

*Exceptional
service
in the
national
interest*

A Parallel MCMC Method

Laura Swiler and Jaideep Ray

Sandia National Laboratories, MS 1318
Albuquerque, NM 87185
ipswile@sandia.gov, jairay@sandia.gov

U.S. DEPARTMENT OF
ENERGY

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Outline

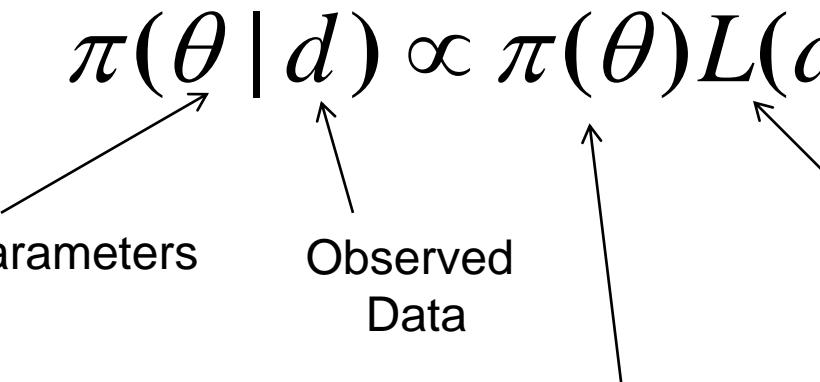
- Parallel Chains: Motivation and Issues
- Convergence metrics
 - Classic tests: Raftery-Lewis, Gelman, Geweke
 - Proposed Bootstrap Metric
- Results
 - Correlated Gaussian
 - Rosenbrock
 - Hydrogeological inverse problem – Ground Penetrating Radar

Bayesian Calibration

- Generate posterior distributions on model parameters, given
 - Experimental data
 - A prior distribution on model parameters
 - A presumed probabilistic relationship between experimental data and model output that can be defined by a likelihood function

$$\pi(\theta | d) \propto \pi(\theta)L(d | \theta)$$

Model parameters
 Observed Data
 Prior parameter distribution
 Likelihood function which incorporates the model discrepancy: we assume Gaussian



Markov Chain Monte Carlo

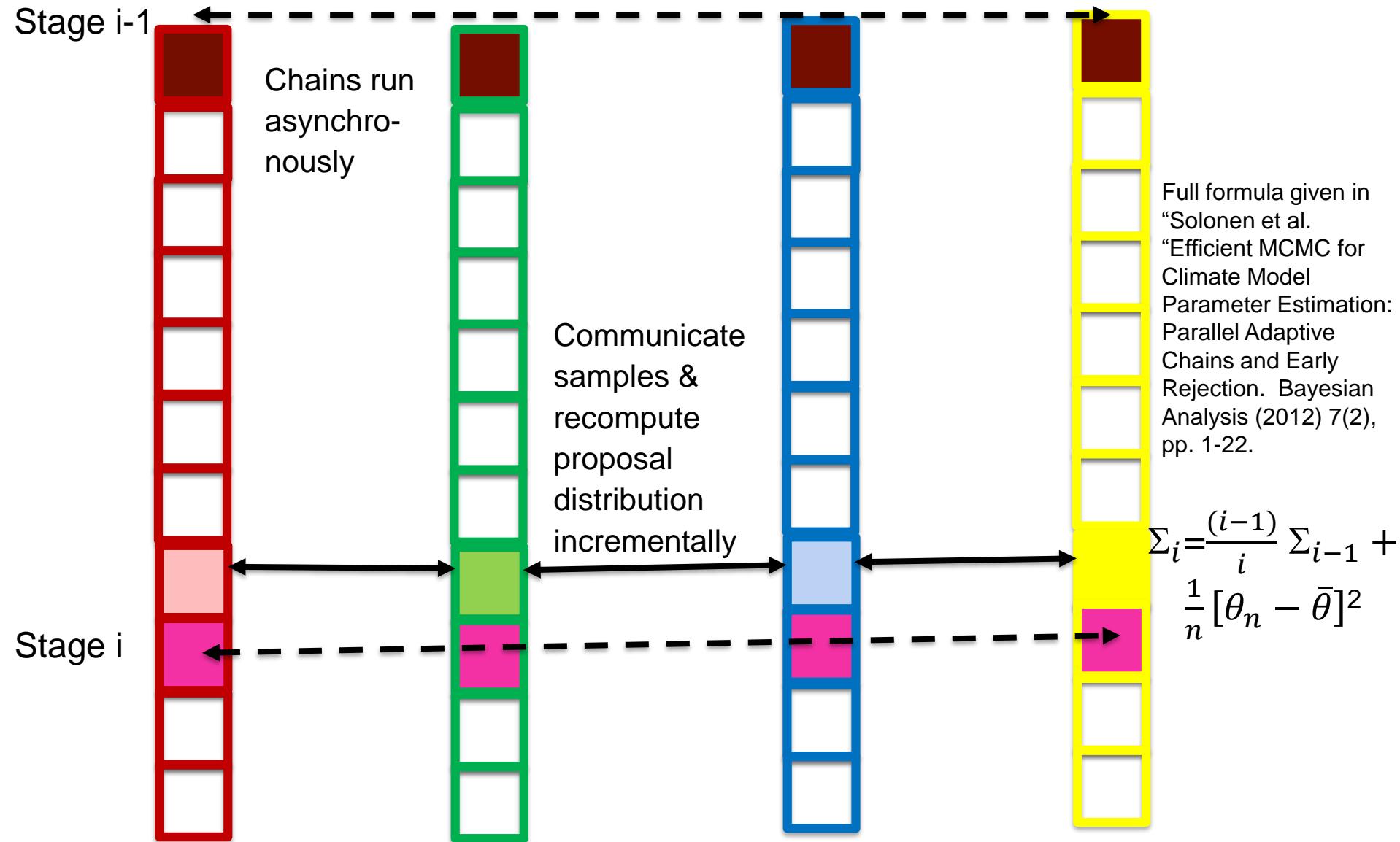
- How do we obtain the posterior?
 - It is usually too difficult to calculate analytically
 - We use a technique called Markov Chain Monte Carlo (MCMC)
 - In MCMC, the idea is to *generate a sampling density that is approximately equal to the posterior distribution.*
 - Metropolis-Hastings is a commonly used algorithm
- MCMC depends on asymptotic behavior of the chain. Ideally, you want to run for 100,000+ samples.

COMPUTATIONALLY VERY EXPENSIVE!

