First principles-based moire model for, .
incommensurate graphene on BN

Catalin Spataru
Konrad Thurmer

Materials Physics Dept.
Sandia National Laboratories @

)"37,3.?,‘




Introduction

AFM image*:
» Various properties of graphene depend strongly on

the underlying substrate:
- electronic, optical, transport, etc..

* BN is substrate of choice for graphene devices:
-large smooth areas due to strong intra- and weak
inter-layer bonding.
-less charged impurities, small charge puddle fluct.
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« C/BN - band gap as large as 30 meV':
-commensurate domains’.
-many-electron effects?. STM image5:

e Atomic structure not well understood:
- max. corugation: 0.2 A (theory?3) vs. 0.4 to 3 A (exp.49).
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Motivation

» Desired: atomic structures with state-of-the-art DFT accuracy.
-weak interaction + small lattice mismatch ~1.8% > large moiré
structures cannot be treated with ab initio DFT.
v DFT-based moiré model for incommensurate graphene on BN:
-large moiré periodicity.

-various relative azimuthal orientation.



Ab initio approach

« Density Theory Functional (DFT) within local density approx. (LDA?").
-impact of van der Waals corrections checked via Grimme’s method?.

* Projector augmented wave (PAW) pseudopotentials3 as implemented in VASP4.

Supercell with 1 graphene layer on top of 3 hBN layers:
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v Relaxed forces < 1 meV/A.
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Moiré model

Substrate (BN) is represented by a sum of sinusoids
- potential minima z,.

Assume harmonic graphene-substrate
interaction.

Intra-graphene forces Fy,, derived from .B .N ® © o ©o
calculated flexural rigidity.

Fqex 1S balanced by the force from substrate interaction.



Harmonic C-BN interaction: O F = 1/2 k 822
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Flexural force due to change in bond angle:

F ex flex [Z - f (Zneighborsl Al )]

LDA forces for a reasonable initial guess of corrugated graphene 2> kg,
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Force from substrate interaction: F ter (Z ZO)
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« Benchmark moiré model against LDA
for several rotations of C/BN.

-strained BN lattice to accommodate
manageable supercell size.
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» Non-adjustable 4-parameter model
reproduces LDA C-positions (relative to BN)
of hundreds of atoms with ~ 0.01 A accuracy.




Apply moiré model to unstrained C/BN systems that are not doable via DFT.

Predict structure and energy:
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- small-angles are most favorable.

- energy cost for rotation is similar to the
one measured for C/Ir’.

- in-plane relaxation not included in energy;
this might affect local minimum at 30°.

1) Rogge et al. Nat.Comm. 6 6880 (2015).



« Unrotated 14 nm moiré (C/BN 57/56):
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Absolute corrugation: 0.42 A (takes into account relaxation of BN)

Frenkel-Kontorova model for in-plane relaxation: no commensurate
domains/sharp boundaries.



Frenkel-Kontorova model applied to 37 nm moiré (C/BN 148/147):
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« Sharp boundaries obtained only for
unrealistically large moire. 1) Woods et al. Nature Phys. 10 451 (2014)



Summary

« Non-adjustable 4-parameter moiré model predicts C/BN atomic
structures close to DFT-accuracy.
- can be applied to other heterostructure systems.

« Max. corrugation for C/BN: 0.4 A.
« Small rotation angles are most favorable energetically.

Future work:
« Use moiré model to inform first principle calculations of small,

commensurate systems - parameterize a tight-binding Hamiltonian.
-predict electronic structure, optical properties, etc..
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DARPA Introduction

Metal-TE contacts.
* important for thin-film thermoelectric devices

for high heat-flux applications (e.g. chip cooling).
- reduced contact resistivity (Joule heating) is

critical to device performance.
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v" First principles-based approach to study the properties of
electrical contacts to TE materials.

—>help bridge the gap between materials and devices.

—>work with device performers to achieve better metal contacts.



“ Motivatio

Metallized epitaxial Bi,Te;/Sb,Te; de¥lce structures provided to Sandia.
(Courtesy of Philip Barletta, RTI)

Au (5000A)

Ni (20004)
Cr {300A)

-17um)

Bi,Te, buffer layer

FIB/SEM cross-section:

(1500A)

GaAs substrate
(600um)

Measured p. ~ 107 to 10-°Qcm?

Goal:p. < 10-8Qcm? ol oIl

5 micron



DARPA What is the fundamental limit of contact resistivity ?

