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Research Motivation

- Many engineering systems experience
harsh vibration environments
- Examples: Aerospace structures,
aircraft structures, civilian
structures
- Current engineering practice ‘ad hoc’
in the design of foam materials for
damping
- Large scale PDE-constrained
optimization can select materials that
provide optimal vibration control
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Inverse Problem as Design Problem

Objectives:

* Design material by solving a material-identification inverse problem

* Find optimal properties of viscoelastic materials to match structural
acoustic response to desired behavior

« Complex Bulk (b) and Shear (G) moduli and spring/dashpot constants
are design variables
* Generate frequency-dependent design by solving Acoustic-Structural
Interaction (ASI) system at multiple frequencies
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Coupled ASI Domain

0 A

(Q O)= Measurement locations (Red: microphone, Yellow:
accelerometer)




Governing Equations for Coupled ASI Problem

Coupled PDE’s for ASI govern system behavior and provide constraints for optimization

Elastodynamics Acoustic Wave Equation

V-.o=pi, in 2x(0,7T)

oc-n=h, on I'y x [0,T]
ocg=D:Vu, in Q x [0,T]
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Coupled ASI Equations

- Fourier transform of time-domain equations for frequency domain/ steady-state
analysis
- Finite Element discretization

<[I§ KfO/Pf] T [Sﬁ _Cf:/Pf] te ll\g —M(jf/pr m - [ffj;spf]

o {K,, C,;,M,} = Structural Stiffness, Damping, and Mass Matrices

o {K¢, C¢ M} = Fluid Stiffness, Damping, and Mass Matrices

e L. = Coupling Matrix
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Design Variables

- Viscoelastic materials with frequency-dependent complex shear and bulk moduli
G(w) = GR(w) -+ iG[(w)
b(w) = br(w) + ibs (w)

- Represented in structural stiffness matrices in finite element discretization

K, = / BT DB
Q)
\P)

i / B’ (G/D + b;Dg) BdQ
Q
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Design Variables: Spring & Dashpot

- Two-node spring and dashpots used for stiffness and damping in acoustic/structural
system

- Spring and damping constants {k, ¢} serve as design variables

k
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Least-Squares Minimization Approach

Objective Function: Least-squares residual between computed and desired physical
fields, with regularization term for design variable

T(up) = (a-u")" [Q] (&~ ) + R(p)

u = Measured Data, € e e
B

— Discrete Solution, € C*dtad
[Q] = Measurement Matrix
p = Design Variable, € C*%
R(p) = Regularization Term
sd = Structural Degrees of Freedom

ad = Acoustic Degrees of Freedom

ndv = Number of Design Variables
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Optimization Formulation

- Define the minimization problem:

min j(u, p) Objective Functional
u,pcUtU xP
. with PDE Constraint (e.g. structural-
SUbJGCt tO g(ll, p) — O Acoustic Helmholtz Equation)

- Reduced-Space Methods: Assume state variable U as function of design

variable p
- Gradient-based optimization implementation in Rapid Optimization
Library/Sierra SD
- Numerical optimization using Newton-Krylov methods with Trust-Region
Search
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Case Study 1: Mechanical Vibration Reduction

Shell encases centrally-located payload,
surrounded by VE foams

Periodic loading applied to base

Minimize displacement at payload center by
adjusting VE material parameters and
spring/dashpot constants

~— Shell

Measurement Location

Central Payload

Viscoelastic Foam
Layers

Spring/Dashpot Joints

74 X

Base
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Case Study 1: Mechanical Vibration Reduction

- Displacement at measurement locations minimized (dependent on frequency)

=

_DispX
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5.240e-06
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Left: X-displacement in base and payload with initial material guesses, 440 Hz loading;
Right: X-displacement in design
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Case Study 1: Mechanical Vibration Reduction
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Left: Real and imaginary Bulk moduli for 6 VE layers, compared with initial guess
Right: Real and imaginary Shear moduli for 6 VE layers, compared with initial guess
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Case Study 1: Mechanical Vibration Reduction

Spring/Dashpot Design in LFU Model, 440 Hz

I
e |

I'ng Spring/Dashpot Constant (N/m)

Initial Guess Design

Layers

Right: Designed spring and damping constants, compared to initial guess
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Case Study 2: Acoustic Cloaking

- 2-D fluid region with circular VE solid inclusion
- Inclusion consists of concentric rings w/ distinct material properties
- Periodic acoustic load applied to end

- Match forward problem pressure distribution by adjusting VE material parameters

ABSORBING BOUNDARY

N A

Left: Model Set up
Right: Forward problem pressure distribution (500 Hz loading) in model with 50 layers
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Case Study 2: Acoustic Cloaking

Optimized VE foams allow recovery of desired pressure distribution

_Apressure
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Left: Acoustic pressure distribution with initial material guess (500 Hz Loading)

Right: Pressure distribution after convergence to optimized design



Case Study 2: Acoustic Cloaking

Computed material parameters vary across disk diameter
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Figures: Real & imaginary bulk moduli (left) and shear moduli (right) across inclusion diameter
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Conclusions

Abstract formulation for viscoelastic material design via numerical optimization

Applications to mechanical and acoustic loading scenarios

Frequency dependent material designs
- Difficulties in computing solution for some frequencies (near resonance)
- Sensitivity to initial guesses

Directions for further development:
- Improved objective (Modified Error in Constitutive Equations Method)
- Heterogeneous viscoelastic materials
- Metamaterials
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