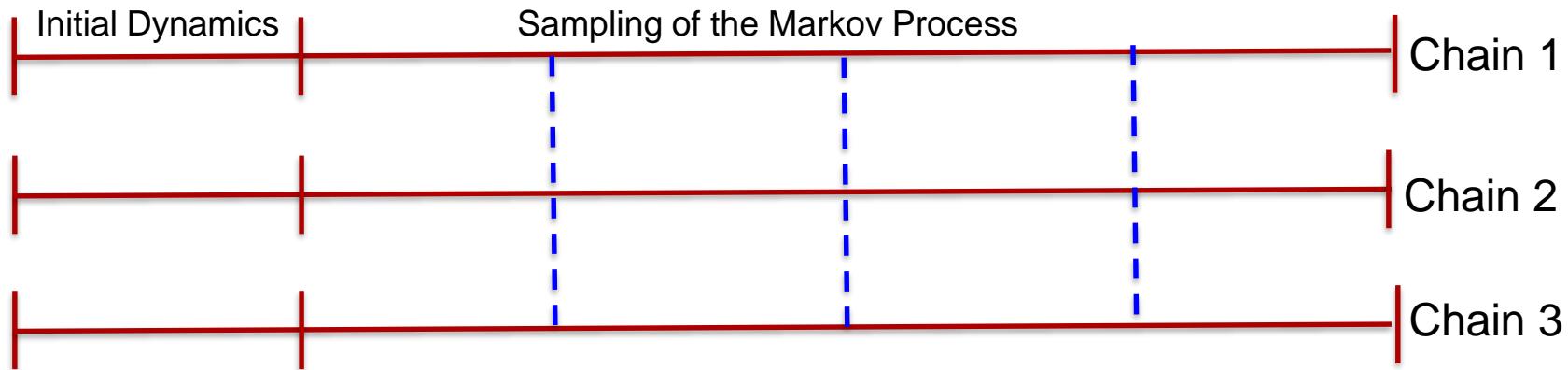
- Typically, a limited number of model runs are used to generate a surrogate model and the MCMC sampling is performed on the surrogate
- We want to avoid surrogates
- Limitation of MCMC: it is inherently sequential.
- We want to exploit some parallelism by using multiple chains

SOLUTION: PARALLEL DRAM on the actual model

Parallel DRAM



Parallel MCMC



- Premise: Unless the posterior is pathological, most of the chain is spent in the sampling part.
 - If we need a number of samples Q to obtain statistical properties of the posterior, m chains should allow us to be approximately m times more efficient (e.g. split up the Q samples into Q/m).
- Issues of how to aggregate chains
 - Pooling acceptable for examination of statistics
 - Concern about Markovian properties

Convergence Metrics

- There are a variety of metrics to test for chain convergence
- They measure different things: be careful!
- Convergence metrics
 - Raftery-Lewis: provide a way of bounding the variances of estimates of the quantiles. R-L is posed as “what number of samples are needed to obtain a quantile q to within an accuracy of $+/- r$ with probability p .”
 - McGibbsit, by Gregory Warnes, is a multi-chain extension of Raftery-Lewis.
 - Gelman-Rubin: Start with multiple chains, starting at “overdispersed” starting points. The “shrink” factor approaches 1 when the pooled within-chain variances dominates the between-chain variance, so that all chains have escaped the influence of their starting points.
 - Geweke and others.
- **PROBLEM:** These all assume one long chain or multiple independent chains. We have neither.

Bootstrap Metric

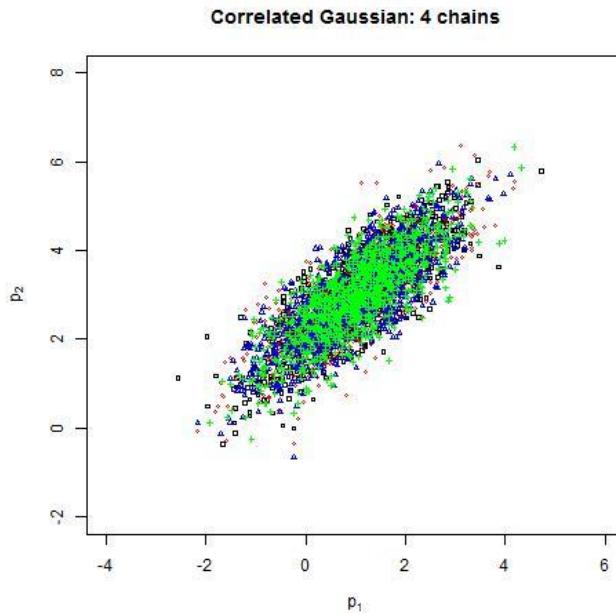
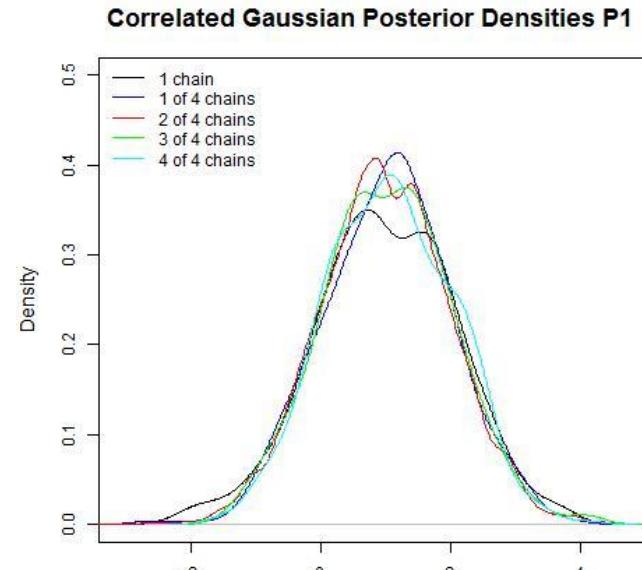
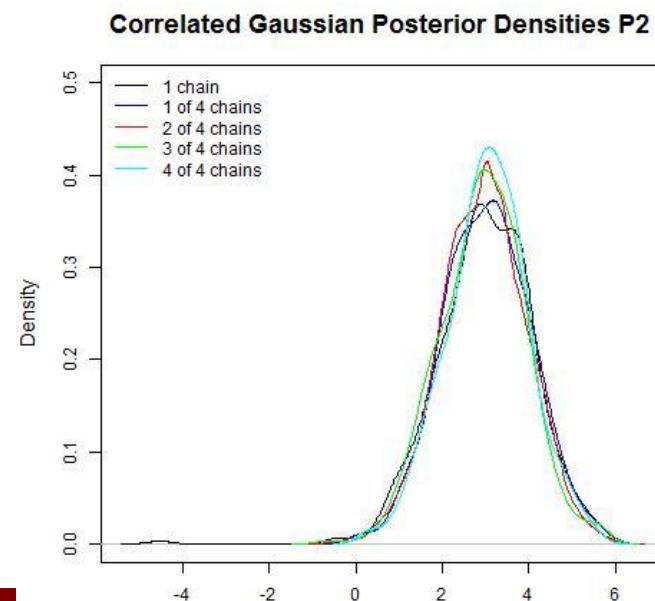
- Bootstrap:
 - Resampling method with replacement approach that allows one to assign measures of accuracy (e.g. variance, confidence intervals) for complex estimators of a distribution, such as percentiles, proportions, etc.¹
 - A common use case: we generate an MCMC chain with 10K samples. What is the uncertainty in the 95th percentile?
 - We draw 500 samples, where each of the 500 samples is a resampling of the 10K with replacement. For each of the 500 samples, we generate the 95th percentile, then examine the statistics over the 500.

Proposed metric = $\text{std}(\text{bootstrap QoI})/\text{abs_value}(\text{QoI})$.

- This metric gives an indication of the size of the relative error in the QoI. .
- As we increase the number of generations in the chain, this ratio can be used as a stopping criterion for m-chain MCMC, *regardless of what m is*.
- The bootstrap metric is valid whether we have 1-chain or a pooled m-chain.

Results

Correlated Gaussian



- Prior are uniforms from [-5,8]
- Likelihood is correlated bivariate Gaussian, with $\text{mean}(1,3)$ and correlation of 0.8
- Marginal posteriors are reasonable: means = (0.99, 2.99, etc.)

