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Why silicon spin qubits?

Donor (D) qubits are high Quantum dot (QD) qubits are
fidelity... tunable...

Singlet-triplet spin qubit in GaAs:
» All-electrical control

Electron spin 1/2: Nuclear spin 1/2: T : :
. ' « Two-qubit gates possible
T, = 270 ps T, =600 ms qublt gates p
—_ 0 — (0]
Fprep/readout =97% Fprep/readout =99.995%
Fcontrol =99.95% Fcontrol =99.99% But they are nOt qUIte as hlgh
_ fidelity!
But they are not eaS"y cou pled [1] Shulman, M. D. et al. Demonstration of entanglement of electrostatically coupled
singlet-triplet qubits. Science 336, 202—-205 (2012).
gwm‘e;hl- Storing quantum information for 30 seconds in a nanoelectronic [2] Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor
eviced Nat Nano 9, 386-991 (2014). quantum dots. Science 309, 2180-2184 (2005).
[2] Muhonen, J. T. et al. Quantifying the quantum gate fidelity of single-atom spin qubits [3] Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-

in silicon by randomized benchmarking. Journal of Physics: Condensed Matter 27, fidelity. Nat Nano 9, 981-985 (2014).
154205 (2015). [4] Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410-414 (2015).



Nuclear-driven ST rotations in a QD-D system

Patrick Harvey-Collard

@)

Nation

Sandia

al

Laboratories

UNIVERSITE DE

SHERBROOKE

In this presentation:

First coherent coupling between a
quantum dot (QD) and a donor (D)
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Singlet-triplet encoding

QD-D
Double QD
+e -_— ." -
+ PR R R
. SR quantum ..
+ 4 4 44+
Charge stability diagram s - |008e dot
J PR R R R

Qubit Bloch Sphere

Spin states for two _
alactrone ISI

1S) =1 — 1)
+ 1)

|"#I'

Toi
V right 7o

ST qubit theory: J. M. Taylor, J. R. Petta, A. C. Johnson, A. Yacoby, C. M. Marcus, and M. D. Lukin, “Relaxation, dephasing, and quantum control of electron
spins in double quantum dots,” Phys. Rev. B 76, 035315 (2007).
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Driving AB, rotations in the singlet-triplet

gylgl:tnuclear field
gradient Si: micromagnets
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200nm

LS LP RP RS

Micromagnet

[1]1 X. Wu, D. R. Ward, J. R. Prance, D. Kim, J. K. Gamble, R. T. Mohr,
Z. Shi, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, and

[1] J. M. Taylor, J. R. Petta, A. C. Johnson, A. Yacoby, C. M. Marcus, M. A. Eriksson, “Two-axis control of a singlet-triplet qubit with an

and M. D. Lukin, “Relaxation, dephasing, and quantum control of integrated micromagnet,” Proceedings of the National Academy of
electron spins in double quantum dots,” Phys. Rev. B 76, 035315 Sciences 111, 11938 (2014).



Nuclear-driven ST rotations in a QD-D system Patrick Harvey-Collard @ et ISJT{IEERR%{{EODBKE

Laboratories

New key idea: use contact hyperfine
interaction with single donor to rotate the spin’s

Hybrid QD-D singlet-triplet For electron on donor:
qubit H = (gue/h)S - Bext +
charge sensor (SET)

= Singlet-Triplet Hami i
- ‘ - /:/ST — J(e){yz + ABZ(€)5X

Advantages

» Fast and stable rotation speed:
Contact hyperfine interaction A/2 = 57
MHz gives 9 ns 1T rotation.

= Compact design: No need for nuclear
field bath, spin-orbit int.,
micromagnet. Just one QD.

= ST states: good probe of coherence
between the QD and the D.

