

Partial Differential Equation-Constrained Optimization Framework for Viscoelastic Material Design

Acoustical Society of America Conference, May 25, 2016

Clay Sanders

Duke University

NSF/Duke IGERT WISENet Fellow

Sandia National Laboratories

Department of Computational Solid Mechanics and Structural Dynamics

Timothy Walsh, PhD (Sandia), Wilkins Aquino, PhD (Duke)

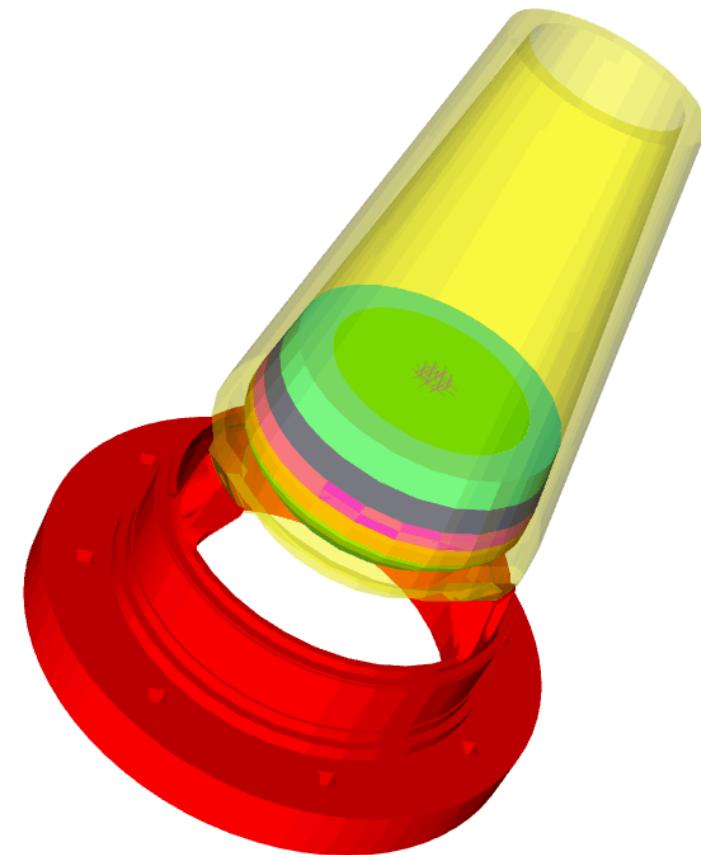
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

Outline

- Research Motivation
- PDE-Constrained Framework for Viscoelastic Material Inversion
 - Design Problem Statement
 - Coupled Acoustic-Structural Variational Boundary Value Problem Formulation
 - Numerical Optimization Formulation
- Numerical Implementation in Sierra SD + ROL
 - Example #1: Mechanical vibration reduction
 - Example #2: Acoustic cloaking with layered viscoelastic foam
- Questions?

Research Motivation

- Many engineering systems experience harsh vibration environments
 - Examples: Aerospace structures, aircraft structures, civilian structures
- Current engineering practice 'ad hoc' in the design of foam materials for damping
- Large scale PDE-constrained optimization can select materials that provide optimal vibration control