Summary of correlated Gaussian convergence

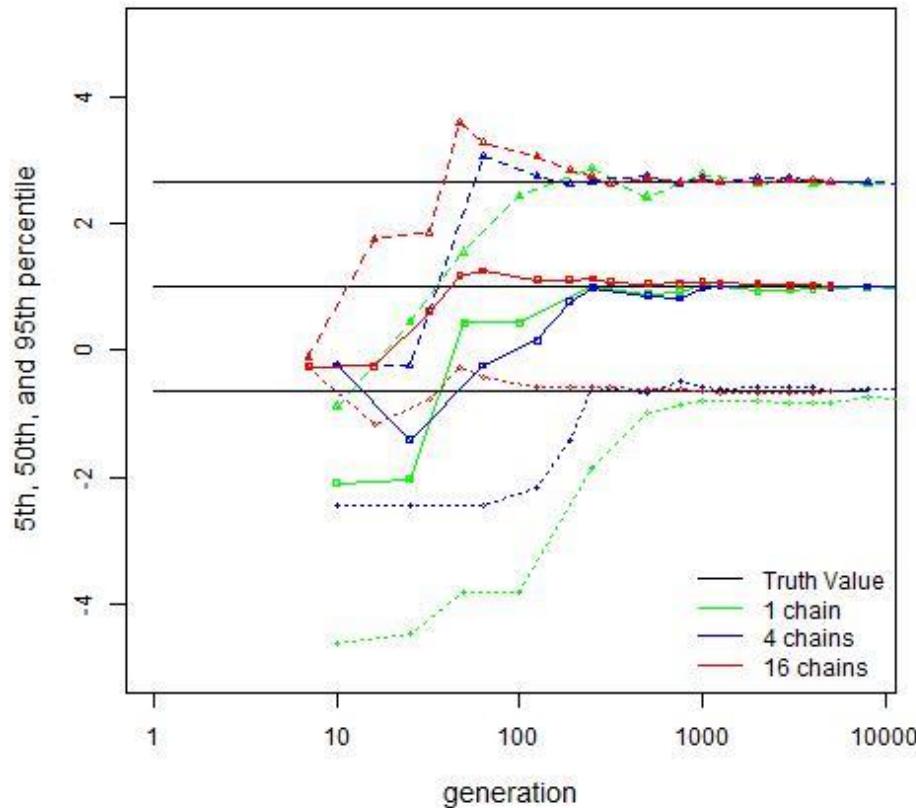
Chains	Iters run	R-L [p1] [p2] NOTE: for q=0.05,r=0.01	Gelman
1	100K	[10K], [10K]	
4	20K/chain	[10K],[10K]	[6K,6K]
16	5K/chain	Average : [9K], [9K]	[3K,3K]

- Note: both Mcgibbsit and Raftery-Lewis were assessed for quantile q=0.05 at accuracy +/- 0.01 in the table above. In the table below, the accuracy requirements are increased to +/- 0.005

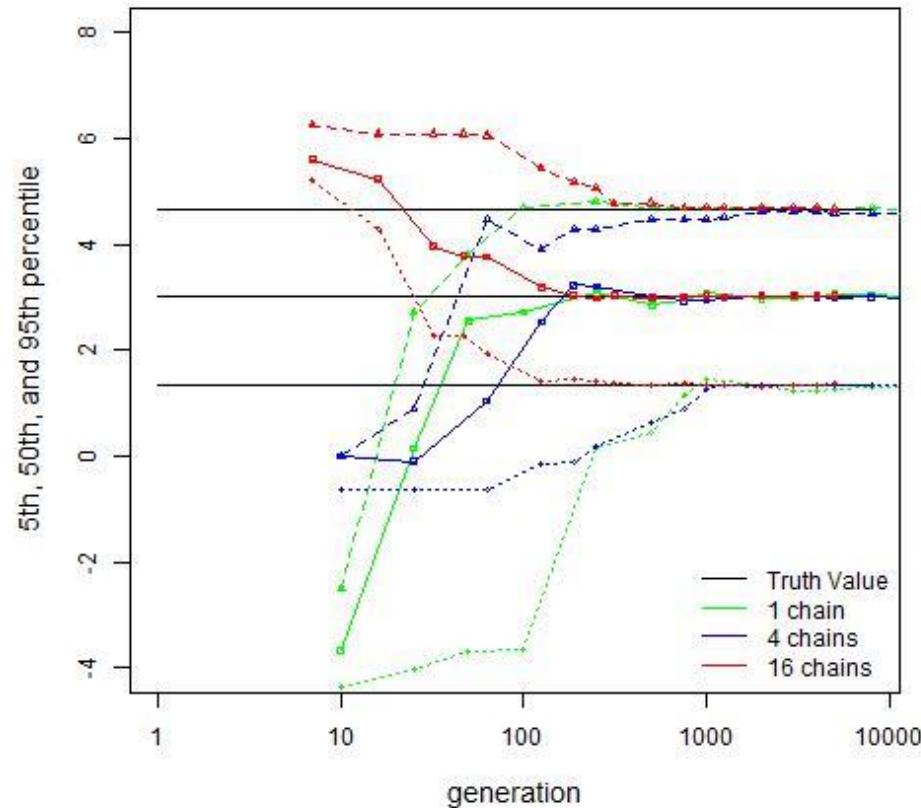
Chains	Iters run	R-L [p1] [p2] NOTE: for q=0.05, r=0.005
1	100K	[41K], [41K]
4	50K/chain	[39K],[40K]
16	50K/chain	