Double QD-like system! = Get a nuclear spin for free.
For details: N. Tobias Jacobson (next) and Andrew D. Baczewski (next-next)
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Our silicon MOS nanostructure

Filled-shell valley configuration

conduction
‘ band
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Quantum dot-donor anti-crossing

Forms an effective (2,0) « (1,1) transition

(4,0) ARG
O
1.45 1
=

B.1)
swéeE

-0.24
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Nuclear-driven ST rotations in a QD-D system

State manipulation

1. Reset 2. Load, plunge

3. Manipulate 4. Measure

) S

(3,1
lQD © e = _
s |-

1.46

Energy

energy

detuning

-0.32 -0.28 -0.24
VCP (V) Detuning, €
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State manipulation

Singlet-triplet rotations driven by a single 31P nucleus

Triplet probability, ICS (pA)
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Detuning dependence of exchange
interaction

Triplet probability Triplet probability (Model)
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Coherence time and charge noise
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Visibility decay Coherence time vs detuning

2 . .
T T5 =13+0.7 us — 0 =1 peV |Si

S0 |€ =868 peV- .
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Charge-noise limited.
Possibly extended to > 10 us
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Summary

Triplet probability
0.2 0.3 0.4 0.5

~exp(—t/T1), T1=24+2pus
o ES

100

oxide (35 nm SiO2)

(@]
o

......

0 50 150
Wait time before measurement (us)

ES signal (a. u.)
o N A O

Manipulation time (ns)
H o))
o o

N
o

SR

500 1000 1500 2000 0 200 400 600 800
Total measurement time (us) Detuning (peV)

1.46 05F 4
(QD,D) | ﬁﬂtata |
2
; = | 1
— g I ]
S i, 5 )
= U 8 (o | 2
2145 NL ° 01 2 3 o
~ R =045} IS w + ; 1
‘ i S - f=56.9 + 0.4 MHz ++++++ .
(3 0) S (435 1 e £ =950 peV 6
R ; sweep 50 100 150 200 250 300 350
A ; fe Manipulation time (ns) 0 . .
-0.32 -0.28 -0.24 400 600 800 1000
V. (V) Detuning (ueV)

CP

Preprint: Nuclear-driven electron spin rotations in a single donor coupled to a silicon quantum dot.
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Perspectives

’ P TN RL This work: First coherent coupling
Kane’s original exchange “J between a quantum dot (QD) and a
gate donor (D)

o % ' oo:” J.éate ' ? [1] Kane, B.E. A
C B gSate 1 silicon-based
T o10% < nuclear spin
> = 3  quantum computer.
g . 1 Nature 393, 133-
g 10" £ o 137(1998).
E E A JG 2u5B/h=56 GHz 3

-
Is
S
T nlnq T

00 20 300

“Modern” préptsals involve
QDs
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[1] Pica, G., Lovett, B. W., Bhatt, R. N., Schenkel, T. & Lyon, S. A.
Phys. Rev. B 93, 035306 (2016).
[2] Tosi, G. et al. ArXiv e-prints (2015). 1509.08538.
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Coupling donor qubits directly
iInvolves atomic-precision
fabrication...

After incorporation:
1 donor

After incorporation:
0 donor

Not yet mature
technology (fails

stochastically)
[1] T. F. Watson, B. Weber, M. G. House, H. Blich, and M. Y. Simmons, “High-
fidelity rapid initialization and read-out of an electron spin via the single donor
D- charge state,” Phys. Rev. Lett. 115, 166806 (2015).

SHERBROOKE
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Our silicon MOS nanostructure

Vgate (V)

gate oxide (35 nm SiO2)

2D electron gas 28g; epilayer

Based on
Complementary Metal-Oxide-Semiconductor (CMOS)
technology
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Our silicon MOS nanostructpire
|/ R}
Silicon has 6 degenerate vz 1 [010]
(:)__ 2 >\\§ ‘[/1001

Filled-shell valley configuration

& Energy (eV) o

= 7T, Conduction band
/ \ = minimum x6 —
L Heavy holes

LR E7S

oxide (35 nm SIOZ) split-off band

Valley degeneracy is lifted because of the strong
confinement at the Si/SiO2 interface