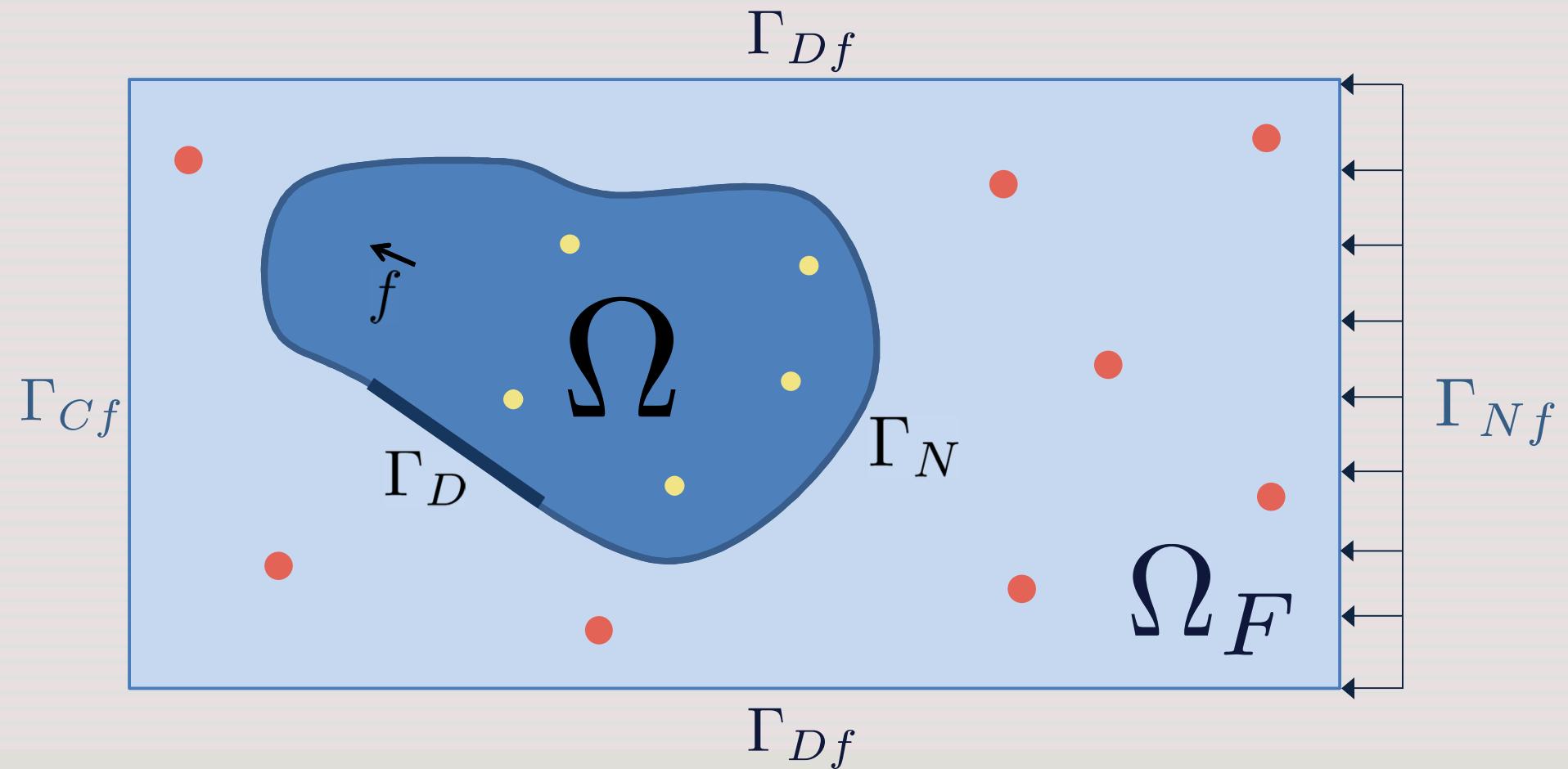


Inverse Problem as Design Problem

Objectives:

- Design material by solving a material-identification inverse problem
- Find optimal properties of viscoelastic materials to match structural acoustic response to desired behavior
 - Complex Bulk (b) and Shear (G) moduli and spring/dashpot constants are design variables
- Generate frequency-dependent design by solving Acoustic-Structural Interaction (ASI) system at multiple frequencies

Coupled ASI Domain



() = Measurement locations (Red: microphone, Yellow: accelerometer)

Governing Equations for Coupled ASI Problem

Coupled PDE's for ASI govern system behavior and provide constraints for optimization

Elastodynamics

$$\begin{aligned}\nabla \cdot \sigma &= \rho \ddot{\mathbf{u}}, \quad \text{in } \Omega \times (0, T) \\ \sigma \cdot \mathbf{n} &= \mathbf{h}, \quad \text{on } \Gamma_N \times [0, T] \\ \sigma &= \mathbf{D} : \nabla \mathbf{u}, \quad \text{in } \Omega \times [0, T] \\ \mathbf{u} &= 0, \quad \text{in } \Gamma_D \times [0, T]\end{aligned}$$

$$\Omega \cup \partial\Omega = \bar{\Omega}$$

$$\Gamma_D \cap \Gamma_N = \emptyset$$

$$\Gamma_D \cup \Gamma_N = \partial\Omega$$

Acoustic Wave Equation

$$\begin{aligned}\nabla^2 \phi &= \frac{1}{c^2} \ddot{\phi}, \quad \text{in } \Omega_f \times (0, T) \\ \nabla \phi \cdot \mathbf{n}_f &= -\rho_f \ddot{u}_n, \quad \text{on } \Gamma_{Nf} \times [0, T] \\ \phi &= 0, \quad \text{on } \Gamma_{Df} \times [0, T] \\ \phi(0, T) &= 0, \quad \text{in } \Omega_f \\ \dot{\phi}(0, T) &= 0, \quad \text{in } \Omega_f\end{aligned}$$

$$\Omega_f \cup \partial\Omega_f = \bar{\Omega}_f$$

$$\Gamma_{Df} \cap \Gamma_{Nf} = \emptyset$$

$$\Gamma_{Df} \cup \Gamma_{Nf} = \partial\Omega_f$$

Coupled ASI Equations

- Fourier transform of time-domain equations for frequency domain/ steady-state analysis
- Finite Element discretization

$$\left(\begin{bmatrix} \mathbf{K}_s & 0 \\ 0 & \mathbf{K}_f/\rho_f \end{bmatrix} + i\omega \begin{bmatrix} \mathbf{C}_s & \mathbf{L} \\ \mathbf{L}^T & -\mathbf{C}_f/\rho_f \end{bmatrix} + \omega^2 \begin{bmatrix} \mathbf{M}_s & 0 \\ 0 & -\mathbf{M}_f/\rho_f \end{bmatrix} \right) \begin{bmatrix} u \\ \phi \end{bmatrix} = \begin{bmatrix} f_s \\ f_f/\rho_f \end{bmatrix}$$

- $\{\mathbf{K}_s, \mathbf{C}_s, \mathbf{M}_s\}$ = Structural Stiffness, Damping, and Mass Matrices
- $\{\mathbf{K}_f, \mathbf{C}_f, \mathbf{M}_f\}$ = Fluid Stiffness, Damping, and Mass Matrices
- \mathbf{L} = Coupling Matrix