Summary of correlated Gaussian convergence

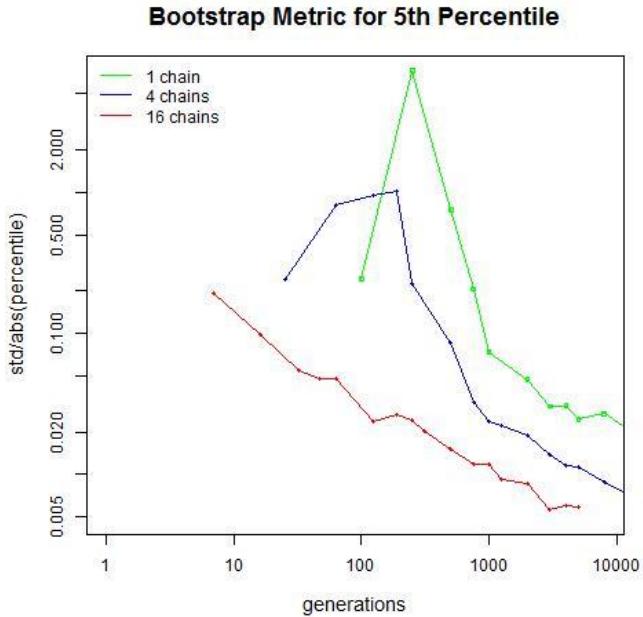
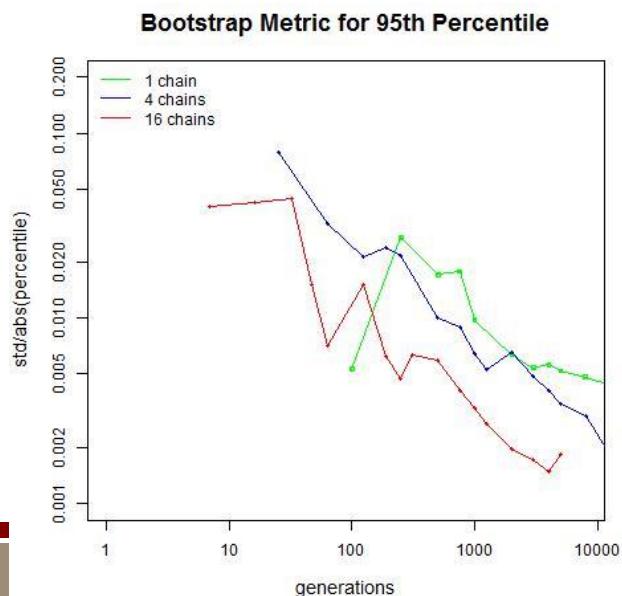
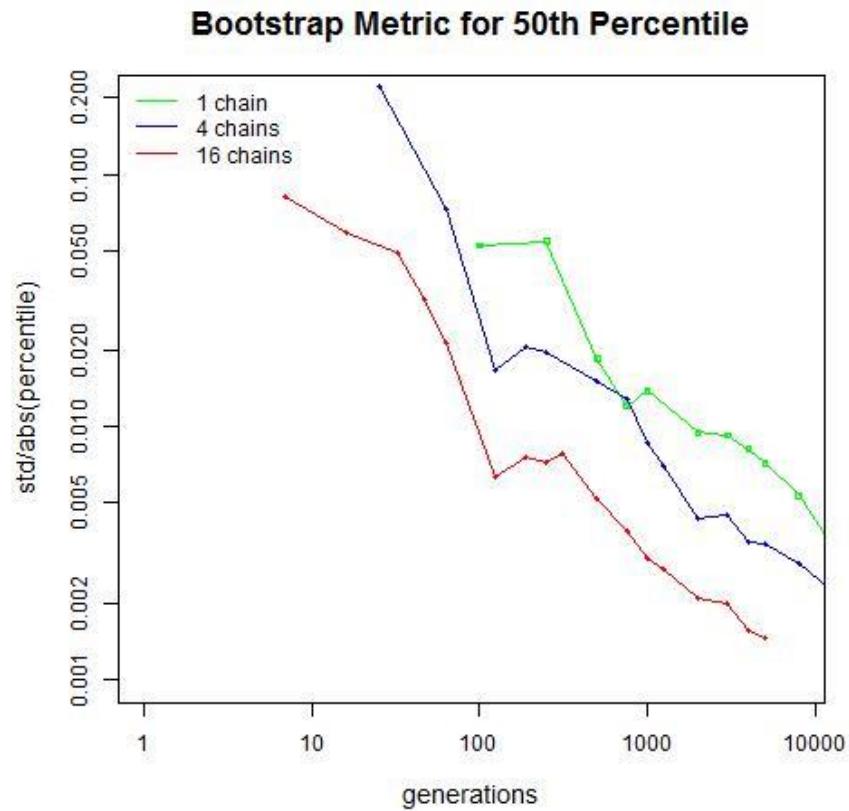
Correlated Gaussian Posterior P1



