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Bayesian Calibration

 Generate posterior distributions on model parameters, given
 Experimental data 

 A prior distribution on model parameters

 A presumed probabilistic relationship between experimental data and 
model output that can be defined by a likelihood function
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Markov Chain Monte Carlo 
 How do we obtain the posterior? 

 It is usually too difficult to calculate analytically

 We use a technique called Markov Chain Monte Carlo (MCMC)

 In MCMC, the idea is to generate a sampling density that is approximately 
equal to the posterior distribution.

 Metropolis-Hastings is a commonly used algorithm

 MCMC depends on asymptotic behavior of the chain.  Ideally, you want to 
run for 100,000+ samples.  

COMPUTATIONALLY VERY EXPENSIVE!

 Typically, a limited number of model runs are used to generate a surrogate 
model and the MCMC sampling is performed on the surrogate

 We want to avoid surrogates

 Limitation of MCMC:  it is inherently sequential.  

 We want to exploit some parallelism by using multiple chains
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SOLUTION:  PARALLEL DRAM on the actual model



Parallel DRAM
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Parallel MCMC

 Premise:  Unless the posterior is pathological, most of the chain is spent in 
the sampling part.  
 If we need a number of samples Q to obtain statistical properties of the posterior, m

chains should allow us to be approximately m times more efficient (e.g. split up the Q 
samples into Q/m). 

 Issues of how to aggregate chains

 Pooling acceptable for examination of statistics

 Concern about Markovian properties 
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Convergence Metrics
 There are a variety of metrics to test for chain convergence

 They measure different things:  be careful!

 Convergence metrics

 Raftery-Lewis:  provide a way of bounding the variances of estimates 
of the quantiles.  R-L is posed as “what number of samples are needed 
to obtain a quantile q to within an accuracy of +/- r with probability 
p.”

 McGibbsit, by Gregory Warnes, is a multi-chain extension of Raftery-
Lewis.

 Gelman-Rubin: Start with multiple chains, starting at “overdispersed” 
starting points.  The “shrink” factor approaches 1 when the pooled 
within-chain variances dominates the between-chain variance, so that 
all chains have escaped the influence of their starting points.  

 Geweke and others.

 PROBLEM:  These all assume one long chain or multiple 
independent chains.  We have neither. 7



Bootstrap Metric
 Bootstrap:  

 Resampling method with replacement approach that allows one to assign 
measures of accuracy (e.g. variance, confidence intervals) for complex estimators 
of a distribution, such as percentiles, proportions, etc. 1

 A common use case:  we generate an MCMC chain with 10K samples. What is the 
uncertainty in the 95th percentile?  

 We draw 500 samples, where each of the 500 samples is a resampling of the 
10K with replacement.  For each of the 500 samples, we generate the 95th

percentile, then examine the statistics over the 500. 

Proposed metric  = std(bootstrap QoI)/abs_value(QoI).
 This metric gives an indication of the size of the relative error in the QoI. .

 As we increase the number of generations in the chain, this ratio can be used as a 
stopping criterion for m-chain MCMC, regardless of what m is.

 The bootstrap metric is valid whether we have 1-chain or a pooled m-chain.
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1Efron, B and R. Tibshirani.  An Introduction to the Bootstrap. Boca Raton, FL: Chapman & Hall/CRC. (1993)



Results
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Correlated Gaussian

• Prior are uniforms from [-5,8]

• Likelihood is correlated bivariate 

Gaussian, with mean(1,3) and 

correlation of 0.8

• Marginal posteriors are reasonable: 

means = (0.99, 2.99, etc.) 



Summary of correlated Gaussian convergence

 Note:  both Mcgibbsit and Raftery-Lewis were assessed for quantile q=0.05 at 
accuracy +/- 0.01 in the table above.  In the table below, the accuracy 
requirements are increased to+/-0.005

Chains Iters run R-L [p1] [p2]   

NOTE:  for q=0.05,r=0.01

Gelman

1 100K [10K], [10K]

4 20K/chain [10K],[10K] [6K,6K]

16 5K/chain Average :  [9K], [9K] [3K,3K] 

Chains Iters run R-L [p1] [p2]   

NOTE:  for q=0.05, r=0.005

1 100K [41K], [41K]

4 50K/chain [39K],[40K] 

16 50K/chain



Summary of correlated Gaussian convergence



Summary of correlated Gaussian convergence
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Summary of correlated Gaussian convergence



Rosenbrock

• Prior are uniforms from [-2,3]

• Likelihood is the Rosenbrock function



Summary of Rosenbrock convergence runs

 Note:  both Mcgibbsit and Raftery-Lewis were assessed for quantile q=0.025 at 
accuracy +/- 0.0125 in the table above.  In the table below, the accuracy 
requirements are increased to+/-0.005

Chains Iters run Mcgibbsit [p1][p2] R-L [p1] [p2]   NOTE:  for 
q=0.025, r=0.005

Gelman

1 100K [82K], [22K] [86K], [23K]

4 50K/chain [93K], [22K] [47K, 60K, 74K, 68K], 
[23K, 22K, 22K, 22K]

[5K,3K] samples

16 50K/chain [140K], [23K] Average :  [79K], 
[23K]

[3K,3K] samples

Chains Iters run Mcgibbsit [p1][p2] R-L [p1] [p2]   NOTE:  for 
q=0.05, r=0.01

Gelman

1 100K [14K][4K] [14K], [4K]

4 20K/chain [15K], [4K] [8K, 10K, 12K, 11K], 
[4K, 4K, 4K, 4K]

[5K,3K] samples

16 5K/chain [24K], [4K] Average :  [13K], 
4K]

[3K,3K] samples



Rosenbrock Convergence of Quantiles

17



Rosenbrock Convergence of Quantiles
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GPR problem

 Monitoring soil moisture variations using tomographic 
ground penetrating radar (GPR) travel time data

 Tomographic GPR is a borehole-based geophysical 
imaging technique. 

 It involves transmitting an electromagnetic (EM) pulse 
from a source in one borehole and recording the arrival 
of EM energy at a receiver position in a separate 
borehole. 

 Inversion of the first arrival times of the EM energy is 
used to estimate the velocity and the dielectric 
permittivity (𝜖) distribution between the boreholes. 

 Use of pilot points to model the dielectric permittivity 
field

 Challenges exist in the inversion of GPR tomographic 
data for handling non-uniqueness and high-
dimensionality of unknowns. 
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Introduce GPR problem
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20 Chains on the GPR problem
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20 Chains on the GPR problem
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Summary

 We have demonstrated parallel MCMC on two analytic 
problems (a correlated Gaussian and Rosenbrock) and one 
real hydrogeological problem

 The percentile estimates from pooled parallel MCMC chains 
are reasonable

 We get good convergence from these pooled chains with 
respect to the “truth” values in our analytic cases

 We developed a metric based on the bootstrap, the ratio of 
the std(bootstraps of the quantile)/abs(quantile).

 This metric can be used as a stopping criterion for m-chain 
MCMC.
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