Design Variables

- Viscoelastic materials with frequency-dependent complex shear and bulk moduli

$$G(\omega) = G_R(\omega) + iG_I(\omega)$$

$$b(\omega) = b_R(\omega) + ib_I(\omega)$$

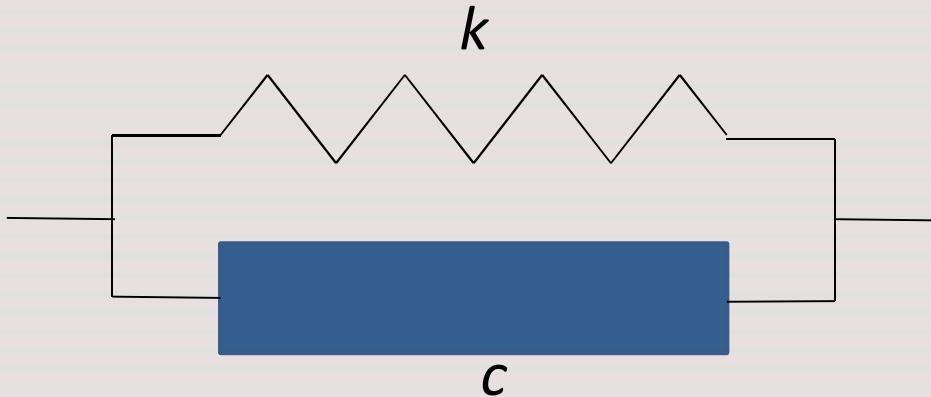
- Represented in structural stiffness matrices in finite element discretization

$$\begin{aligned}\mathbf{K}_s &= \int_{\Omega} \mathbf{B}^T \mathbf{D} \mathbf{B} d\Omega \\ &= \int_{\Omega} \mathbf{B}^T (G_R \mathbf{D} + b_R \mathbf{D}_R) \mathbf{B} d\Omega + \\ &\quad i \int_{\Omega} \mathbf{B}^T (G_I \mathbf{D} + b_I \mathbf{D}_R) \mathbf{B} d\Omega\end{aligned}$$

$$\mathbf{p} = \{G_R, b_R, G_I, b_I\}$$

Design Variables: Spring & Dashpot

- Two-node spring and dashpots used for stiffness and damping in acoustic/structural system
- Spring and damping constants $\{k, c\}$ serve as design variables



$$\mathbf{p} = \{k, c\}$$

Least-Squares Minimization Approach

Objective Function: Least-squares residual between computed and desired physical fields, with regularization term for design variable

$$\mathcal{J}(\mathbf{u}, \mathbf{p}) = \frac{1}{2} (\hat{\mathbf{u}} - \mathbf{u}^h)^T [Q] (\hat{\mathbf{u}} - \mathbf{u}^h) + \mathcal{R}(\mathbf{p})$$

$\hat{\mathbf{u}}$ = Measured Data, $\in \mathbb{C}^{sd+ad}$

\mathbf{u}^h = Discrete Solution, $\in \mathbb{C}^{sd+ad}$

$[Q]$ = Measurement Matrix

\mathbf{p} = Design Variable, $\in \mathbb{C}^{ndv}$

$\mathcal{R}(\mathbf{p})$ = Regularization Term

sd = Structural Degrees of Freedom

ad = Acoustic Degrees of Freedom

ndv = Number of Design Variables

Optimization Formulation

- Define the minimization problem:

$$\min_{\mathbf{u}, \mathbf{p} \in \mathcal{U} \times \mathcal{P}} \mathcal{J}(\mathbf{u}, \mathbf{p})$$

Objective Functional

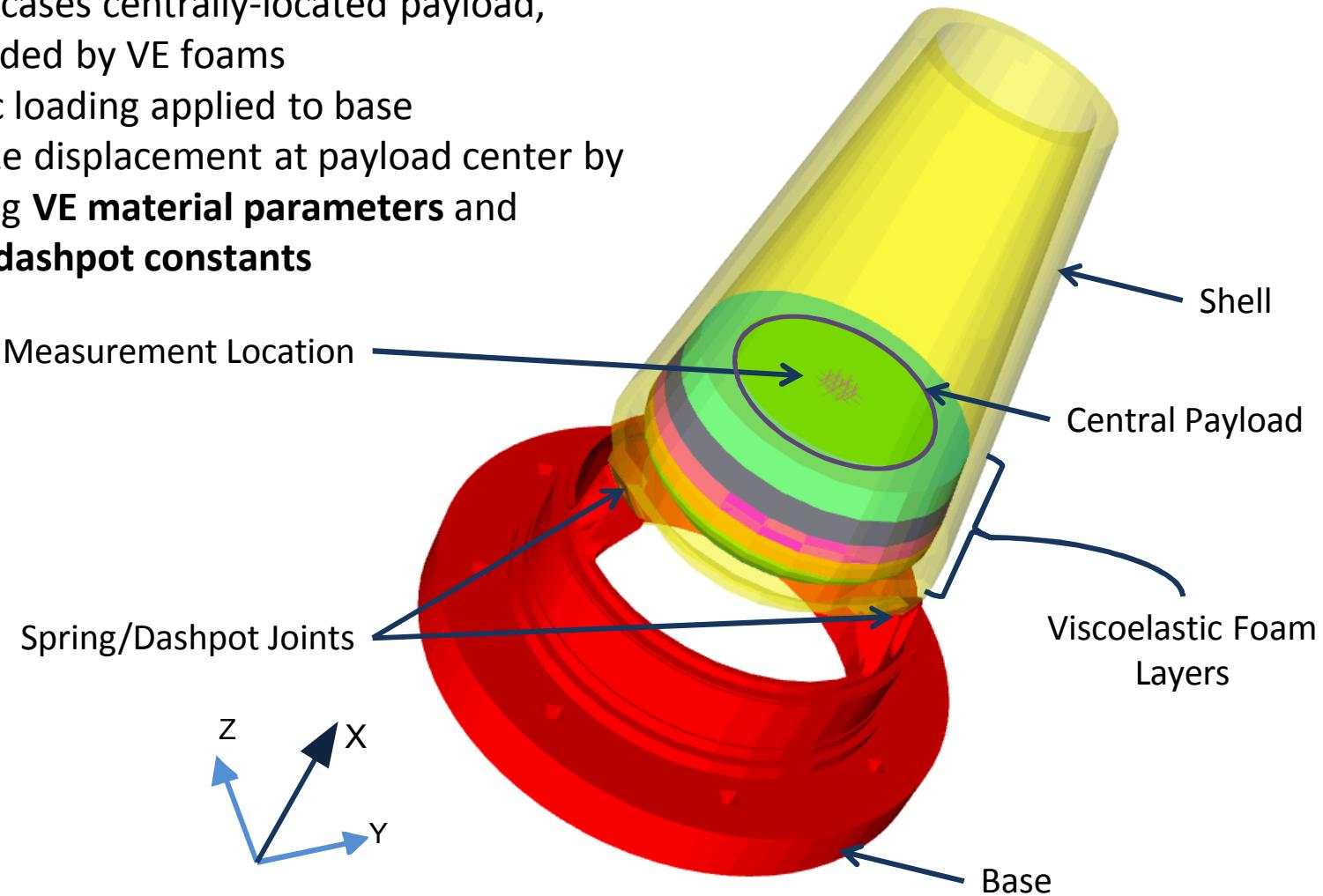
$$\text{subject to } \mathbf{g}(\mathbf{u}, \mathbf{p}) = 0$$