R T :

\
\\ 25} Sketch of the contact resistance
\ __t estimation using the four-wire -
\ % 20 probe technique.
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- TE resistivity in balistic regime = P glm.

min . - R0=12.9 kQ
pC — RO /DOM - DOM=# of modes/unit area



Density of modes for TE
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Bi,7e,: p™ ~10"°Qxcm’ at p~10"holes/cm’.

Jeong, Kim, Luisier, Datta and Lundstrom,'JAP 107, 023707 (2010).



Reflectionless metal contact:

- metal DOM >> TE DOM.
- for every mode (k;,, K,ep,E) in the TE, there
is a corresponding mode in the metal.

— no mode scattering at contact.

Real materials:

- metal and TE have different chemical potential:

- charge transfer, eletrostatic barrier.

- materials have atomic structure:
- bandstructure mismatch effects.

Twin boundary in Si: Electronic bandstructure of a Si single crystal
for k;, along two directions. Green lines = unrotated Si crystal. Red
lines = crystal rotated 180° about the z-axis.

- other effects: disorder, atomic roughness,

inter-diffusion, mixed interfacial phase, oxidation, €

B, Ec(eV)

TE
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Tunnel
barrier
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@ Ab initio calculations

v" Electronic properties of bcc Cr, fcc Ti, Bi,Te;, Sb,Te;.
- bulk and slab (several surfaces), superlattice.

Cr bulk

20
— s

PDOS(E)

E-E. (eV)

« High density of d-electron states. « Top. Ins. > metallic surfaces states.
- expect that band-structure mismatch
effects not important.

Use VASP code: Kresse and Furthmuller, Phys. Rev. B 54, 11169 (1996).



Bulk Sb,Te, Bandstructure
Trgonal, LDA_Exp_Latt, Spin-Orbat







Bulk Bi,Te./Sb,Te, Superlattice (10/50 A) Bandstructure
Trigonal, LDA Exp Latt, Spin-Orbit
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Lﬁurface atomic SL]rface atomic Surface atomic
density density density
0.2378 / A2 0.2522 / A2 0.1373 / A2

« Strong Cr-Te interaction + large lattice mismatch - interface disorder
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v" Several other semiconductor/metal interfaces have been

considered:

Sb,Te,/Cr(110)
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‘vertical’ Bi,Te,;/Cr(110)
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‘Vertical’ geometry may be relevant
for interface at step edges.
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v" Several other semiconductor/metal interfaces have been

considered:

Bi,Te,/Ti(1010)

 Ti induces slightly less disorder in Bi,Te; than Cr.
» - better match between hexagonal planes.



—_Bi 2T93-Cr

ol P —Bi,Te,-Ti _  Tunnel

barrier

Er [\ Ec

Avg. El. Pot [eV]
: (6]

—Y
o

TE Z[A] metal

« Atomistic calculations reveal no tuneling barrier.
- short bond-length between metal and TE.

v
How about band bending ?



Work Function of Metal Cr and Ti

vvacuum
yy N N
Th: ~4.6 eV Th: ~4.2 eV
Th: -5.1 eV Exp: ~4.3 eV Exp: 4.1-4.5 gV
C \4
E, = 0.15eV
v
—pite—

« TE-metal chemical potential difference drives charge transfer - band bending.
- chemical interaction between Te and metal atoms also important.
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All analyzed cases show similar band bending:

<€

0
., undoped Bi,Te;/Cr |
=0
S o4 f
81 2
jg' — Crl00 (surf. den. = 0.2378 /A")
2 -0.6 — Cr110 (surf. den. = 0.2522 /A% |
g
<
0.8 -
1 | | |
0 R 10 15 20
ZA)
metal TE

» Strong charge-transfer doping. Expect:

- Schottky contact to p-type TE.
- Ohmic contact to n-type TE.

* More disorder - smaller band bending.
» Smaller band bending for cross-plane Bi,Te;/Cr contact.

Ave. electr. pot. diff [eV]

0

-0.2

-0.4

undoped Bi,Te;/Cr(110

Cross-plane contact |
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EC
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» Ti: slightly larger Schottky barrier

than in Cr case.
» Slightly smaller Schottky barrier

for Sb,Te;/Cr than for Bi,Te;/Cr.
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U T T — - T
3 —6Q, def in Q2 and Q6
=
Q,
Q
2 -0.1
o | | | |
£ 3 | | |
- _0_15_ .............. U T o T - - ............. [ T
g p-doped Sb,Te;-Cr
= | | | |
-0.2 ‘
023, ~40 230 20 10 0
distance [Ang] <€ >
TE metal

v' Band bending potential is not o0z ; ; ; ;
sensitive to position of defect. D0 cemng 0 °

Ab initio calcs., bulk Sb,Te; > E,=0.11 eV
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E-E_ (eV)