Correlated Gaussian Posterior P2

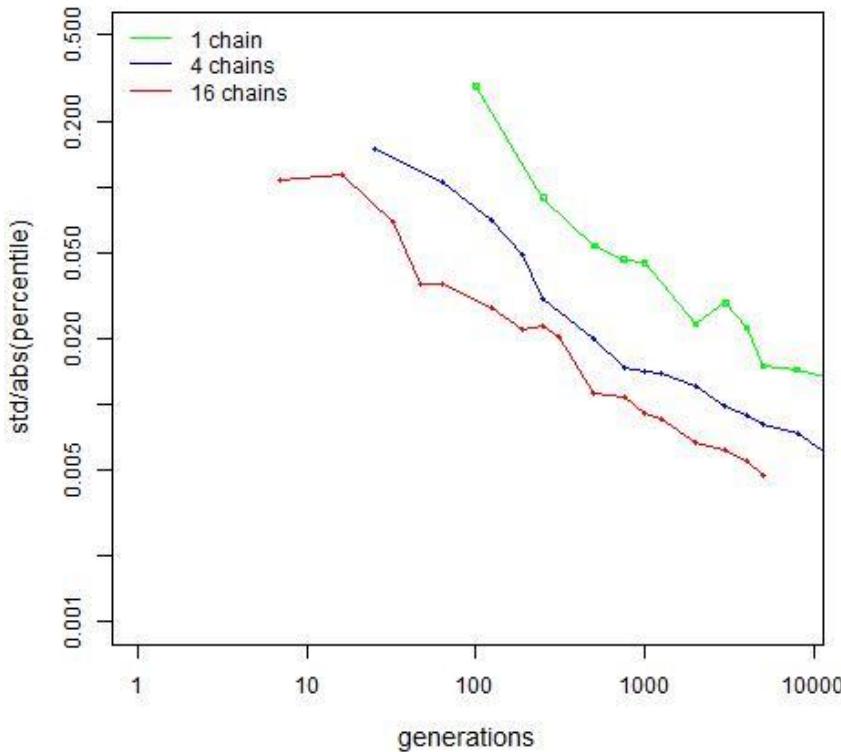


Summary of correlated Gaussian convergence

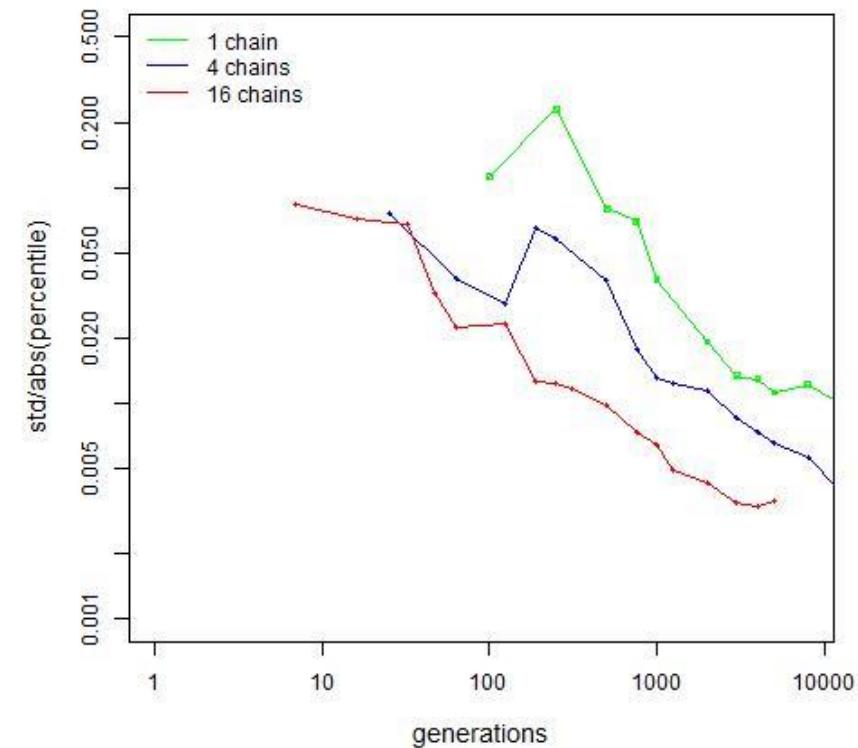


Summary of correlated Gaussian convergence

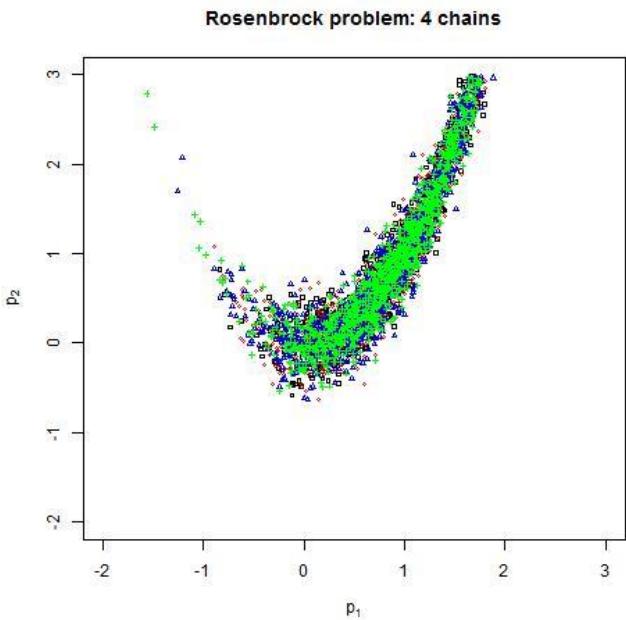
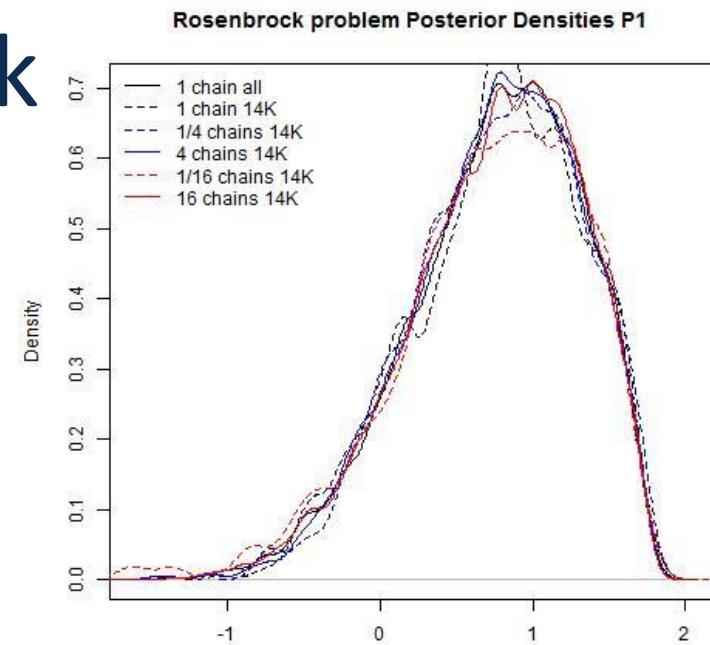
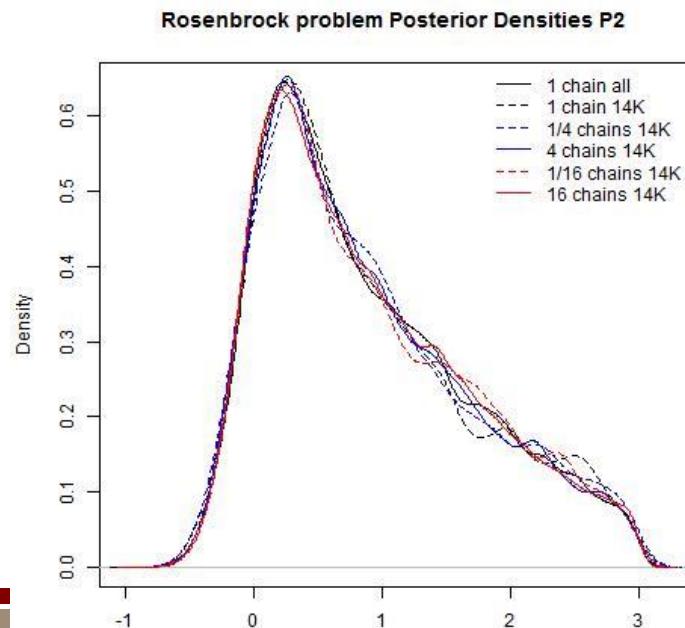
Bootstrap Metric for 25th-75th Interquartile Range



Bootstrap Metric for 5th-95th Percentile Range



Rosenbrock



- Prior are uniforms from $[-2, 3]$
- Likelihood is the Rosenbrock function

Summary of Rosenbrock convergence runs

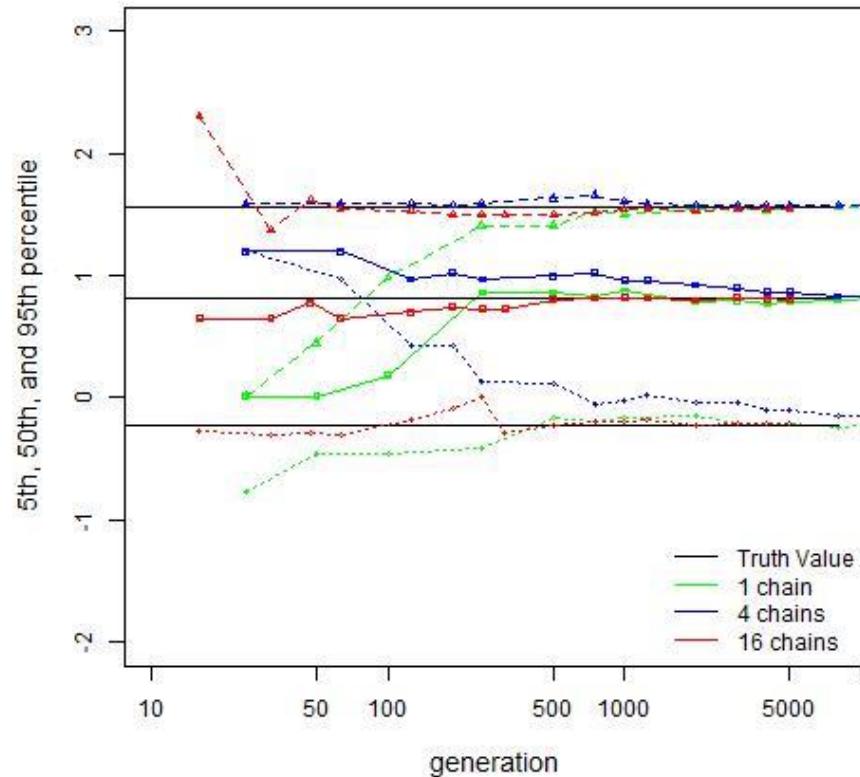
Chains	Iters run	Mcgibbsit [p1][p2]	R-L [p1] [p2] NOTE: for q=0.05, r=0.01	Gelman
1	100K	[14K][4K]	[14K], [4K]	
4	20K/chain	[15K], [4K]	[8K, 10K, 12K, 11K], [4K, 4K, 4K, 4K]	[5K,3K] samples
16	5K/chain	[24K], [4K]	Average : [13K], 4K	[3K,3K] samples

- Note: both Mcgibbsit and Raftery-Lewis were assessed for quantile q=0.025 at accuracy +/- 0.0125 in the table above. In the table below, the accuracy requirements are increased to +/- 0.005