with PDE Constraint (e.g. Structural-Acoustic Helmholtz Equation)

- Reduced-Space Methods: Assume state variable \mathbf{u} as function of design variable \mathbf{p}
- Gradient-based optimization implementation in Rapid Optimization Library/Sierra SD
 - Numerical optimization using Newton-Krylov methods with Trust-Region Search

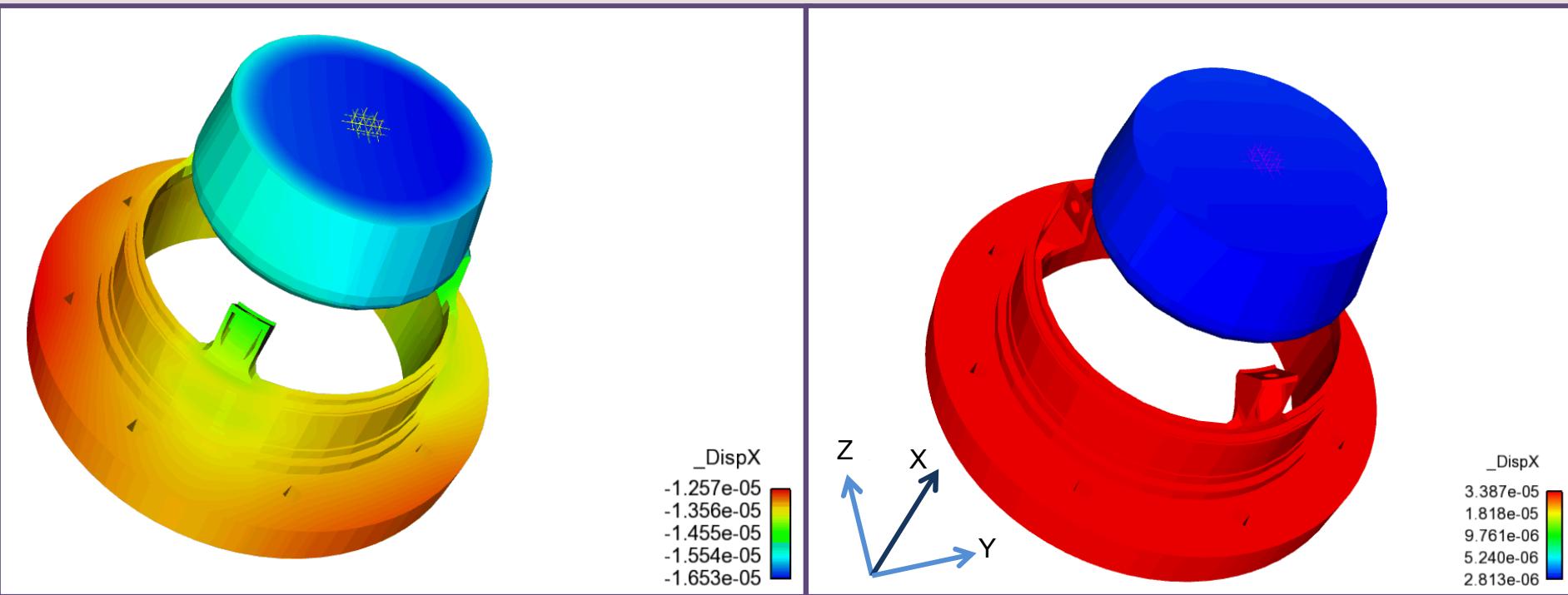
Case Study 1: Mechanical Vibration Reduction

- Shell encases centrally-located payload, surrounded by VE foams
- Periodic loading applied to base
- Minimize displacement at payload center by adjusting **VE material parameters** and **spring/dashpot constants**



