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Abstract
Stackelberg or defender-attacker games have re-
cently become one of the main tools used in model-
ing security decisions in adversarial settings. How-
ever, the adversarial nature of these interaction
leads to a great deal of uncertainty in many areas,
such as the eventual outcome when particular ac-
tions are taken or the exact utilities of these out-
comes for the two sides. We propose a model of at-
tack interdiction in network settings that takes into
account outcome uncertainty for the attacker and
give a double oracle formulation for solving games
in this setting. Additionally, we show how to ex-
tend this model and algorithmic approach to a ro-
bust setting where there is uncertainty in attacker
probabilities or attacker utilities. Finally, we eva-
lute these models experimentally, focusing on the
effect of problem paramters on runtime and the po-
tential loss in defender efficiency if these uncertain-
ties are ignored.

1 Introduction
In recent years, game theoretic techniques have been used
to model adaptive intelligent adversaries in a wide range of
critical infrastructure settings, from airports [5] to ports [3].
Network security games (NSG) focus on a subset of these
problems, namely those that are most naturally modeled as
a graphical network, such as placing check points on road
networks [4] or choosing patrol routes in the waterways near
our major cities [11]. One important element of NGSs is the
asymmetry between the attacker and the defender. It is com-
monly assumed that the defender must commit to a defense
strategy that the adversary can observe to some extent before
launching an attack. This can be modeled by allowing the de-
fender to commit to a mixed strategy, with the adversary only
observing the overall strategy of the defender, but not the spe-
cific strategies chosen on the day of the attack. This allows
the defender to calculate how the attacker might optimally
respond to any potential defense configuration, and thus, the
optimal defense strategies generated by these algorithms are
robust to worst case choices by the attacker.

For computational reasons, much of the work in this
area [6; 4] has primarily focused on settings where interdic-

tion success is binary; once an edge or a target is defended,
if the attacker then chooses a strategy that uses this edge or
target they are guaranteed to be interdicted. However, an im-
portant aspect of interdiction in real world settings is the un-
certainty in the success of the interdiction.

In this work we extend this line of research by allowing for
defense actions that only provide probabilistic guarantees on
their ability to prevent attacks. We propose a model where the
attacker has a set of possible states (nodes), connected by a set
of possible actions (arcs or edges) that allow them to transi-
tion between these states. Each of these actions has a baseline
success rate, where we assume that if any action fails, the de-
fender is alerted to the presence of the attacker and the entire
attack fails. Furthermore, we assume that the defender has the
ability to impose additional security with some limited bud-
get. These additional security choices impact the attacker by
reducing the success probability of particular actions.

2 Problem Description
The base network security game model and domain follows
Tsai et. al [10] and Jain et. al [4]. The directed network is
defined on a graph G(N ,A). Although, the model presented
here is based on a directed graph, extensions to undirected
and bi-directed variants are straight forward.

A pure strategy of the defender is defined by a defense al-
location vector xi ∈ {0, 1}|A|, where each arc xiuv can be
defended at a cost of cuv . A total defense allocation budget
of Γb is enforced. A pure strategy for the attacker is a path
defined by a vector yj ∈ {0, 1}|A| that starts at a source node
and terminates at a target node, where the attacker’s utility
is given by the product of the payoff of the target node t(j)
and the probability of successfully traversing the entire path
prescribed by yj . For each arc in the path, we assume eva-
sion probabilities are independent. Thus, the attacker’s utility
U(xi,yj) is a function of the independent arc evasion prob-
abilities, which depends on the defender’s allocation xi, and
the payoff of the target node t(j). As an example, if arc (u, v)
is in attack path yj , that is to say yjuv = 1, the attacker’s eva-
sion probability is given by puv if the arc is undefended and
given by p′uv if the arc is defended, with puv ≥ p′uv .

2.1 Minimax Formulation
Given the sets of defender’s allocations and attacker’s paths
X and Y , respectively; the optimal mixed strategies for both
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can be found by solving the following linear program (LP),
which we refer to as the minimax (MM) formulation.

max
U∗,d

U∗ (1a)

s.t. U∗ ≤ −U(d,yj) ∀j = 1, · · · ,m (1b)

1>d = 1 (1c)

d ∈ [0, 1]|A| (1d)

The optimal utility of the defender is given by U∗ and d rep-
resents the defender’s mixed strategy over allocations X . The
utility function U(d,yj) defined by (2) is the weighted sum
of the utility prescribed by playing defender’s mixed strategy
d against the attacker’s pure strategy yj .