(a) Quantum dots (b) Dopants
Bulk 2D Valley Bulk oD
A Splitting 1s (E)
CB minimum " ed\q i | CB minimum ===
- =¥ o -1o Valley
; 6—fo\dt dei]:)(_ifate Y. 1s(T2) | Splitting
egenerate 3 PR LT I
¢ : S . "3old
E B Valley
i RO [ Splittin
L L oas(an) e
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[1]1F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons, L. C. L. Hollenberg, G. Klimeck, S. Rogge, S. N. Coppersmith, and M. A. Eriksson,
“Silicon quantum electronics,” Rev. Mod. Phys. 85, 961 (2013).
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State preparation and readout

1. Reset 2. Load, plunge 3. Measure (4,0)T, —p fast
w ---> slow
4,0 3,1 (3, 1T
146 woy G — —— ° 4Ty
lQD D — @os XK -
< ® ¢ P to M process
= — >
Q o
1.45 o
N S 5 x
(]
©0) o0
L _ swe
) % '-."_% R
-0.32 -0.28 -0.24
Ver V)

(4S8,1)




State preparation and readout
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CP measurement level (V)

Patrick Harvey-Collard

@)

(4,0)T,

(4,0)S

Sandia
National
Laboratories

(3,1)S

3.1,

X

P to M process

Wait time before measurement (us)
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Building on ideas from: S. A. Studenikin, J. Thorgrimson, G. C. Aers, A. Kam, P. Zawadzki, Z. R. Wasilewski, A. Bogan, and A. S. Sachrajda, “Enhanced charge detection of spin qubit readout via an
intermediate state,” Applied Physics Letters 101, 233101 (2012).
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Triplet probability, lCs (pA)

Triplet probability, ICS (pA)
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How to couple multiple donors?

Direct coupling is
challenging

@ Si lattice sites

Si small displacements
% Ge lattice sites
~ Ge small displacements

Exchange constant J (meV)

"~ 80 100 120 140
Inter—donor distance (Angstrom)

Small wave functions!
Exchange oscillations are strong.
Near-atomic precision fab. required!

[1] Koiller, B., Hu, X. & Das Sarma, S. Exchange in silicon-based quantum computer
architecture. Phys. Rev. Lett. 88, 027903 (2001).

[2] Wellard, C. J. & Hollenberg, L. C. L. Donor electron wave functions for phosphorus in
silicon: Beyond effective-mass theory. Phys. Rev. B 72, 085202 (2005).

Kane’s original exchange “J”
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[11Kane, B. E. A
silicon-based
nuclear spin
quantum computer.
Nature 393, 133—
137 (1998).

“Modern” prépssals involve

QDs

[1] Pica, G., Lovett, B. W., Bhatt, R. N., Schenkel, T. & Lyon, S. A.
Phys. Rev. B 93, 035306 (2016).
[2] Tosi, G. et al. ArXiv e-prints (2015). 1509.08538.
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Why silicon spin qubits?

Donor (D) qubits are high Quantum dot (QD) qubits are
fidelity... tunable...

Electron spin 1/2:
T, =120 ps

T3, cpve = 28 ms
Fprep/readout =92%
O Fooriro = 99.59%

C

MW antenna 2-qubit gatel
Electron spin 1/2: Nuclear spin 1/2:
T, =270 ps T, =600 ms
Tz, CPMG = 560 ms T2, CPMG = 365 S
Fprep/readout =97% Fprep/readout =99.995%
Feontrol = 99.95% Foonirol = 99.99%
But they are not easily coupled But they are not quite as high
! |a|. Storing quantum information for 30 seconds in a nanoelectronic M H ,!M. t al. An add bl t dot qubit with fault-
e S Aoty s st it o

[2] Muhonen, J. T. et al. Quantifying the quantum gate fidelity of single-atom spin qubits . . L
in silicon by randomized benchmarking. Journal of Physics: Condensed Matter 27, [2] Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526,

154205 (2015). 410-414 (2015).



