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Verification is about numerical error® .

Code Verification

= Goal: software quality and
algorithmic improvement

= Have exact solution, so can
compute exact error

*= Hard estimates of
convergence properties

= Metrics defined by
numerical analysis

Solution Verification

= Goal: Estimate numerical
error for problems with
unknown solutions (“rea
problems)

IH

= Soft estimates of numerical
error

= Metrics defined by analyst

= Also called “calculation
verification”
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Motivation

This work is about bridging the gap between code verification
and solution verification:

= Provide appropriate confidence in solution verification results
(error estimates)

= Better understanding of the weak points in the solution
verification process

This is work in progress so results are more suggestive than
definitive.



Sierra Aero — compressible flow cod &&=

Sandia

= Solves compressible Euler and Navier-Stokes equations,
including RANS turbulence models

= Demonstrated parallel scaling to tens of thousands of cores

= 2D and 3D unstructured meshes, several element types

= Numerical method:

Edge-based finite elements a la Barth

Nodal values are interpreted as point values or cell averages of a dual
mesh

TVD methods compute fluxes normal to cell edges
First or second order spatial accuracy
Implicit or explicit time advancement methods
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Review of code verification

1 2
1. Exact and approximate
values of field variables
on suitably refined u, U
meshes a, 0,
2. Exact errors on each
mesh
€, &

3. “Exact” global error norm

e .., ||e
on each mesh [legl ], - [leyl]




Euler Box manufactured solution M.

= 2D Euler equations on (0,2) x (0,1)
" p=p/RT

= po(1 — € sin(zmtx) cos(my) / ( RT, (1 + € sin(mtx) sin(my) ) )
" u=u,(1l--e¢sin(mx) cos(my))
" V= U, ¢ sin(mx) sin(my)
= ¢=0.05
= P,=35651.28 Pa
= T,=236.2K
= M,=25
= U,=M,c,

=770.326 m/s




Exact density error
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Mesh 2
64 elements

Mesh 6
16384 elements

Highest error at
upper and lower
boundaries
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Exact density error norms )

2 3.26953562548e-3 -
3 5.39402430176e-4 -
4 1.08958268477e-4 2.31
3) 2.53897840066e-05 2.10
6 6.22160970615e-06 2.03

= The refinement ratio is 2 across all meshes
= The expected convergence rate is 2 (limiters turned off)
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Field variable solution verification @&

1. approximate values of field
variables on suitably
refined meshes u, U, Uy

2. Spatial interpolation or \} /

“sampling” to a common B .
mesh

3. At each node, extrapolated
solution at h=0, or an error €y, . €y
estimate on the fine mesh

4. Approximate global error . y
PP 5 118,11, - | 18y] |
norm
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Case 1: Restrict to coarse mesh ) ..

= Mesh 1 is the coarsest mesh
= Onmesh 1, Get i,, ..., iy from 0,, ..., Gy by “sampling” or
restriction of values on the other (finer) meshes

= By restriction, we mean that the values on the finer mesh are
injected onto the coarser mesh; not all values are used.

= |f nodes on the coarse mesh are collocated with nodes on the

finer meshes, this restriction operation does not involve
interpolation and can be thought of as a “sample” of the finer
mesh values.

"= This approach leads to a coarse representation of the field
variable, which may be undesirable

= Restriction and sampling are used loosely, just to indicate a

fine-to-coarse injection of values 10
I —————————————
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Case 2: Prolong to fine mesh ) .

= Mesh N is the finest mesh

= Onmesh N, Get {,, ..., Uy, from @y, ..., Gy, by interpolating or
prolonging values on the other (coarser) meshes to the fine
mesh nodes

= |n contrast to case 1, values must be generated (by
interpolation) for nodes not present in coarser meshes

= |nterpolation introduces error

= Like restriction and sampling, prolongation is used loosely; but
prolongation and interpolation indicate a coarse-to-fine
injection of values

11
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Richardson extrapolation

= Now we have approximate solution values {y, ..., (i on each
node of a common mesh

= Use two-mesh Richardson extrapolation to generate a
sequence of error estimates:

u=0,+ah,p
u={,+ahyP
= We use the expected convergence rate of p=2

= There are other ways to do this step, which we will examine in
future work

12




Exact and approximate error norms .

2 3.270e-3

3 5.394e-4 9.201e-4 9.384e-4

4 1.090e-4 1.446e-4 1.745e-4

5 2.539e-05 2.797e-05 3.932e-05
6 6.222e-06 6.431e-06 9.638e-06

= “Coarse” and “fine” refer to common meshes to which
computed solutions were interpolated

= For the solutions computed on the finer meshes, interpolating
to the finest target mesh gives a larger error norm than
interpolating to the coarsest target mesh

13



National

Local errors, case 1 (coarse) .

Mesh 3 solution error Mesh 6 solution error

Exact errors (top row) are interpolated to the common mesh

Exact errors are lower than estimates for the mesh 3 solution,
but higher for the mesh 6 solution
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Error norms, case 1 (coarse) h) e,

2 § -
3 9.20121947074e-4 -
4 1.44585170331¢e-4 2.67
5 2.79745051819¢-05 2.37
6 6.43078020116e-06 2.12

= The convergence rates of the approximate error norms are
similar to those of the exact error norms for this problem

15
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Local errors, case 2 (fine) ) .

Mesh 3 solution error Mesh 6 solution error

Exact errors (top row) are interpolated to the common mesh

Banding results from coarse mesh imprinting on error estimates
(bottom row)




Error Norms, case 2 (fine) s

2 § _
3 0.38383858014¢-4 i
4 1.7426436576e-4 2.43
5 3.93242150122¢-05 2.15
6 9.63784004988¢-06 2.03

= While slightly lower than for case 1, convergence rates of the
approximate error norm are similar to those of the exact
error norm

= For case 2, the L1 error may be affected by interpolation to
the target mesh, particularly as the meshes are refined (still

need to confirm this) 17




Error norms, oblique shock problem
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g ~r WODN -

3.090e-02
1.598e-02
8.278e-03
4.207e-03
2.142e-03

1.500e-02
8.101e-03
4.360e-03
1.955e-03

= Same trends as for smooth solution
= Convergence rate ~1, as expected. (Also, assumed p=1 in

Richardson extrapolation.)

1.552e-02
8.966e-03
4.841e-04
2.655e-03

18
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Local errors, oblique shock problem =

Coarse Fine

Mesh 2 error Mesh 5 error Mesh 2 error Mesh 5 error

= Exact error (top row) and approximate error (bottom)

= Note color scales are not all the same

19
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Concluding remarks ) ..

= \We consider solution verification for a field variable for
several reasons:

= Provides a clearer path connecting to the numerical analysis
underlying code verification

= May expose techniques for improving error estimates
= Can be used in concert with analyst Qols to give additional error
information
= These (easy) test problems presents a best case scenario for
solution verification. More difficult tests will expose how
solution verification fails.

= We have made many choices in this analysis, but will examine
alternatives in future work.

20