U(d,yj) =

n∑
i=1

U(xi,yj)di (2)

where U(xi,yj) is the utility function evaluated by playing
the defender’s pure strategy xi against attacker’s pure strat-
egy yj .

U(xi,yj) = ω(t(j)) ·
[ ∏
(u,v)∈A|yj

uv=1

max
{
puv(1− xiuv), p′uv

}]
(3)

In (3), ω(t(j)) is the payoff associated with the target t(j)
at the end of path yj . Since success probabilities are inde-
pendent, the probability of successfully traversing the path
is the product of the independent evasion probability of each
arc in yj . For each arc (u, v) in the path yj , max

{
puv(1 −

xuv), p′uv
}

provides the success probability of traversing arc
(u, v) given defender allocation xi. If the arc (u, v) is de-
fended, that is xuv = 1, then puv(1 − xuv) = 0 and the
probability of successfully traversing that arc is given by p′uv .
On the other hand, if the arc is undefended xuv = 0, then the
success probability is puv .

2.2 Defender Oracle (DO)
Given the attacker’s mixed strategy a over Y as input, the
defender computes the best pure strategy defense allocation
x by solving the following bilevel program.

min
x∈{0,1}|A|

max
f≥0,f ′≥0

m∑
j=1

aj

( ∑
(u,t)∈A

ωuf
j
ut

)
(4a)

s.t.
∑

(u,v)∈A

(f juv + f ′juv)−
∑

(v,u)∈A

(pvuf
j
vu + p′vuf

′j
vu) (4b)

= bu ∀u ∈ N \ t, ∀j
f juv + f ′juv ≤ yjuv ∀(u, v) ∈ A,∀j (4c)

f juv ≤ 1− xuv ∀(u, v) ∈ A,∀j (4d)∑
(u,v)∈A

cuvxuv ≤ Γb (4e)

The defender’s objective (4a) is to minimize the (maximum)
utility of the attacker, which is the sum of the attacker’s utility
over the attack paths in Y weighted by the mixed strategy pre-
scribed by a. Constraints (4b) are probabilitically adjusted

nodal balanced constraints. Observe that the amount of in-
flow on arc (v, u) is multiplied (adjusted) by the probability
that the attacker successfully traverses arc pvu (or p′vu). Con-
straints (4c) stipulate that non-zero flows can only occur on
arcs that are in the attacher’s path. Constraints (4d) are flow
shut-off constraints. If (u, v) is defended, then f juv = 0 and
the only option is to flow through the “defended” arc f ′juv
with lower evasion probability. Finally, (4e) is the constraint
on the overall mitigation budget.
Theorem 2.1 Bilevel program (4) has an equivalent mixed-
integer linear programming reformulation.
Given a fixed upper-level decision x, the lower-level problem
of (4) is a linear program. We can thus replace the maximiza-
tion problem with an equivalent dual minimization formula-
tion. This results in a bilinear program, where the objective
function contains bilinear terms, which can be subsequently
linearized using a set of non-negative variables and disjunc-
tive constraints.

2.3 Attacker Oracle (AO)
Given the defender’s mixed strategy d overX as input, the at-
tacker computes the best pure strategy attack path y by solv-
ing the following mixed-integer linear program (MILP).

max
y∈{0,1}|A|,f≥0,f ′≥0

n∑
i=1

di

( ∑
(u,t)∈A

ωuf
i
ut

)
(5a)

s.t.
∑

(u,v)∈A

yuv −
∑

(v,u)∈A

yvu = bu ∀u ∈ N \ t (5b)

∑
(u,v)∈A

(f iuv + f ′iuv)−
∑

(v,u)∈A

(pvuf
i
vu + p′vuf

′i
vu) (5c)

= bu ∀u ∈ N \ t,∀i
f iuv + f ′iuv ≤ yuv ∀(u, v) ∈ A,∀i (5d)

f iuv ≤ 1− xiuv ∀(u, v) ∈ A,∀i (5e)

The objective (5a) is to maximize the attacker’s utility, which
is the sum of the utility of the chosen path y weighted against
the defender’s mixed strategy d. Constraints (5b) are stan-
dard nodal balance constraints for path selection. (5c) are
probabilistically adjusted nodal balanced constraints for each
node and each defender allocation xi. Constraints (5d) and
(5e) are constraints restricting flows to arcs in the path and
not “shut-off”, respectively.

