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Verifica%on	is	about	numerical	error	

Code	Verifica,on	
§  Goal:	soIware	quality	and	

algorithmic	improvement	
§  Have	exact	solu%on,	so	can	

compute	exact	error	
§  Hard	es%mates	of	

convergence	proper%es	
§  Metrics	defined	by	

numerical	analysis	

Solu,on	Verifica,on	
§  Goal:	Es%mate	numerical	

error	for	problems	with	
unknown	solu%ons	(“real”	
problems)	

§  SoI	es%mates	of	numerical	
error	

§  Metrics	defined	by	analyst	
§  Also	called	“calcula%on	

verifica%on”	
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Mo%va%on	

This	work	is	about	bridging	the	gap	between	code	verifica%on	
and	solu%on	verifica%on:	
§  Provide	appropriate	confidence	in	solu%on	verifica%on	results	

(error	es%mates)	
§  Be\er	understanding	of	the	weak	points	in	the	solu%on	

verifica%on	process	

This	is	work	in	progress	so	results	are	more	sugges%ve	than	
defini%ve.	
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Sierra	Aero	–	compressible	flow	code	

§  Solves	compressible	Euler	and	Navier-Stokes	equa%ons,	
including	RANS	turbulence	models	

§  Demonstrated	parallel	scaling	to	tens	of	thousands	of	cores	
§  2D	and	3D	unstructured	meshes,	several	element	types	
§  Numerical	method:	

§  Edge-based	finite	elements	a	la	Barth	
§  Nodal	values	are	interpreted	as	point	values	or	cell	averages	of	a	dual	

mesh	
§  TVD	methods	compute	fluxes	normal	to	cell	edges	
§  First	or	second	order	spa%al	accuracy	
§  Implicit	or	explicit	%me	advancement	methods	
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Review	of	code	verifica%on	

1.  Exact	and	approximate	
values	of	field	variables	
on	suitably	refined	
meshes	

2.  Exact	errors	on	each	
mesh	

3.  “Exact”	global	error	norm	
on	each	mesh	
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Euler	Box	manufactured	solu%on	

§  2D	Euler	equa%ons	on	(0,2)	x	(0,1)	
§  ρ	=	p/RT	
								=	p0(1	–	ε	sin(πx)	cos(πy)	/	(	RT0	(1	+	ε	sin(πx)	sin(πy)	)	)	
§  u	=	u0	(1	–	ε	sin(πx)	cos(πy)	)	
§  v	=	u0	ε	sin(πx)	sin(πy)	
§  ε	=	0.05	
§  P0	=	35651.28	Pa	
§  T0	=	236.2	K	
§  M0	=	2.5	
§  U0	=	M0	c0	
											=	770.326	m/s	
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Exact	density	error	
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§  Mesh	2	
§  64	elements	

§  Mesh	6	
§  16384	elements	
§  Highest	error	at	

upper	and	lower	
boundaries	



Exact	density	error	norms	

Mesh L1 Error Rate 
2 3.26953562548e-3 - 
3 5.39402430176e-4 - 
4 1.08958268477e-4 2.31  
5 2.53897840066e-05 2.10 
6 6.22160970615e-06 2.03 
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§  The	refinement	ra%o	is	2	across	all	meshes	
§  The	expected	convergence	rate	is	2	(limiters	turned	off)	



Field	variable	solu%on	verifica%on	

1.  approximate	values	of	field	
variables	on	suitably	
refined	meshes	

2.  Spa%al	interpola%on	or	
“sampling”	to	a	common	
mesh	

3.  At	each	node,	extrapolated		
solu%on	at	h=0,	or	an	error	
es%mate	on	the	fine	mesh	

4.  Approximate	global	error	
norm		
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Case	1:	Restrict	to	coarse	mesh	
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§  Mesh	1	is	the	coarsest	mesh	
§  On	mesh	1,	Get	ṹ2,	…,	ṹN	from	ũ2,	…,	ũN	by	“sampling”	or	

restric%on	of	values	on	the	other	(finer)	meshes	
§  By	restric%on,	we	mean	that	the	values	on	the	finer	mesh	are	

injected	onto	the	coarser	mesh;	not	all	values	are	used.		
§  If	nodes	on	the	coarse	mesh	are	collocated	with	nodes	on	the	

finer	meshes,	this	restric%on	opera%on	does	not	involve	
interpola%on	and	can	be	thought	of	as	a	“sample”	of	the	finer	
mesh	values.	