Case Study 1: Mechanical Vibration Reduction

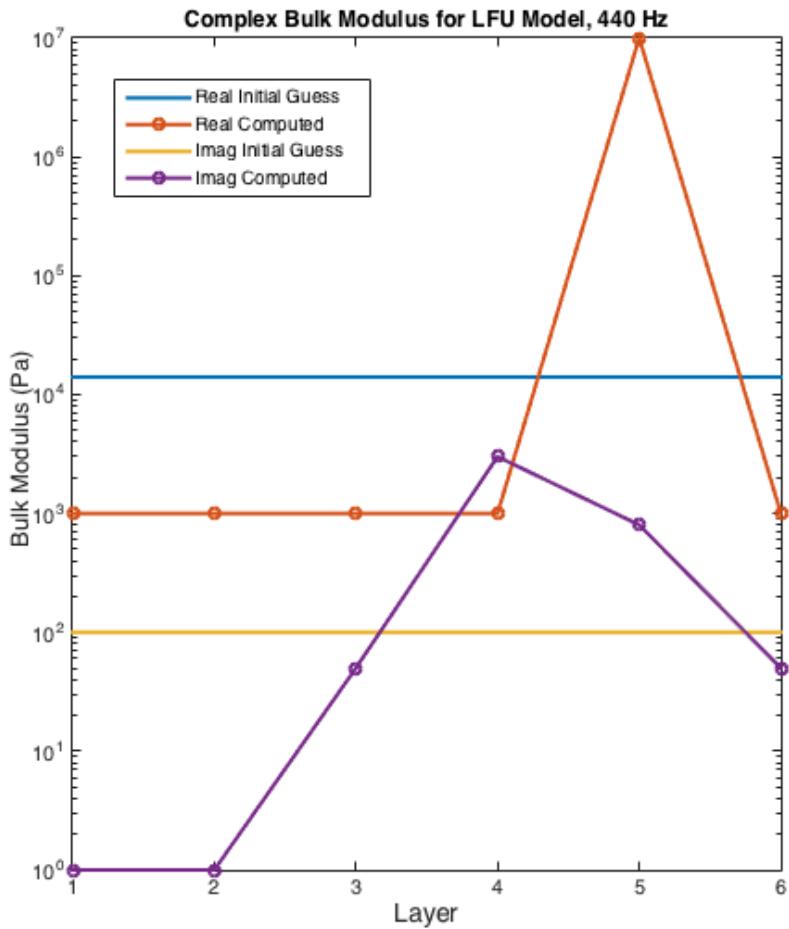
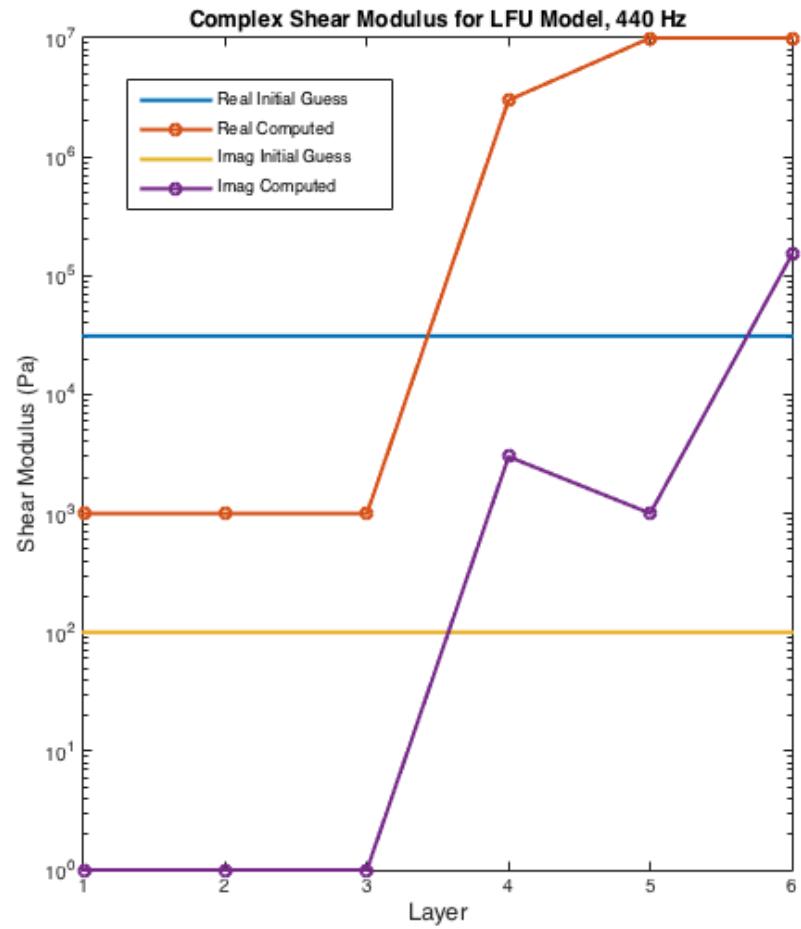
- Displacement at measurement locations minimized (dependent on frequency)



Left: X-displacement in base and payload with initial material guesses, 440 Hz loading;