2.4 Solution Approach
We initialize the nominal (NOM) algorithm with a single pure
strategy corresponding to no-defenses (i.e. X = {0}) and
Y = ∅. The algorithm starts by solving the attacker oracle
(AO) against pure strategy x = 0 to find the optimal attack
path given no defenses (step 1). The optimal attack path gen-
erated will then be used to initialize Y (step 2). Then given
X and Y , the following steps are iterated until convergence
is achieved. The minimax formulation (1) is solved to find
the optimal mixed strategy for both players based on current
sets X and Y (step 4). Next, the defender’s best response is
computed by solving the MILP reformulation of (4) (steps 5-
6) and finally, the best response of the attacker is computed



by solving (5) (steps 6-7). The algorithm terminates if in a
given iteration the optimal solutions x∗ and y∗ are already in
X and Y , respectively.

Algorithm 1: NOM
Input: Initial X = {0},Y = ∅,d← 1

1 Y∗ ← AO(d);
2 Y ← Y ∪ {Y∗};
3 repeat
4 (d, a)← MM(X ,Y);
5 X ∗ ← DO(a);
6 X ← X ∪ {X ∗};
7 Y∗ ← AO(d);
8 Y ← Y ∪ {Y∗};
9 until convergence;

10 return (d, a)

3 Uncertain Evasion Probabilities
Practically speaking, the probability that an attacker success-
fully traverses an arc and the effectiveness of mitigation op-
tions are not known with certainty. As examples, the ef-
fectiveness of sensors may be hindered by nuisance sources
and background noise and the effectiveness of roadblocks
may depend on adversary types and search durations. In this
section, we consider a robust variant of NSG that accounts
for uncertainties in arc evasion probabilities. In the context
of NSGs, a robust optimization approach that implicitly ac-
counts for worst-case outcomes is appealing, since such risk-
averse strategies are consistent with how critical infrastruc-
ture and network security decision makers operate. The ro-
bust optimization framework presented here provides a nat-
ural way to model uncertainties associated with attacker and
defender interactions and allows for control of the conserva-
tiveness of the solution.

Our robust optimization framework is built upon the work
of Soyster [9] and Bertsimas and Sim [1], where we seek an
optimized mixed-strategy for the defender that performs well
agains all uncertainty realizations in a given uncertainty set.
[9] proposed an LP model that ensures feasibility of the so-
lution against data uncertainty in a convex set. However, a
drawback of [9] is that such solutions may be too conserva-
tive; especially, in settings where uncertainties are assumed to
be independent, since the probability that all uncertain param-
eters take on worst-case outcomes is not only highly improb-
able but may also be prohibitively expensive to defend. This
is certainly the case in the context of NSGs. Subsequently,
[1] proposed an LP approach where the uncertain parameters
fall within intervals compose of a nominal (mean) value and a
deviation. Conservativeness of the solution is then controlled
by a budget of uncertainty Γu, which constraints the number
of uncertain parameters that can deviate from nominal values.

Our proposed robust NSG framework is a variant of the ro-
bust optimization framework presented in [1]. In our RO
model, the evasion probabilities for each arc (u, v) ∈ A,
depends on (1) whether the arc is defended or not (xuv ∈
{0, 1}) and (2) whether the arc takes on the nominal or worst-

case values (zuv ∈ {0, 1}). Thus, the adversary’s probability
of successfully traversing an arc (u, v) ∈ A is as follows.

