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Bayesian Calibration

= Generate posterior distributions on model parameters, given

= Experimental data
= A prior distribution on model parameters

= A presumed probabilistic relationship between experimental data and
model output that can be defined by a likelihood function

7(0]d) o« 2(6)L(d | 0)
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Model parameters Observed
Data

Likelihood function which
incorporates the model
discrepancy: we assume

Prior parameter Gaussian

distribution
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Markov Chain Monte Carlo =

= How do we obtain the posterior?
= |t is usually too difficult to calculate analytically
= We use a technique called Markov Chain Monte Carlo (MCMC)

= In MCMC, the idea is to generate a sampling density that is approximately
equal to the posterior distribution.

= Metropolis-Hastings is a commonly used algorithm

= MCMC depends on asymptotic behavior of the chain. Ideally, you want to
run for 100,000+ samples.
COMPUTATIONALLY VERY EXPENSIVE!

= Typically, a limited number of model runs are used to generate a surrogate
model and the MCMC sampling is performed on the surrogate

= We want to avoid surrogates
= Limitation of MCMC: it is inherently sequential.
=  We want to exploit some parallelism by using multiple chains

SOLUTION: PARALLEL DRAM on the actual model
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Parallel MCMC

Initial Dynamics

Sampling of the Markov Process
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IChain 1

I Chain 2

Chain 3

Premise: Unless the posterior is pathological, most of the chain is spent in
the sampling part.

If we need a number of samples Q to obtain statistical properties of the posterior, m

chains should allow us to be approximately m times more efficient (e.g. split up the Q

samples into Q/m).
= |ssues of how to aggregate chains

= Pooling acceptable for examination of statistics
= Concern about Markovian properties
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Convergence Metrics

= There are a variety of metrics to test for chain convergence
= They measure different things: be careful!
= Convergence metrics

= Raftery-Lewis: provide a way of bounding the variances of estimates
of the quantiles. R-L is posed as “what number of samples are needed
to obtain a quantile g to within an accuracy of +/- r with probability

”

p.
= McGibbsit, by Gregory Warnes, is a multi-chain extension of Raftery-
Lewis.

= Gelman-Rubin: Start with multiple chains, starting at “overdispersed”
starting points. The “shrink” factor approaches 1 when the pooled
within-chain variances dominates the between-chain variance, so that
all chains have escaped the influence of their starting points.

= Geweke and others.

= PROBLEM: These all assume one long chain or multiple
independent chains. We have neither. 7
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Bootstrap Metric

= Bootstrap:

=  Resampling method with replacement approach that allows one to assign
measures of accuracy (e.g. variance, confidence intervals) for complex estimators
of a distribution, such as percentiles, proportions, etc.?

= A common use case: we generate an MCMC chain with 10K samples. What is the
uncertainty in the 95 percentile?

= We draw 500 samples, where each of the 500 samples is a resampling of the
10K with replacement. For each of the 500 samples, we generate the 95t
percentile, then examine the statistics over the 500.

Proposed metric = std(bootstrap Qol)/abs_value(Qol).
= This metric gives an indication of the size of the relative error in the Qol. .

= As we increase the number of generations in the chain, this ratio can be used as a
stopping criterion for m-chain MCMC, regardless of what m is.

= The bootstrap metric is valid whether we have 1-chain or a pooled m-chain.
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Correlated Gaussian ) i

Correlated Gaussian: 4 chains Correlated Gaussian Posterior Densities P1
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Summary of correlated Gaussian convergence L

Chains | Iters run R-L [pl] [p2] Gelman
NOTE: for q=0.05,r=0.01

1 100K [10K], [10K]
4 20K/chain  [10K],[10K] [6K,6K]
16 5K/chain Average : [9K], [9K] [BK,3K]

= Note: both Mcgibbsit and Raftery-Lewis were assessed for quantile g=0.05 at
accuracy +/- 0.01 in the table above. In the table below, the accuracy
requirements are increased to+/-0.005

Chains Iters run R-L [p1] [p2]
NOTE: for g=0.05, r=0.005

1 100K [41K], [41K]
4 50K/chain [39K],[40K]
16 50K/chain
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Summary of correlated Gaussian convergence ) o,
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Bootstrap Metric for 5th Percentile
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Bootstrap Metric for 25th-75th Interquartile Range Bootstrap Metric for 5th-95th Percentile Range
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Rosenbrock problem Posterior Densities P1
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Summary of Rosenbrock convergence runs 1 &m.

Chains Mcgibbsit [p1][p2] | R-L [p1] [p2] NOTE: for
g=0.05, r=0.01

1 100K [14K][4K] [14K], [4K]

4 20K/chain  [15K], [4K] [8K, 10K, 12K, 11K], [5K,3K] samples
[4K, 4K, 4K, 4K]

16 5K/chain [24K], [4K] Average : [13K], [3K,3K] samples
4K]

= Note: both Mcgibbsit and Raftery-Lewis were assessed for quantile q=0.025 at
accuracy +/- 0.0125 in the table above. In the table below, the accuracy
requirements are increased to+/-0.005

Chains Mcgibbsit [p1][p2] | R-L[p1][p2] NOTE: for
g=0.025, r=0.005

1 100K [82K], [22K] [86K], [23K]
4 50K/chain  [93K], [22K] [47K, 60K, 74K, 68K], [5K,3K] samples
[23K, 22K, 22K, 22K]
- 16 50K/chain  [140K], [23K] Average : [79K], [3K,3K] samples

I [23K] .
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Rosenbrock Convergence of Quantil&8::.
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Rosenbrock Convergence of Quantil&8::.

Bootstrap Metric for the 25th to 75th Interquartile Range
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GPR problem

13.9
13.5
13.2
12.9
12.6
12.3
11.9
11.6
11.3
11.0
10.6
10.3
10.0

Relative dielectric permittivity
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Monitoring soil moisture variations using tomographic
ground penetrating radar (GPR) travel time data

Tomographic GPR is a borehole-based geophysical
imaging technique.

It involves transmitting an electromagnetic (EM) pulse
from a source in one borehole and recording the arrival
of EM energy at a receiver position in a separate
borehole.

Inversion of the first arrival times of the EM energy is
used to estimate the velocity and the dielectric
permittivity (€) distribution between the boreholes.

Use of pilot points to model the dielectric permittivity
field

Challenges exist in the inversion of GPR tomographic
data for handling non-uniqueness and high-
dimensionality of unknowns.
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Introduce GPR problem
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20 Chains on the GPR problem ) .

Parameter 3 Parameter 7
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stdfabs(percentile)

stdfabs(percentile)

20 Chains on the GPR problem ) .

Bootstrap Metric for the 95th Percentile
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Summary ) o

= We have demonstrated parallel MCMC on two analytic
problems (a correlated Gaussian and Rosenbrock) and one
real hydrogeological problem

= The percentile estimates from pooled parallel MCMC chains
are reasonable

= We get good convergence from these pooled chains with
respect to the “truth” values in our analytic cases

= We developed a metric based on the bootstrap, the ratio of
the std(bootstraps of the quantile)/abs(quantile).

= This metric can be used as a stopping criterion for m-chain
MCMC.
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