. Lieber,
L. K. Liu, M. Lu, M. P. Mendell, A. Misra, Y. Moatti,
L. S. Mok, J. E. Moreira, B. J. Nathanson,

M. Newton, M. Ohmacht, A. J. Oliner, V. Pandit,

R. B. Pudota, R. A. Rand, R. D. Regan, B. Rubin,
A. E. Ruehli, S. Rus, R. K. Sahoo, A. Sanomiya,

E. Schenfeld, M. Sharma, E. Shmueli, S. Singh,

P. Song, V. Srinivasan, B. D. Steinmacher-Burow,

K. Strauss, C. W. Surovic, R. A. Swetz, T. Takken,
R. B. Tremaine, M. Tsao, A. R. Umamaheshwaran,
P. Verma, P. Vranas, T. J. C. Ward, M. E. Wazlowski,
W. Barrett, C. Engel, B. Drehmel, B. Hilgart, D. Hill,
F. Kasemkhani, D. J. Krolak, C. Li, T. A. Liebsch,

J. A. Marcella, A. Muff, A. Okomo, M. Rouse,

A. Schram, M. Tubbs, G. Ulsh, C. D. Wait,

J. Wittrup, M. Bae, K. A. Dockser, L. Kissel, M. K.
Seager, J. S. Vetter, and K. Yates. An overview of the
BlueGene/L supercomputer. In Proceedings of the
2002 ACM/IEEE conference on Supercomputing,
Baltimore, Maryland, USA, November 16-22, 2002,
CD-ROM, pages 7:1-7:22, 2002.

G. Almasi, P. Heidelberger, C. J. Archer,

X. Martorell, C. C. Erway, J. E. Moreira,

B. Steinmacher-Burow, and Y. Zheng. Optimization of
MPI collective communication on BlueGene/L
systems. In Proceedings of the 19th Annual
International Conference on Supercomputing, ICS *05,
pages 253-262, New York, NY, USA, 2005. ACM.

F. Aurenhammer. Voronoi diagrams — a survey of a
fundamental geometric data structure. ACM
Computing Surveys, 23(3):345-405, 1992.

J. C. Bennett, H. Abbasi, P. T. Bremer, R. Grout,

A. Gyulassy, T. Jin, S. Klasky, H. Kolla, M. Parashar,
V. Pascucci, P. Pebay, D. Thompson, H. Yu,

F. Zhang, and J. Chen. Combining in-situ and
in-transit processing to enable extreme-scale scientific
analysis. In High Performance Computing,
Networking, Storage and Analysis (SC), 2012
International Conference for, pages 1-9, Nov 2012.

S. Bohm and C. Engelmann. xSim: The extreme-scale
simulator. In High Performance Computing and
Simulation (HPCS), 2011 International Conference
on, pages 280-286. IEEE, 2011.

L. Chacén. A non-staggered, conservative,
finite-volume scheme for 3D implicit extended
magnetohydrodynamics in curvilinear geometries.
Computer Physics Communications, 163(3):143-171,
2004.

D. Culler, R. Karp, D. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von
Eicken. LogP: towards a realistic model of parallel
computation. SIGPLAN Not., 28(7):1-12, July 1993.
P. De, R. Kothari, and V. Mann. A trace-driven
emulation framework to predict scalability of large
clusters in presence of OS jitter. In Cluster
Computing, 2008 IEEE International Conference on,
pages 232-241. IEEE, 2008.

J. E. S. Hertel, R. L. Bell, M. G. Elrick, A. V.
Farnsworth, G. I. Kerley, J. M. McGlaun, S. V.
PetneY, S. A. Silling, P. A. Taylor, and L. Yarrington.
CTH: A software family for multi-dimensional shock

(10]

(11]

(12]

(13]

(14]

(15]

(16]
(17]

(18]

(19]

(20]

(21]
(22]

23]

physics analysis. In Proceedings of the 19th Intl. Symp.
on Shock Waves, pages 377-382, July 1993.

C. Engelmann. Investigating operating system noise in
extreme-scale high-performance computing systems
using simulation. In Proceedings of the 11th IASTED
International Conference on Parallel and Distributed
Computing and Networks (PDCN) 2013, pages 11-13,
2013.

Exascale Co-Design Center for Materials in Extreme
Environments (ExMatEx). http://exmatex.lanl.gov/.
Retrieved 16 Jan 2014.

D. G. Feitelson and L. Rudolph. Gang scheduling
performance benefits for fine-grain synchronization.
Journal of Parallel and Distributed Computing,
16(4):306-318, 1992.

K. B. Ferreira, P. G. Bridges, R. Brightwell, and

K. Pedretti. Impact of system design parameters on
application noise sensitivity. In Proceedings of the
2010 IEEE International Conference on Cluster
Computing (Cluster 2010), September 2010.

K. B. Ferreira, R. Brightwell, and P. G. Bridges.
Characterizing application sensitivity to OS
interference using kernel-level noise injection. In
Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing (SC’08), November 2008.

K. B. Ferreira, P. Widener, S. Levy, D. Arnold, and
T. Hoefler. Understanding the effects of
communication and coordination on checkpointing at
scale. In Proceedings of the 2014 International
Conference for High Performance Computing,
Networking, Storage and Analysis (Supercomputing),
2014.

M. P. I. Forum. MPI: A Message-Passing Interface
Standard Version 3.0, 09 2012.

D. Hensgen, R. Finkel, and U. Manber. Two
algorithms for barrier synchronization. Int. J. Parallel
Program., 17(1):1-17, Feb. 1988.

M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M.
Willenbring, H. C. Edwards, A. Williams, M. Rajan,
E. R. Keiter, H. K. Thornquist, and R. W. Numrich.
Improving performance via mini-applications. Sandia
National Laboratories, Tech. Rep, 2009.