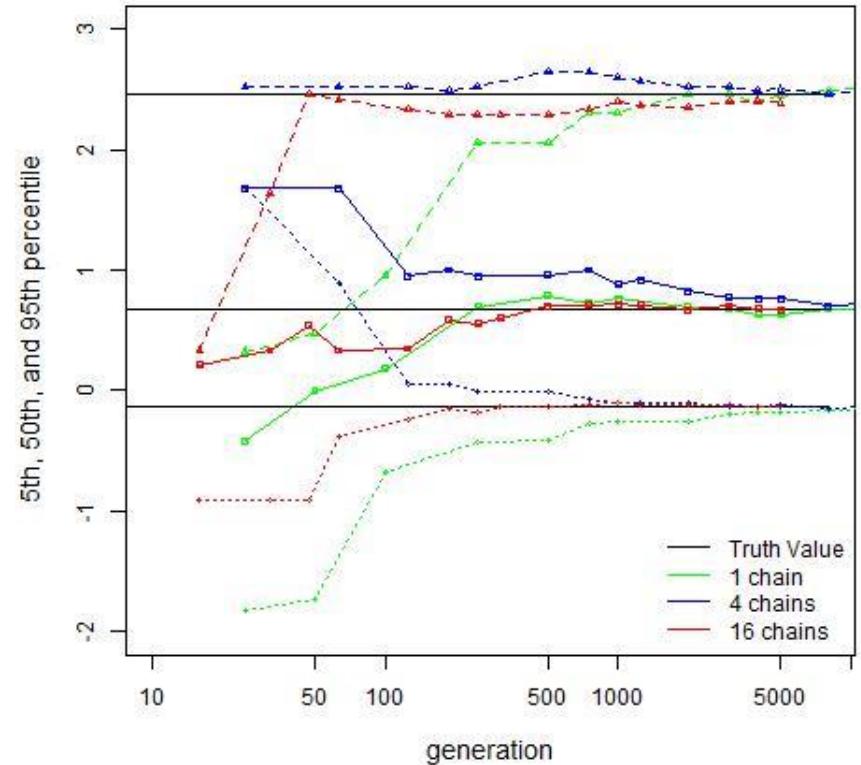
Chains	Iters run	Mcgibbsit [p1][p2]	R-L [p1] [p2] NOTE: for q=0.025, r=0.005	Gelman
1	100K	[82K], [22K]	[86K], [23K]	
4	50K/chain	[93K], [22K]	[47K, 60K, 74K, 68K], [23K, 22K, 22K, 22K]	[5K,3K] samples
16	50K/chain	[140K], [23K]	Average : [79K], [23K]	[3K,3K] samples

Rosenbrock Convergence of Quantiles

Rosenbrock problem Posterior P1

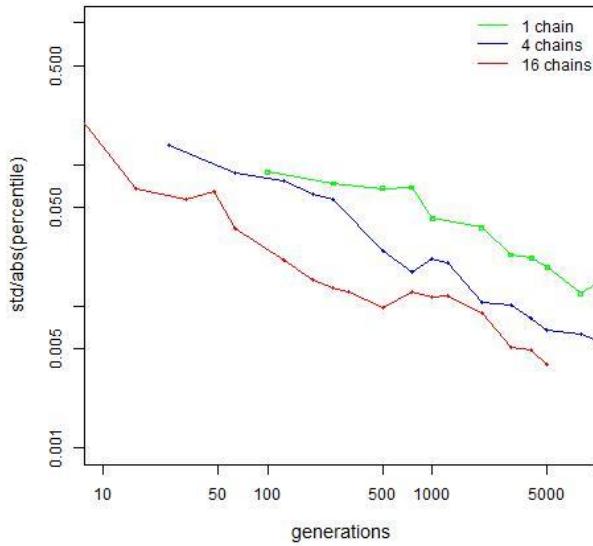


Rosenbrock problem Posterior P2

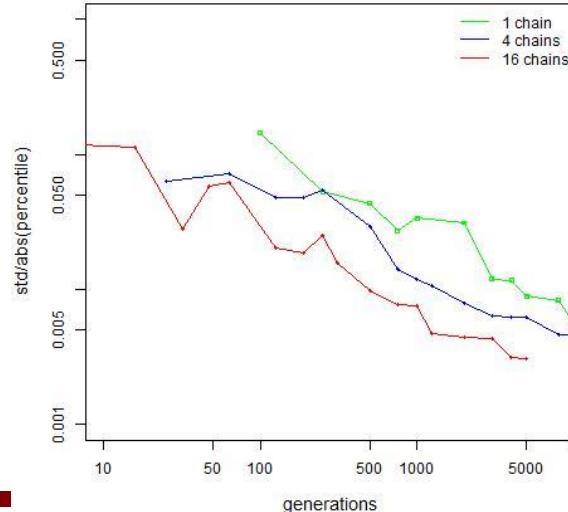


Rosenbrock Convergence of Quantiles

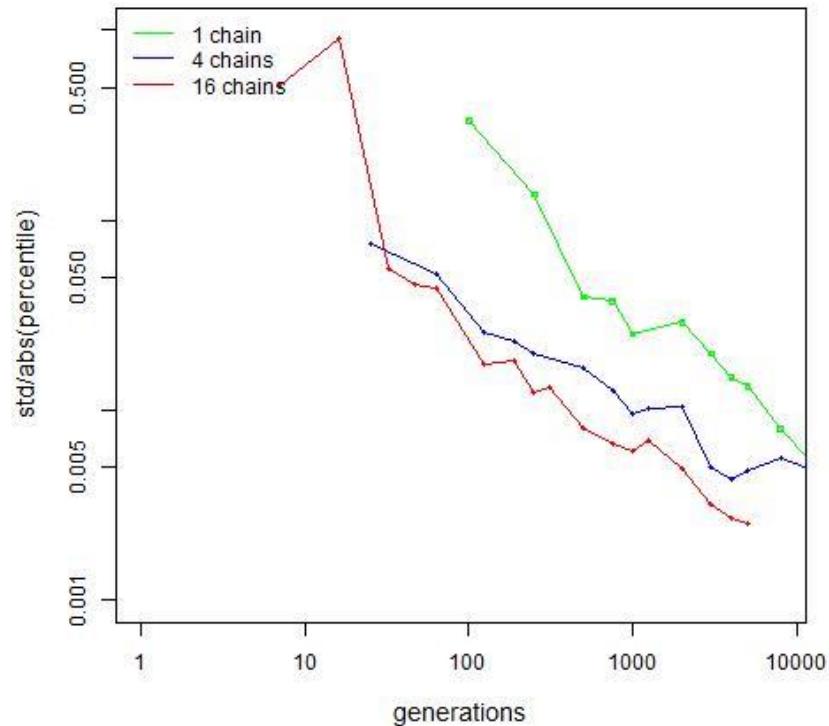
Bootstrap Metric for the 25th to 75th Interquartile Range



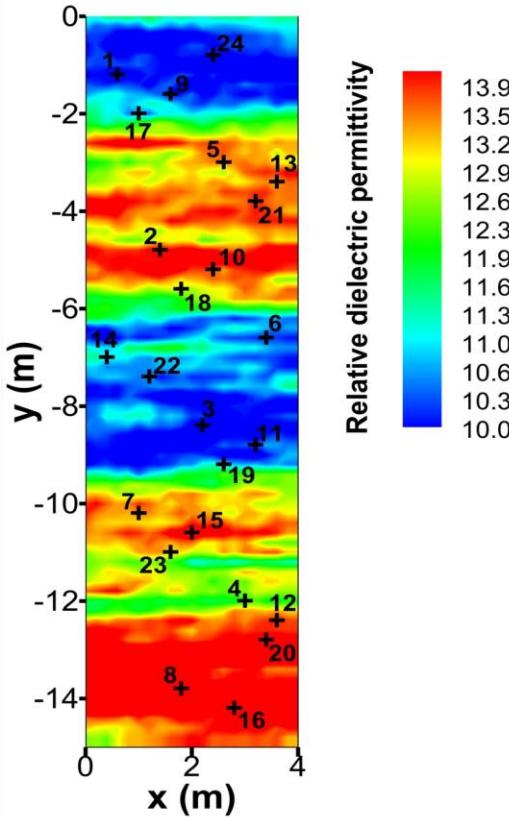
Bootstrap Metric for the 5th to 95th Quantile Range