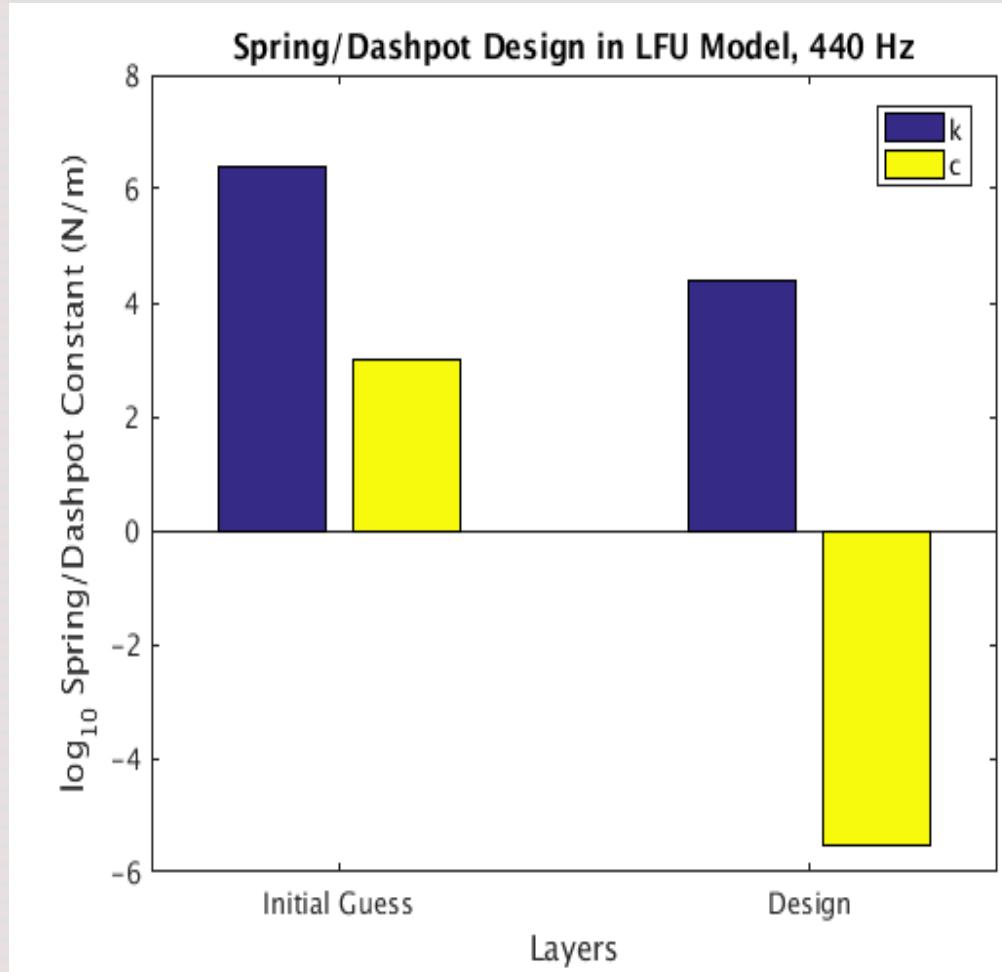
Right: X-displacement in design

Case Study 1: Mechanical Vibration Reduction



Left: Real and imaginary Bulk moduli for 6 VE layers, compared with initial guess
Right: Real and imaginary Shear moduli for 6 VE layers, compared with initial guess

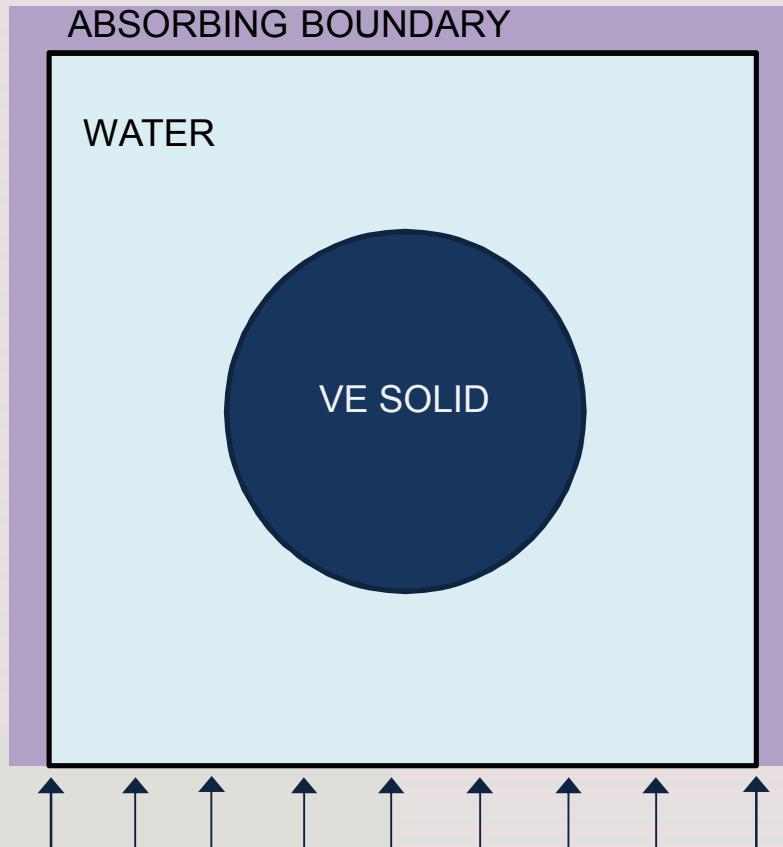
Case Study 1: Mechanical Vibration Reduction



