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Why silicon spin qubits?

Donor (D) qubits are high 
fidelity…

Quantum dot (QD) qubits are 
tunable…
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Electron spin 1/2: 
T2

* = 270 µs
T2, CPMG = 560 ms
Fprep/readout = 97%
Fcontrol = 99.95%

Nuclear spin 1/2: 
T2

* = 600 ms
T2, CPMG = 36.5 s
Fprep/readout = 99.995%
Fcontrol = 99.99%

But they are not easily coupled 
together!

[1] Shulman, M. D. et al. Demonstration of entanglement of electrostatically coupled 
singlet-triplet qubits. Science 336, 202–205 (2012).
[2] Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor 
quantum dots. Science 309, 2180–2184 (2005).
[3] Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-
fidelity. Nat Nano 9, 981–985 (2014).
[4] Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015).

[1] Muhonen, J. T. et al. Storing quantum information for 30 seconds in a nanoelectronic
device. Nat Nano 9, 986–991 (2014).
[2] Muhonen, J. T. et al. Quantifying the quantum gate fidelity of single-atom spin qubits
in silicon by randomized benchmarking. Journal of Physics: Condensed Matter 27, 
154205 (2015).

But they are not quite as high 
fidelity!

Singlet-triplet spin qubit in GaAs:
• All-electrical control
• Two-qubit gates possible

28Si



In this presentation: 

First coherent coupling between a 
quantum dot (QD) and a donor (D)
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Singlet-triplet encoding
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Charge stability diagram

Double QD

Spin states for two 
electrons

m = 0

m = +1

m = -1

ST qubit theory: J. M. Taylor, J. R. Petta, A. C. Johnson, A. Yacoby, C. M. Marcus, and M. D. Lukin, “Relaxation, dephasing, and quantum control of electron 
spins in double quantum dots,” Phys. Rev. B 76, 035315 (2007).
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Driving ΔBz rotations in the singlet-triplet 
qubit
GaAs: nuclear field 
gradient Si: micromagnets
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New key idea: use contact hyperfine 
interaction with single donor to rotate the spin

Hybrid QD-D singlet-triplet 
qubit

For electron on donor:
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 Fast and stable rotation speed: 
Contact hyperfine interaction A/2 = 57 
MHz gives 9 ns π rotation.

 Compact design: No need for nuclear 
field bath, spin-orbit int.,
micromagnet. Just one QD.

 ST states: good probe of coherence 
between the QD and the D.

 Get a nuclear spin for free.

Advantages

Singlet-Triplet Hamiltonian:

Double QD-like system!
For details: N. Tobias Jacobson (next) and Andrew D. Baczewski (next-next)
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Our silicon MOS nanostructure
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31P
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Quantum dot-donor anti-crossing
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State manipulation
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State manipulation
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Singlet-triplet rotations driven by a single 31P nucleus



Detuning dependence of exchange 
interaction
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Coherence time and charge noise
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Visibility decay Coherence time vs detuning

Charge-noise limited.
Possibly extended to > 10 µs
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Summary
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Preprint: Nuclear-driven electron spin rotations in a single donor coupled to a silicon quantum dot. 
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Perspectives
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This work: First coherent coupling 
between a quantum dot (QD) and a 

donor (D)

gate

oxide

28Si

31P

Kane’s original exchange “J ” 
gate

[1] Kane, B. E. A 
silicon-based 
nuclear spin 
quantum computer. 
Nature 393, 133–
137 (1998).

“Modern” proposals involve 
QDs

[1] Pica, G., Lovett, B. W., Bhatt, R. N., Schenkel, T. & Lyon, S. A. 
Phys. Rev. B 93, 035306 (2016).
[2] Tosi, G. et al. ArXiv e-prints (2015). 1509.08538.
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2 µm
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Coupling donor qubits directly
involves atomic-precision 
fabrication…
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[1] T. F. Watson, B. Weber, M. G. House, H. Büch, and M. Y. Simmons, “High-
fidelity rapid initialization and read-out of an electron spin via the single donor 
D− charge state,” Phys. Rev. Lett. 115, 166806 (2015).

Not yet mature 
technology (fails 
stochastically)

After incorporation:
1 donor

After incorporation:
0 donor



Our silicon MOS nanostructure

Nuclear-driven ST rotations in a QD-D system           Patrick Harvey-Collard 

Vgate (V)

0 1

Based on
Complementary Metal-Oxide-Semiconductor (CMOS)
technology
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Our silicon MOS nanostructure
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Filled-shell valley configuration

[1] F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons, L. C. L. Hollenberg, G. Klimeck, S. Rogge, S. N. Coppersmith, and M. A. Eriksson, 
“Silicon quantum electronics,” Rev. Mod. Phys. 85, 961 (2013).

Silicon has 6 degenerate valleys

Valley degeneracy is lifted because of the strong 
confinement at the Si/SiO2 interface
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State preparation and readout
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State preparation and readout
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Building on ideas from: S. A. Studenikin, J. Thorgrimson, G. C. Aers, A. Kam, P. Zawadzki, Z. R. Wasilewski, A. Bogan, and A. S. Sachrajda, “Enhanced charge detection of spin qubit readout via an 
intermediate state,” Applied Physics Letters 101, 233101 (2012).
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How to couple multiple donors?
Direct coupling is 
challenging

Kane’s original exchange “J ” 
gate
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Small wave functions!
Exchange oscillations are strong.

Near-atomic precision fab. required!



Why silicon spin qubits?

Donor (D) qubits are high 
fidelity…

Quantum dot (QD) qubits are 
tunable…
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Electron spin 1/2: 
T2

* = 270 µs
T2, CPMG = 560 ms
Fprep/readout = 97%
Fcontrol = 99.95%

Nuclear spin 1/2: 
T2

* = 600 ms
T2, CPMG = 36.5 s
Fprep/readout = 99.995%
Fcontrol = 99.99%

But they are not easily coupled 
together!

Electron spin 1/2: 
T2

* = 120 µs
T2, CPMG = 28 ms
Fprep/readout = 92%
Fcontrol = 99.59%

2-qubit gate!

[1] Veldhorst, M. et al. An addressable quantum dot qubit with fault-
tolerant control-fidelity. Nat Nano 9, 981–985 (2014).
[2] Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 
410–414 (2015).

[1] Muhonen, J. T. et al. Storing quantum information for 30 seconds in a nanoelectronic
device. Nat Nano 9, 986–991 (2014).
[2] Muhonen, J. T. et al. Quantifying the quantum gate fidelity of single-atom spin qubits
in silicon by randomized benchmarking. Journal of Physics: Condensed Matter 27, 
154205 (2015).

But they are not quite as high 
fidelity!