Table 1: Evasion probabilities over arc (u, v) ∈ A prescribed
by xuv and zuv .

xuv\zuv 0 1
0 puv p̂uv
1 p′uv p̂′uv

We model this uncertainty by multiple replications of the
original arc. For each arc (u, v), we create two arcs for the
robust counterpart: one pertaining to robust flows when the
arc is undefended p̂uv and the other corresponding to robust
flows when the arc is defended p̂′uv . Similar to nominal arc
flows, if the robust flows are defended then the undefended
robust flows are restricted to zero (in a sense shut off). If the
robust arc is undefended, objective pressure will ensure that
the undefended arc with higher evasion probability is used.
Thus for each original arc in (u, v) ∈ A, we create four arcs
to capture all evasion probabilities under the different combi-
nations of xuv and zuv .

The number of arcs for which the evasion probabilities
may deviate from nominal values is controlled by a budget
of uncertainty Γu. If Γu = 0, all evasion probabilities take
on nominal values and we essentially get back the determin-
istic NSAG described in Section 2. At the other extreme,
if Γ = |A|, then all evasion probabilities take on extreme
values, which may result in extremely conservative and pro-
hibitively expensive defense allocations. Thus, from a risk
informed security perspective, the region of interest lies in
looking at security and cost tradeoffs when 0 < Γu � |A|.

3.1 Robust Minimiax Formulation

The optimal mixed strategies for the defender and attacker
can be found by solving (1) using updated utilities U(xi,yj).
Among the arcs in attack path yj , the optimal subset of Γu

arcs to select to take on worst-case values can be found by a
simple ratio test defined as follows.

φuv =


p̂′uv
p′uv

if xiuv = 1

p̂uv
puv

if xiuv = 0

(6)

For each arc (u, v) in the attack path yj , if xiuv = 1 we com-
pute the ratio between the robust defended probability p̂′uv
and the nominal defended probability p′uv , else we compute
the analogous ratio for the undefended case. The optimal Γu

arcs to select can be determined by sorting φ in descending
order and then selecting the arcs associated with the first Γu

elements in the sorted list. Then zuv = 1 if arc (u, v) is
among the first Γu elements in the sorted list and zuv = 0
otherwise. The utility function U(xi,yj) is thus defined as



follows.

U(xi,yj) = ω(t(j)) ·

[ ∏
(u,v)∈A|yj

uv=1

(7)

max
{
puv(1− xiuv), p′uv, p̂uv(1− xiuv)zuv, p̂

′
uvzuv

}]
Given arc (u, v), if zuv = 0 the max term in (7) simplifies
to max

{
puv(1 − xiuv), p′uv

}
, otherwise zuv = 1 and the

max term in (7) simplifies to max
{
p̂uv(1−xiuv)zuv, p̂

′
uvzuv

}
since puv ≤ p̂uv and p′uv ≤ p̂′uv . Finally, we note that the
robust minimax (RMM) problem retains the same computa-
tional complexity as the nominal minimax problem.

3.2 Robust Defender Oracle
We first present the bilevel integer programing (BIP) formu-
lation for the robust defender’s oracle. In this model, the
evasion probability over an arc can either take on the nom-
inal value or a worst-case value, subject to a budget of uncer-
tainty Γu. The BIP formulation for the robust defender oracle
(RDO) is given as follows.

min
x∈{0,1}|A|

max
f≥0,f ′≥0,

g≥0,g′≥0,z∈{0,1}|A|

m∑
j=1

aj

( ∑
(u,t)∈A

ωuf
j
ut

)
(8a)

s.t.
∑

(u,v)∈A

(f juv + f ′juv)−
∑

(v,u)∈A

(pvuf
j
vu + p′vuf

′j
vu) (8b)

∑
(u,v)∈A

(gjuv + g′juv)−
∑

(v,u)∈A

(p̂vug
j
vu + p̂′vug

′j
vu)

= bu ∀u ∈ N \ t,∀j
f juv + gjuv ≤ 1− xuv ∀(u, v) ∈ A,∀j (8c)

f juv + f ′juv + gjuv + g′juv ≤ yjuv ∀(u, v) ∈ A,∀j (8d)

gjuv + g′juv ≤ zjuv ∀(u, v) ∈ A,∀j (8e)∑
(u,v)∈A

cuvxuv ≤ Γb (8f)

∑
(u,v)∈A

zuv ≤ Γu (8g)

For each arc (u, v) ∈ A, there are four flow choices de-
pending on whether the arc is defended (xuv = 1) or not
(xuv = 0) and whether the evasion probability takes on the
worst-case value (zuv = 1) or the nominal value (zuv = 0).
Constraints (8b) are probability adjusted nodal balance con-
straints with the addition of the new robust flow variables g
(undefended) and g′ (defended). Constraints (8c) are flow
shut-off constraints. Constraints (14e) restrict flows to only
arcs that are in the attack path. Constraints (14f) permit flows
on a robust arc only if the arc is selected to take on worst-case
probabilities, that is zjuv = 1. Finally, (8f) and (14g) enforce
budgets on mitigation selection and uncertainty, respectively.