Bootstrap Metric for the 50th Percentile

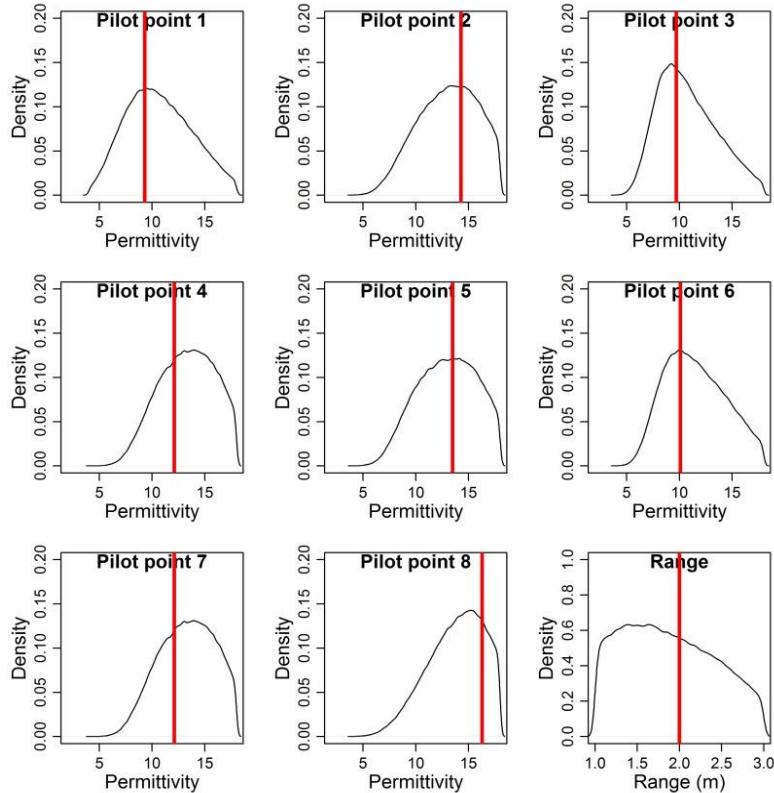
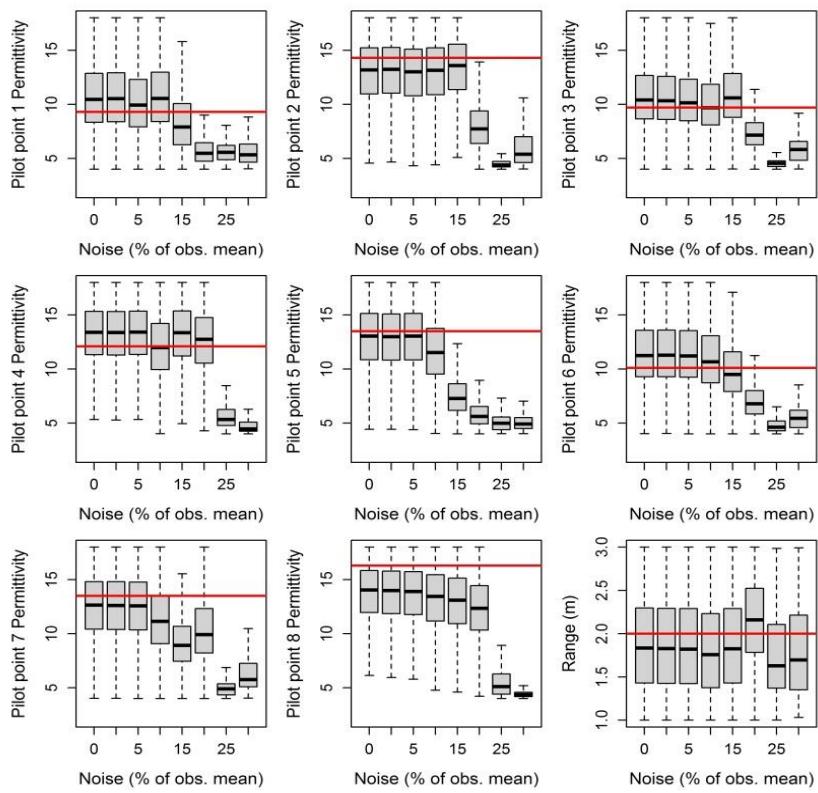


GPR problem



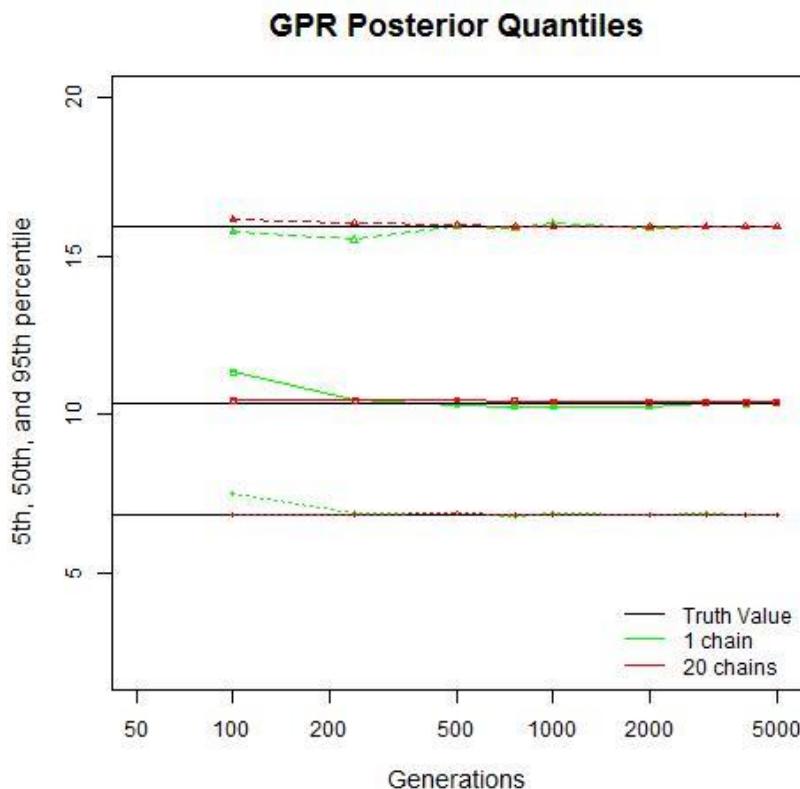
- Monitoring soil moisture variations using tomographic ground penetrating radar (GPR) travel time data
- Tomographic GPR is a borehole-based geophysical imaging technique.
- It involves transmitting an electromagnetic (EM) pulse from a source in one borehole and recording the arrival of EM energy at a receiver position in a separate borehole.
- Inversion of the first arrival times of the EM energy is used to estimate the velocity and the dielectric permittivity (ϵ) distribution between the boreholes.
- Use of pilot points to model the dielectric permittivity field
- Challenges exist in the inversion of GPR tomographic data for handling non-uniqueness and high-dimensionality of unknowns.