T. Hoefler, T. Schneider, and A. Lumsdaine.
Characterizing the influence of system noise on
large-scale applications by simulation. In Proceedings
of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage
and Analysis, pages 1-11. IEEE Computer Society,
2010.

T. Hoefler, T. Schneider, and A. Lumsdaine.
LogGOPSim: simulating large-scale applications in
the LogGOPS model. In Proceedings of the 19th ACM
International Symposium on High Performance
Distributed Computing, pages 597-604. ACM, 2010.
T. Jones. Personal communication, May 2016.

T. Jones, S. Dawson, R. Neely, W. Tuel, L. Brenner,
J. Fier, R. Blackmore, P. Caffrey, B. Maskell,

P. Tomlinson, et al. Improving the scalability of
parallel jobs by adding parallel awareness to the
operating system. In Supercomputing, 2003
ACM/IEEE Conference, pages 10-10. IEEE, 2003.

I. Karlin, A. Bhatele, B. L. Chamberlain, J. Cohen,



[24]

[25]

[26]

[27]

28]

[29]

Z. Devito, M. Gokhale, R. Haque, R. Hornung,

J. Keasler, D. Laney, E. Luke, S. Lloyd, J. McGraw,
R. Neely, D. Richards, M. Schulz, C. H. Still,

F. Wang, and D. Wong. LULESH programming model
and performance ports overview. Technical Report
LLNL-TR-608824, Lawrence Livermore National
Laboratory, December 2012.

S. Klasky, S. Ethier, Z. Lin, K. Martins, D. McCune,
and R. Samtaney. Grid-based parallel data streaming
implemented for the gyrokinetic toroidal code. In
Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, page 24. ACM, 2003.

S. Levy, B. Topp, K. B. Ferreira, D. Arnold,

T. Hoefler, and P. Widener. Using simulation to
evaluate the performance of resilience strategies at
scale. In High Performance Computing Systems.
Performance Modeling, Benchmarking and Simulation,
pages 91-114. Springer, 2014.

A. Mink, R. J. Carpenter, and M. Courson. Time
synchronized measurements in cluster computing
systems. In Proceedings of the 13th International
Conference on Parallel and Distributed Computing,
PDSC2000, pages 1-7, New York, NY, USA, 2000.
IEEE.

O. H. Mondragon, P. G. Bridges, S. Levy, K. B.
Ferreira, and P. Widener. Scheduling in-situ anaytics
in next-generation applications. In 16th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing, page 4. ACM, 2016.

A. Nataraj, A. Morris, A. D. Malony, M. Sottile, and
P. Beckman. The ghost in the machine: Observing the
effects of kernel operation on parallel application
performance. In Proceedings of SC’07, 2007.

T. Peterka, J. Kwan, A. Pope, H. Finkel,

K. Heitmann, S. Habib, J. Wang, and G. Zagaris.
Meshing the universe: integrating analysis in
cosmological simulations. In Proc. SC12 Ultrascale
Visualization Workshop, Salt Lake City, UT,
November 2012.

F. Petrini, D. Kerbyson, and S. Pakin. The case of the
missing supercomputer performance: Achieving
optimal performance on the 8,192 processors of ASCI
Q. In Proceedings of SC’03, Phoenix, AZ, 2003.

(31]

32]

33]
(34]

(35]

(36]

37]

(38]

39]

(40]

S. Plimpton. Fast parallel algorithms for short-range
molecular dynamics. Journal of computational physics,
117(1):1-19, 1995.

B. Prisacari, G. Rodriguez, C. Minkenberg, and

T. Hoefler. Bandwidth-optimal all-to-all exchanges in
fat tree networks. In Proceedings of the 27th
International ACM International Conference on
Supercomputing, ICS ’13, pages 139-148, New York,
NY, USA, 2013. ACM.

S. Rostedt. Debugging the kernel using ftrace.
http://lwn.net/Articles/365835/, 2009.

Sandia National Laboratory. Mantevo project home
page. http://mantevo.org, Jan. 2014.

R. Thakur, R. Rabenseifner, and W. Gropp.
Optimization of collective communication operations
in MPICH. International Journal of High Performance
Computing Applications, 19(1):49-66, 2005.

P. Widener, K. B. Ferreira, S. Levy, and T. Hoefler.

Exploring the effect of noise on the performance
benefit of nonblocking allreduce. In Proceedings of the

21st European MPI Users’ Group Meeting, page 77.
ACM, 2014.

M. Wolf, Z. Cai, W. Huang, and K. Schwan.
SmartPointers: personalized scientific data portals in
your hand. In Supercomputing, ACM/IEEE 2002
Conference, pages 20-20. IEEE, 2002.

H. Yu, C. Wang, R. W. Grout, J. H. Chen, and K.-L.
Ma. In situ visualization for large-scale combustion
simulations. IEEE Computer Graphics and
Applications, May/June 2010.

F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu,
S. Klasky, M. Parashar, N. Podhorszki, K. Schwan,
and M. Wolf. PreDatA—preparatory data analytics on
peta-scale machines. In Parallel & Distributed
Processing (IPDPS), 2010 IEEE International
Symposium on, pages 1-12. IEEE, 2010.

F. Zheng, H. Yu, C. Hantas, M. Wolf, G. Eisenhauer,
K. Schwan, H. Abbasi, and S. Klasky. GoldRush:
resource efficient in situ scientific data analytics using
fine-grained interference aware execution. In
Proceedings of SC13: International Conference for
High Performance Computing, Networking, Storage
and Analysis, page 78. ACM, 2013.