BIPs, with integer variables in both levels, such as RDO
(8), are among the most computationally challenging opti-
mization problems, since enumerative formulations are expo-

nentially large, removing integrality requirements do not nec-
essarily provide a valid relaxation, and standard branch-and-
bound fathoming rules cannot be applied fully, see [2] and
[8]. In order to overcome these challenges, [7], [2], and [12]
proposed implicit enumeration schemes, heuristics, and vari-
ous decomposition algorithms, attempting to struck a tradeoff
between solution quality and runtime. However, the compu-
tational tractability of BIPs are still limited, as only small- and
moderate-scale instances are solvable under practical runtime
limitations.

In the following, we present a new cutting plane algorithm
for solving RDO, exploiting the simple path structure of the
lower-level problem. Our approach relies on first reformulat-
ing (8) into an equivalent, but exponentially large, two-stage
stochastic program with a convex second-stage problem. We
then employ a cutting plane algorithm, built upon Benders
decomposition and an MILP separation oracle.

Let the vector ρ ≥ 0 trictly bound the dual variables asso-
ciated with constraints (8c) over all possible defense alloca-
tion x. Since the attacker always has the option to traverse
“defended” arcs with lower evasion probabilities, flow fea-
sibility is always ensured. The goal is thus to penalized the
attacker for the use of the unavailable arcs. If the penalty is
chosen to be sufficiently large, then it is uneconomical for
the attacker to used these unavailable arcs in lieu of the “de-
fended” arcs. Thus, (8) is equivalent to the following.

min
x∈{0,1}|A|

max
f≥0,f ′≥0,

g≥0,g′≥0,z∈{0,1}|A|

m∑
j=1

aj

( ∑
(u,t)∈A\(·,t)

ωuf
j
ut

−
∑

(u,v)∈A

xuvρuvf
j
uv

)
(9a)

s.t. Constraints (8b) and (14e)− (14g) (9b)

f juv + gjuv ≤ 1 ∀(u, v) ∈ A,∀j (9c)

The differences between (8) and (9) are the additional penalty
terms xuvρuvf juv in the objective (9a) and the removal of the
xuv variables in (9c). With this reformulation, the feasible re-
gion of the lower-level problem is invariant to the upper-level
decision x, thus given x the optimal lower-level solution is
an extreme point of polytope defined by the lower-level con-
straints and the choice of z. We now employ an enumeration
scheme to remove the integer variables z in the lower-level.
Let the set of all valid robust arc deviations be defined as fol-
lows.

K = {z binary | 1>z ≤ Γu} (10)

Treating elements of K as a scenario, (9) can be stated as a
two-stage stochastic program where each scenario is defined
by z ∈ K. Thus, (9) is equivalent to the following MILP.

min
x∈X

m∑
j=1

ajαj (11)

s.t.R(x,yj , zk) ≤ αj ∀j = 1, · · · ,m,∀k = 1, · · · , |K|

whereR(x,yj , zk) is the lower-level maximization problem
of (9) parameterized by x,yj and zk.



Although, now a single-level problem, (11) is an extremely
large-scale MILP, with a set of constraints for each (yj , zk)
pair. We next describe a cutting plane algorithm for solving
(11) without the need to explicitly consider each robust arc
deviations z ∈ K.

Let the master problem (MP) be defined as follows

min
x∈{0,1}|A|,α≥0

m∑
j=1

ajαj (12a)

s.t.
∑

(u,v)∈A

cuvxuv ≤ Γb (12b)

and the separation oracle S(x,yj) be defined as follows.