1

0.a

0.6

0.4

n.2

Projected spectral function:

E-E. (eV)

kA
K <> M

Undoped Sb,Te, Doped 5b,Te;-Cr
- quintuplet next to vacuum - quintuplet next to vacuum

Compare Dirac point > E,-E.~0.1 eV (6.5x10'° holes/cm?3)
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—6Q, def in Q2 and Q6 |

0,051

N |

El. pot. difference [eV]

O shTe;-Cr

023, 40 30 20 ~10 0

distance [Ang] £

TE

metal

7 A

025,

» Band-bending was obtained by drawing a
smooth line manually through the red line.
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* Macroscopic modeling

- \ i i i
0'2—%0 -40 -30 -20 -1
distance [Ang]

tunneling barrier

7 A

E,=0.11 eV
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» Developed modeling tool based on rigid-band model for calculating
contact resistivity.

» Estimated the contribution of several mechanisms to the contact
resistance of p-doped Sb,Te;/Cr interfaces.

Thermionic contribution

([ eap,) [ er)

J=AT? expk—%} eXka—TJ
B B ==

with the Richardson constant

%k
« 4dmem ké

o metal ~ TE
This gives the contact resistivity
; (o Lk Texp( .
=) | (it




@ *

Tunneling contribution

metal | TE
J = 4“}2’"’3”’ ¢ j dE[ £, (E)~ f5(E)] j P(E )dE.
P(E.)=exp| - 2*/;’7* j JeV(x)-E, dx}
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Full numerical calculation of transport:

_1OF y=E =011ev )
NE T=300K
08 B * = -

*o m 2.78m0
QOG L

— 06} i
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@ 02t -
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m s

m OO 1 n 1 n 1 N 1 N

0.0 0.2 0.4 0.6 0.8 1.0

W (nm)

« Thermionic field emission is the main contribution to the current.

v Estimated contact resistivity at T=300 K, doping=6.5x10" holes/cm3 :

P ~5x107 Qcm®
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Lower limit for resistivity

10-9 I ] e | L) | e | ) | -.
o~ - min __
*é} *
& m E
> DOM (E) =" —22L
> 2mh
0 T =300 K
) m* = 2.78m0
()
4
107°

0.00 0.05 0.10 0.15 0.20
E,-E. (eV)

» Defined as the limit when the tunneling length and barrier height go to zero
(relevant to n-type contacts).

1) Jeong, Kim, Luisier, Datta and Lundstrom, JAP 107, 023707 (2010).
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* Impact of

disorder
* A rough estimate of contact resistivity can be obtained from
the density of modes (DOM) of a superlattice:

pc:RO/DOM(EF)

- Rj=12.9 kQ (unit of quantum resistance )
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Ab initio DOM for superlattice geometry:

DOM Bi2Te3-Cr superlattice

fffffff?ffffffffffffEfifffffffffffffffffffffff;?ffff—dlsordered f

...................................................

« DOM(E[)~5x10"?cm2 > p=2.5x10"° Q cm?
- ordered interface - p. gets reduced by ~40% at most.

v SL estimate consistent with macroscopic modeling.



w *  Measured contact resistivity

Bulman, Barletta et al. Nature Comm. 7, 10302 (2016):

Table 2 | Specific electric contact resistivity, as measured by transmission line model (TLM) technique, for superlattice
thermoelectric elements with different structures and metallization.

Sample Growth information Contact metal Contact resistiy(-\
Type Target structure R (X2 per sq) Ly (um) /pc «Q cmzi\

A n d-doped n type Plated Au 1.57 4.20 2.68e-7

B p Bi,Tes/Sb,Tes Plated Au 0.93 12.26 1.36e-6

c n d-doped n type Evap Cr/Ni/Au 1.94 7.81 1.16e-6

D p Bi,Tes/Sb,Tes Evap Cr/Ni/Au 1.15 1.74 1.42e-6

Evap, evaporated. \/

« Measured p. ~ 107 to 10-*Qcm? - higher than theory estimate (for
similar doping levels ~ 10" holes/cm3).

v Theory suggests that clean (Bi,Sb),Te;/Cr interfaces should have
lower contact resistance:

- Original goal of p. < 108 Qcm? can be achieved.



DARPA “ TEM analyses

EDS mapping at interface

TEM analysis suggested a thin interfacial
layer between the Cr contact and the
(Bi,Sb),Te; material.

ACHCNEBEERE
MAG: 640kx - HV; 200kV

In conjuction with theory results, we hypothesize that this might be an oxide
layer.
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Good progress towards understanding the limits of low-p. in
realistics metal-contacts to TE.
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