§  This	approach	leads	to	a	coarse	representa%on	of	the	field	
variable,	which	may	be	undesirable	

§  Restric%on	and	sampling	are	used	loosely,	just	to	indicate	a	
fine-to-coarse	injec%on	of	values		



Case	2:	Prolong	to	fine	mesh	
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§  Mesh	N	is	the	finest	mesh	
§  On	mesh	N,	Get	ṹ1,	…,	ṹN-1		from	ũ1,	…,	ũN-1		by	interpola%ng	or	

prolonging	values	on	the	other	(coarser)	meshes	to	the	fine	
mesh	nodes	

§  In	contrast	to	case	1,	values	must	be	generated	(by	
interpola%on)	for	nodes	not	present	in	coarser	meshes	

§  Interpola%on	introduces	error	
§  Like	restric%on	and	sampling,	prolonga%on	is	used	loosely;	but	

prolonga%on	and	interpola%on	indicate	a	coarse-to-fine	
injec%on	of	values	



Richardson	extrapola%on	
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§  Now	we	have	approximate	solu%on	values	ṹ1,	…,	ṹN	on	each	
node	of	a	common	mesh	

§  Use	two-mesh	Richardson	extrapola%on	to	generate	a	
sequence	of	error	es%mates:		
u	=	ṹ2	+	a	h2p	

u	=	ṹ3	+	a	h3p	

ĕ3	=	(ṹ2	-	ṹ3)	h3p	/	(h3p	-	h2p)	

§  We	use	the	expected	convergence	rate	of	p=2	
§  There	are	other	ways	to	do	this	step,	which	we	will	examine	in	

future	work	



Exact	and	approximate	error	norms	

Mesh Exact L1 Error Coarse L1 Error Fine L1 Error 
2 3.270e-3 - - 
3 5.394e-4 9.201e-4 9.384e-4 
4 1.090e-4 1.446e-4 1.745e-4 
5 2.539e-05 2.797e-05 3.932e-05 
6 6.222e-06 6.431e-06 9.638e-06 

13	

§  “Coarse”	and	“fine”	refer	to	common	meshes	to	which	
computed	solu%ons	were	interpolated	

§  For	the	solu%ons	computed	on	the	finer	meshes,	interpola%ng	
to	the	finest	target	mesh	gives	a	larger	error	norm	than	
interpola%ng	to	the	coarsest	target	mesh	



Local	errors,	case	1	(coarse)	
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Exact	errors	(top	row)	are	interpolated	to	the	common	mesh	
Exact	errors	are	lower	than	es%mates	for	the	mesh	3	solu%on,	

but	higher	for	the	mesh	6	solu%on	

Mesh	3	solu%on	error	 Mesh	6	solu%on	error	



Error	norms,	case	1	(coarse)	

Mesh L1 Error Rate 
2 - - 
3 9.20121947074e-4 - 
4 1.44585170331e-4 2.67 
5 2.79745051819e-05 2.37 
6 6.43078020116e-06 2.12 
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§  The	convergence	rates	of	the	approximate	error	norms	are	
similar	to	those	of	the	exact	error	norms	for	this	problem		



Local	errors,	case	2	(fine)	
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Mesh	3	solu%on	error	 Mesh	6	solu%on	error	

Exact	errors	(top	row)	are	interpolated	to	the	common	mesh	
Banding	results	from	coarse	mesh	imprin%ng	on	error	es%mates	

(bo\om	row)	



Error	Norms,	case	2	(fine)	

Mesh L1 Error Rate 
2 - - 
3 9.38383858014e-4 - 
4 1.7426436576e-4 2.43 
5 3.93242150122e-05 2.15 
6 9.63784004988e-06 2.03 
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§  While	slightly	lower	than	for	case	1,	convergence	rates	of	the	
approximate	error	norm	are	similar	to	those	of	the	exact	
error	norm	

§  For	case	2,	the	L1	error	may	be	affected	by	interpola%on	to	
the	target	mesh,	par%cularly	as	the	meshes	are	refined	(s%ll	
need	to	confirm	this)	



Error	norms,	oblique	shock	problem	

Mesh Exact L1 Error Coarse L1 Error Fine L1 Error 
1 3.090e-02 - - 
2 1.598e-02 1.500e-02 1.552e-02 
3 8.278e-03 8.101e-03 8.966e-03 
4 4.207e-03 4.360e-03 4.841e-04 
5 2.142e-03 1.955e-03 2.655e-03 
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§  Same	trends	as	for	smooth	solu%on	
§  Convergence	rate	~1,	as	expected.	(Also,	assumed	p=1	in	

Richardson	extrapola%on.)	



Local	errors,	oblique	shock	problem	
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Mesh	2	error	 Mesh	5	error	 Mesh	2	error	 Mesh	5	error	

Coarse	 Fine	

§  Exact	error	(top	row)	and	approximate	error	(bo\om)	
§  Note	color	scales	are	not	all	the	same	



Concluding	remarks	

§  We	consider	solu%on	verifica%on	for	a	field	variable	for	
several	reasons:	
§  Provides	a	clearer	path	connec%ng	to	the	numerical	analysis	

underlying	code	verifica%on	
§  May	expose	techniques	for	improving	error	es%mates	
§  Can	be	used	in	concert	with	analyst	QoIs	to	give	addi%onal	error	

informa%on		

§  These	(easy)	test	problems	presents	a	best	case	scenario	for	
solu%on	verifica%on.	More	difficult	tests	will	expose	how	
solu%on	verifica%on	fails.	

§  We	have	made	many	choices	in	this	analysis,	but	will	examine	
alterna%ves	in	future	work.	
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