S(x,yj) = max
f,f ′,g,g′,z

∑
(u,t)∈A

ωufut −
∑

(u,v)∈A

xuvρuvfuv

(13a)

s.t.
∑

(u,v)∈A

(fuv + f ′uv)−
∑

(v,u)∈A

(pvufvu + p′vuf
′
vu)

(13b)∑
(u,v)∈A

(guv + g′uv)−
∑

(v,u)∈A

(p̂vugvu + p̂′vug
′
vu)

= bu ∀u ∈ N \ t
fuv + guv ≤ 1 ∀(u, v) ∈ A (13c)

fuv + f ′uv + guv + g′uv ≤ yjuv ∀(u, v) ∈ A (13d)

guv + g′uv ≤ zuv ∀(u, v) ∈ A (13e)∑
(u,v)∈A

zuv ≤ Γu (13f)

Algorithm (2) RDO is a cutting-plane algorithm using a
projected formulation into the space of the x variables.

Algorithm 2: RDO(a,Y)
Input: Initialize MP (12)

1 Solve MP→ x∗,α∗;
2 k ← 0 . num. of violated inequalities found;
3 for j = 1, · · · ,m do
4 Solve S(x,yj) (13)→ w∗, z∗;
5 if S(x,yj) > α∗j then
6 Add (h> + x>P )w∗ ≤ αj to MP (12) ;
7 k ← k + 1;
8 end
9 end

10 if k > 0 then
11 Go to step 1;
12 end
13 return x∗ . optimal defender allocation against (a,Y)

In step 4, given a fixed x and yj , the optimal solutions
of (13) is used to generated violated optimality cuts (h> +
x>P )w∗ ≤ αj in step 6.
Theorem 3.1 Algorithm (2) is guaranteed to converge to the
optimal solution of RDO in a finite number of iterations.

3.3 Robust Attacker’s Oracle
Given the defender’s mixed strategy d over X as input, the
attacker computes the best “robust” pure strategy attack path
y by solving the following MILP.

max
f,f ′,g,g′,y,z

n∑
i=1

di

( ∑
(u,t)∈A

ωuf
i
ut

)
(14a)

s.t.
∑

(u,v)∈A

yuv −
∑

(v,u)∈A

yv,u = bu ∀u ∈ N \ t (14b)

∑
(u,v)∈A

(f iuv + f ′juv)−
∑

(v,u)∈A

(pvuf
i
vu + p′vuf

′i
vu) (14c)

∑
(u,v)∈A

(giuv + g′juv)−
∑

(v,u)∈A

(p̂vug
i
vu + p̂′vug

′i
vu)

= bu ∀u ∈ N \ t, ∀i
f iuv + giuv ≤ 1− xuv ∀(u, v) ∈ A,∀i (14d)

f iuv + f ′iuv + giuv + g′iuv ≤ yiuv ∀(u, v) ∈ A,∀i (14e)

giuv + g′iuv ≤ ziuv ∀(u, v) ∈ A,∀i (14f)∑
(u,v)∈A

ziuv ≤ Γu ∀i (14g)

The key difference between RO (5) and RAO (14) is the in-
clusion of continuous “robust” flow variables g, g′ and binary
robust arc selection variables zi, one set for each defense al-
location i = 1, · · · , n.

3.4 Solution Approach for Robust NSGs
We initialize the robust optimization algorithm (ROB) with a
single pure strategy corresponding to no-defenses X = {0}
and set Y = ∅. ROB is structurally similar to NOM but with
nominal MM, DO, and AO problem solves replaced by solves
of their robust counterparts RMM, RDO, and RAO.

Algorithm 3: ROB
Input: Initial X = {d← 1,0},Y = ∅

1 Y∗ ← RAO(d,X );
2 Y ← Y ∪ {Y∗};
3 repeat
4 (d, a)← RMM(X ,Y);
5 X ∗ ← RDO(a,Y);
6 X ← X ∪ {X ∗};
7 Y∗ ← RAO(d,X );
8 Y ← Y ∪ {Y∗};
9 until convergence;

10 return (d, a)

The robust NSG formulation is naturally a nested problem
as such ROB is a two-level algorithm. The outer level iterates
between the RAO and RDO solves, with RDO solved using
Benders decomposition that iteratively identifies violated pri-
mal optimality cuts.