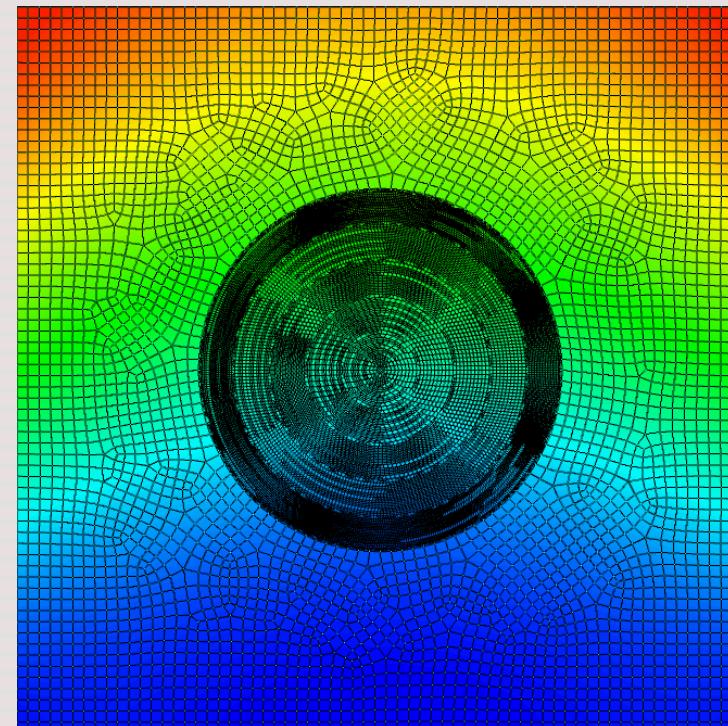
Right: Designed spring and damping constants, compared to initial guess

Case Study 2: Acoustic Cloaking

- 2-D fluid region with circular VE solid inclusion
- Inclusion consists of concentric rings w/ distinct material properties
- Periodic acoustic load applied to end
- Match forward problem pressure distribution by adjusting **VE material parameters**



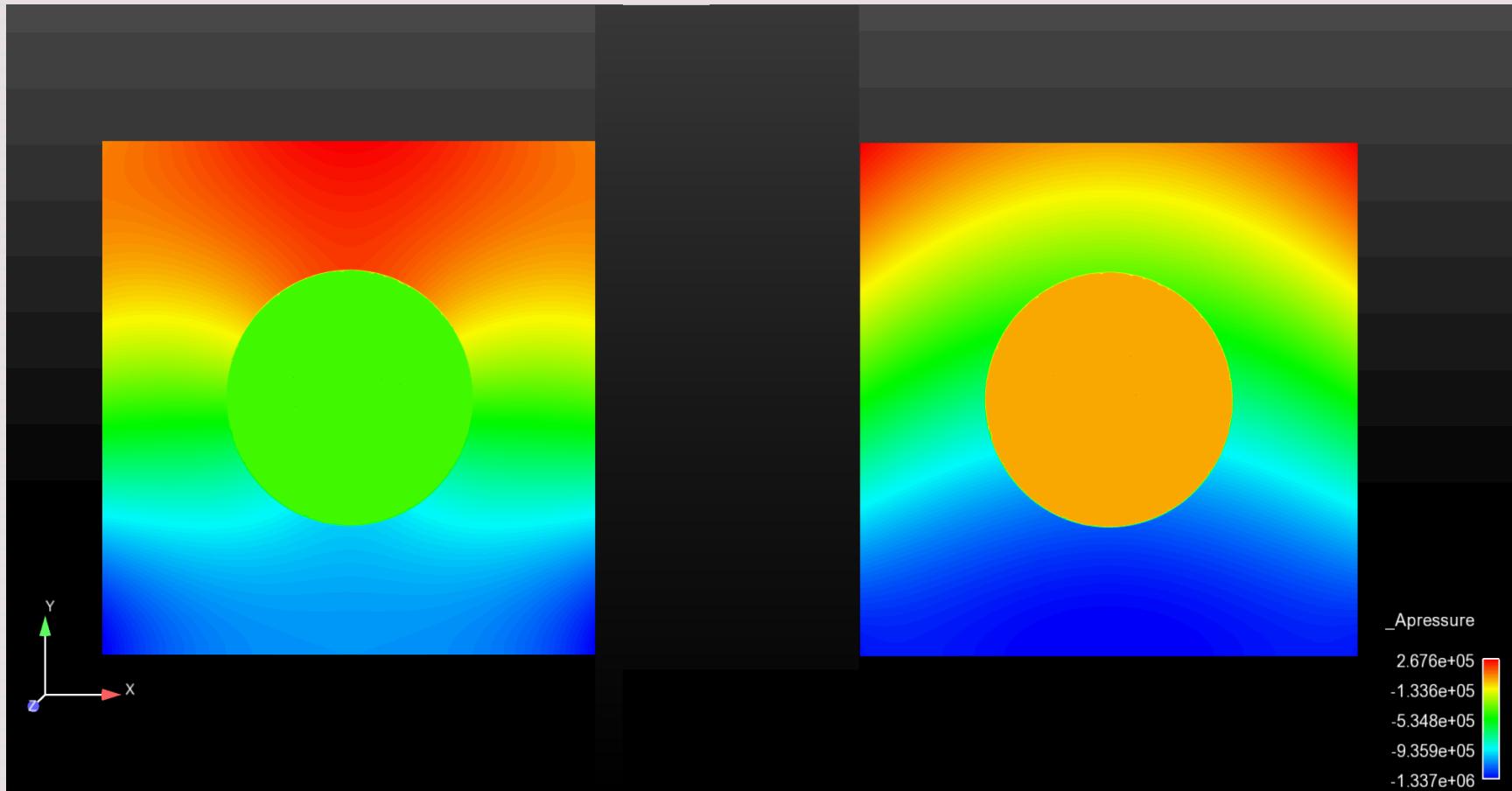
Left: Model Set up



Right: Forward problem pressure distribution (500 Hz loading) in model with 50 layers