Introduce GPR problem

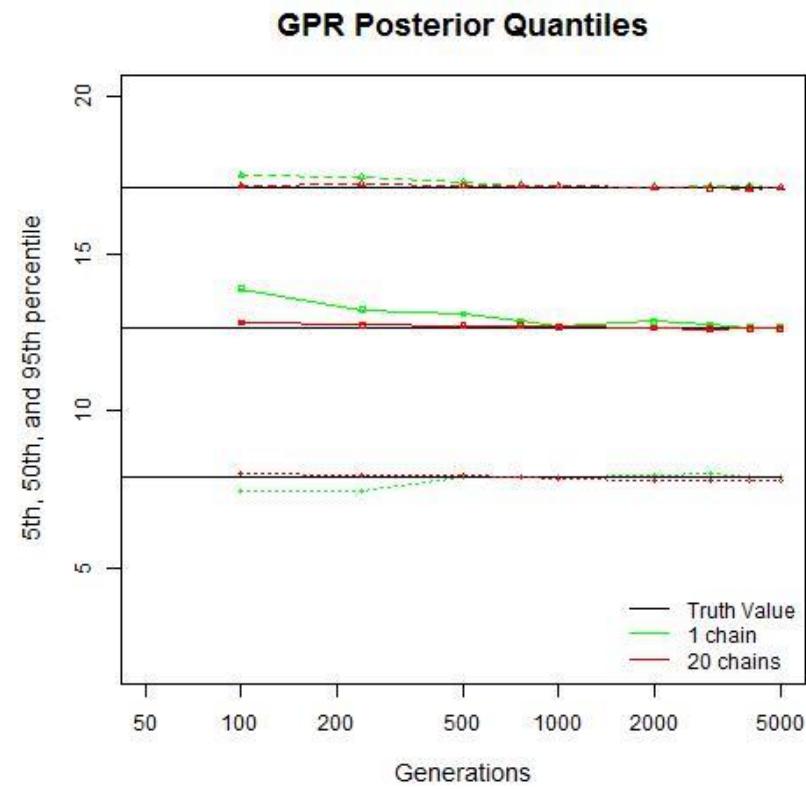


20 Chains on the GPR problem

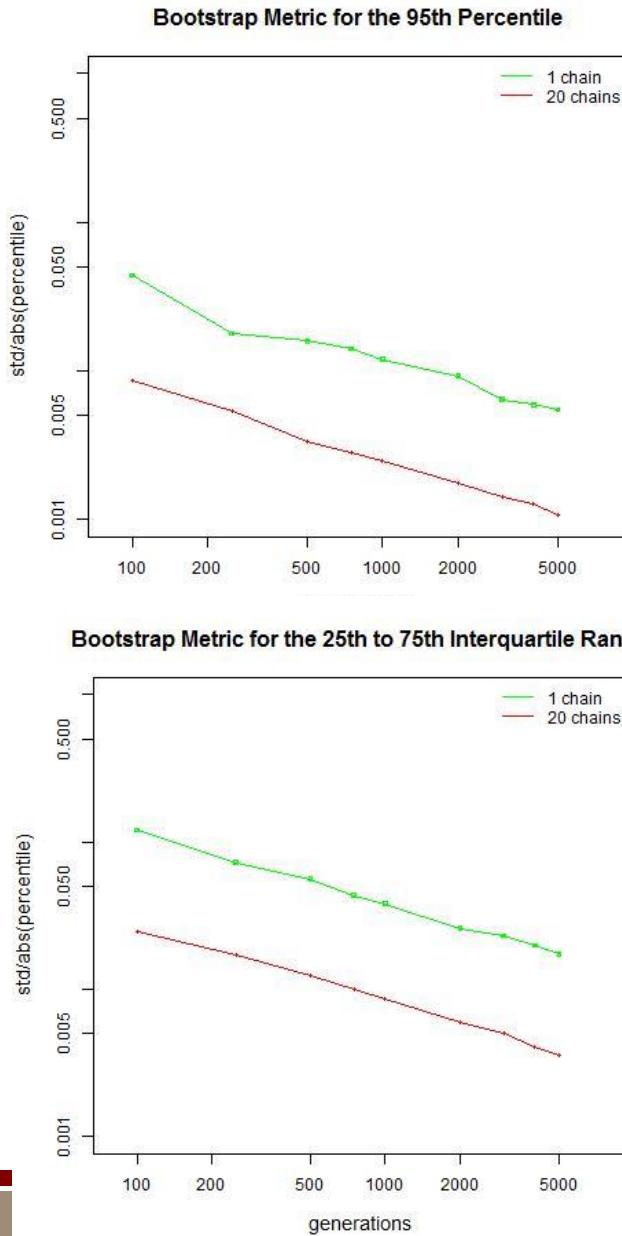
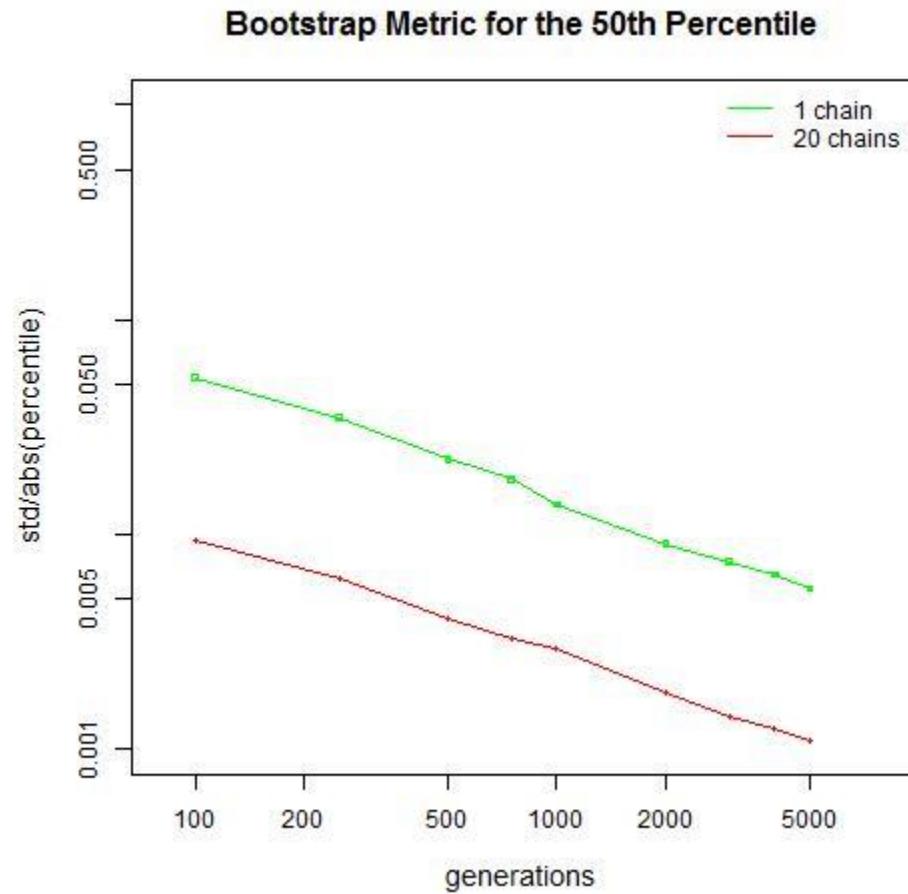
Parameter 3



Parameter 7



20 Chains on the GPR problem



Summary

- We have demonstrated parallel MCMC on two analytic problems (a correlated Gaussian and Rosenbrock) and one real hydrogeological problem
- The percentile estimates from pooled parallel MCMC chains are reasonable
- We get good convergence from these pooled chains with respect to the “truth” values in our analytic cases
- We developed a metric based on the bootstrap, the ratio of the $\text{std}(\text{bootstraps of the quantile})/\text{abs}(\text{quantile})$.
- This metric can be used as a stopping criterion for m-chain MCMC.