Theorem 3.2 Algorithm (3) ROB is guaranteed to converge
to the optimal solution of RDO in a finite number of iterations.



4 Computational Experiments
We now present computational results on some randomly
generated instances to demonstrate the effectiveness of the
proposed models and algorithms. All experiments were run
with CPLEX 12.5 on a FILL IN MACHINE SPECS using
a maximum of 16 threads and a max cutoff of 1 hour. We
evaluated our formulations on two different graph structures,
Erdős-Rényi (ER) random graphs with p = .25 and a directed
grid-like setting where we divide the nodes into a series of
bins, each node can only have edges to adjacent bins, and
the source and target nodes are on opposite sides. This sec-
ond structure generates graphs where all possible paths are
of equal length, which allows us to avoid settings with small
number of clearly optimal paths to defend. In both cases, the
probability of the attacker successfully transitioning an un-
defended (defended) edge varies between .8 and .9 (.6 and
.7) and target utilities varies between 10 and 20. All results
reported are averaged from 30 runs.

4.1 Utility
First, we considered how much benefit we expect to gain by
more accurately modeling uncertainty. To do this, we calcu-
lated the utility the defender expects to gain against an opti-
mal attack against the following three defense strategies:
• NullUtility: A defender with no defense resources
• OptimalUtility: The optimal defense allocation
• BinaryUtility: The optimal defense allocation against

the binary version of the problem
We calculated the fraction of the possible utility gain
over the null setting that the binary setting achieved:
BinaryUtility−NullUtility
OptimalUtility−NullUtility . Figure 1 shows this value for both
15 and 20 node grid-like graphs. On average, the optimal
binary solution only seems to capture about half of the po-
tential utility gain and seems to perform worse as the size of
the graph increases. Additionally, while the binary solution
seems to improve significantly as we increase the number of
defense resources, we don’t see a similar improvement in the
grid-like case.

4.2 Runtime
Figures 2 (3) shows how runtime increases as we increase the
number of nodes in the grid-like (ER) graph and the num-
ber of defense resources. Unsurprisingly, runtime increases
with both number of nodes and number of defense resources.
Perhaps more interesting is how much quickly the runtime
increases in the grid-like graphs. This can intuitively be ex-
plained by the fact that there is higher variance in path quality
in the ER graph (as the grid-like graph forces all paths to be
of the same length). In fact, a large number of these paths
will never be a best response for the adversary under any de-
fense strategy. This reduces the number of iterations and the
number of paths that needs to be added to the mini-max for-
mulation.

Figure 4 shows runtime for the robust case on the grid-like
graph. The robust formulation doesn’t scale quite as well as
the non-robust case, but we are still able to solve instances
with up to 30 nodes and 2 defense resources in a reasonable
amount of time on our more difficult graph type.
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Figure 2: Average runtime of standard formulation as a func-
tion of number nodes for grid-like graphs.

5 Conclusion
In modeling security decisions in adversarial settings, it is
crucial to consider uncertainties in the interaction between
defender and attacker. Additionally, in many security con-
text small perturbations to network parameters may severely
impact the performance of defense allocations. This paper
presents a significant advance towards addressing uncertain-
ties in NSG. Specifically, we present novel models and al-
gorithms for NSG with probabilistic evasion to account to
the fact that in most cases the success of defense mitigation
against specific attacks is not a binary outcome (fixed). In
practice, the effectiveness of mitigation options can only be
estimated probabilistically. We propose a model of attack
interdiction that takes into account this uncertainty in out-
comes, specifically considering the uncertain success proba-
bility of the attacker against randomized defense allocations.
We give a double oracle formulation for solving network se-
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curity games with probabilistic evasion. Finally, we discuss
extending the model by adding additional uncertainty to the
information that the defender has about the capabilities of the
attacker and the effectiveness of mitigation options. Specif-
ically, we consider the case when the evasion (or detection)
probabilities are uncertain but fall within an interval of uncer-
tainty. We then present a tractable approximation of this ro-
bust optimization model that permits us to retain the computa-
tional complexity of the original deterministic NSG problem
and, simultaneously, allows for control of the conservative of
the solution using a budget of uncertainty.
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