Case Study 2: Acoustic Cloaking

- Optimized VE foams allow recovery of desired pressure distribution

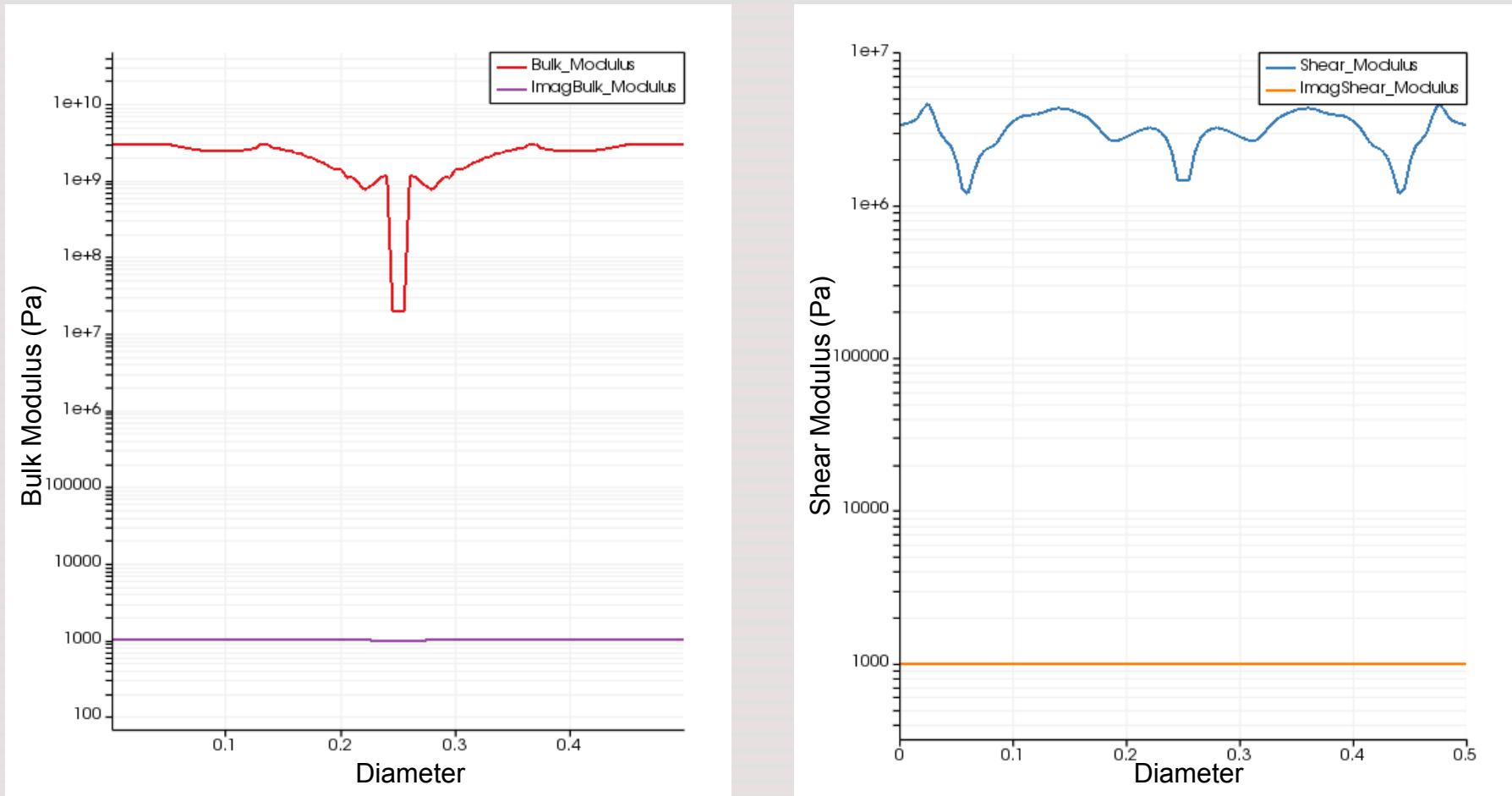


Left: Acoustic pressure distribution with initial material guess (500 Hz Loading)

Right: Pressure distribution after convergence to optimized design

Case Study 2: Acoustic Cloaking

Computed material parameters vary across disk diameter



Figures: Real & imaginary bulk moduli (left) and shear moduli (right) across inclusion diameter

Conclusions

- Abstract formulation for viscoelastic material design via numerical optimization
- Applications to mechanical and acoustic loading scenarios
- Frequency dependent material designs
 - Difficulties in computing solution for some frequencies (near resonance)
 - Sensitivity to initial guesses
- Directions for further development:
 - Improved objective (Modified Error in Constitutive Equations Method)
 - Heterogeneous viscoelastic materials
 - Metamaterials

Acknowledgments

- Support through:
 - NSF IGERT WISeNet Traineeship, Grant #DGE-1068871
 - Sandia National Laboratories
- Prof. Wilkins Aquino, Ph.D.
- Timothy Walsh, Ph.D
- Software: Sierra SDA & ROL, produced by Sandia National Labs