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Abstract — Short circuit current (Isc) depends on the effective 
irradiance incident upon a PV module. Effective irradiance is 
highly correlated with broadband irradiance, but can vary 
slightly as the spectral content of the incident light changes. We 
explore using a few spectral wavelengths with broadband 
irradiance to predict Isc for ten modules of varying technologies 
(silicon, CIGS, CdTe). The goal is to identify a few spectral 
wavelengths that could be easily (and economically) measured to 
improve PV performance modeling.

I. INTRODUCTION

Short circuit current (Isc) is important part of I-V curve 
modeling in PV performance assessment, as it represents the 
maximum current that could be drawn from the PV cell. 
Changes in Isc are almost exclusively due to changes in the
effective irradiance incident on the module. While effective 
irradiance is highly correlated with broadband irradiance 
measured by a pyranometer, subtle differences in spectral 
content can also impact the effective irradiance since PV 
modules do not absorb all spectral wavelengths evenly. 

In this paper, we explore the relationship between spectral 
changes and changes in Isc. We look at different module 
technologies, which have different spectral absorption 
properties, to note differences between module types. The 
goal of this work is to identify a few spectral wavelengths 
which can explain the majority of the variance in Isc that is 
not explained by the broadband irradiance. This would enable 
development of a low-cost sensor which measures only a few 
spectral wavelengths but, combined with broadband 
irradiance measurements, is a good predictor of Isc.

II. DATA

A. Overview

For this study, we used spectral plane of array (POA)
irradiance, broadband POA irradiance, Isc, and cell 
temperature measurements collected in Los Alamos, NM. All 
measurements were taken at 5-minute resolution. Isc values 
from 10 different types of PV modules were used, including 
mono and polycrystalline silicon, CIGS, and CdTe modules.
We used data from the month of October 2012 for this 
analysis.

Simple visual quality control was applied, such as 
removing times that were clearly inconsistent between Isc and 

POA irradiance (i.e., Isc is reduced by 50% over the previous 
timestamp while POA irradiance is nearly unchanged). 
Additionally, it was found that the spectrometer data changed 
timestamps for daylight savings time while the Isc and POA 
irradiance data did not: their times were realigned by shifting 
the spectrometer data. Additional data beyond October 2012 
exists and could be used for this study, pending quality 
control.

B. Clear Periods Selection

Only clear periods were considered in this work, for two 
main reasons: (1) previous related modeling (i.e., the Sandia 
Array Performance Model [1]) only considered clear periods, 
and (2) temporal or spatial offsets between the spectral, 
broadband irradiance, and Isc measurements could lead to 
slight offsets in the arrival times of cloud shadows. Clear 
periods were selected using a clear-sky detection algorithm, 
following the process described in [2]. 

In addition, only times when the solar altitude angle was 
greater than 20° were considered. This eliminated potentially 
errant measurements at low solar altitude angles. 

C. Irradiance vs. Isc Offset

An inconsistency between the POA irradiance and Isc 
measurements was discovered, as shown in Figure 1, which
compares Isc and POA irradiance measurements from one of 
the modules (a polysilicon module). Careful inspection of 
Figure 1a shows that Isc values tend to peak slightly before 
solar azimuth of 180° (i.e., a few degrees east of south), while 
POA irradiance values appear to peak at due south azimuth.

Further evidence of this offset is given in the subsequent 
plots in Figure 1. In Figure 1b, the quantity Isc divided by 
POA irradiance is shown to have a dependence on solar 
azimuth, as it is higher in the morning than in the afternoon. 
Figure 1c shows that POA irradiance has a symmetric 
dependence on angle of incidence before and after solar noon, 
suggesting the POA measurement does not have an offset. 
Figure 1d shows that Isc measurements at the same angle of 
incidence are higher in the morning than in the afternoon. 

This offset between Isc and POA irradiance is not 
correlated with cell temperature: PV cell temperature was 
measured and found to increase until mid-afternoon, then 
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decrease, while Isc is always decreasing relative to POA 
irradiance. We also do not believe it to be due to a time offset 
in the measurements since the POA irradiance is measured 
immediately when the I-V sweep is started and so the Isc and 
POA measurements should be taken within a few seconds of 
one another – a roughly 5-minute offset in these 
measurements would be required to produce the offset seen in 
Figure 1b. 

Thus, a slight azimuth offset is the mostly likely
explanation for the behavior seen in Figure 1b. We attempted 
to find the true azimuth by determining the azimuth angle that 
led to the smallest variance in the quantity Isc divided by 
POA irradiance. While this quantity is expected to vary (and 
in fact that is the point of this project: to use spectral 

predictors to model this variation), we do not expect an 
azimuth angle dependence. Thus, we feel that the azimuth 
angle that minimizes the variance is likely the true azimuth. 
For all 10 modules, the azimuth was found to be 177°±1° (i.e., 
2-4° east of south). We feel this could be within the error that 
could occur during module installation and so is a reasonable
explanation of the behavior in Figure 1. Figure 2 shows the 
Isc divided by POA irradiance relationship for a 177° 
azimuth, which has much less azimuth angle dependence than 
Figure 1b.

III. METHOD

In the Sandia Array Performance Model (SAPM) [1], it is 
assumed that Isc is a function of air mass, irradiance, and 
temperature (Equation 1 in [1]). The air mass parameter is 
meant to be a proxy for changes in the spectral content. Here, 
we replace the air mass term with measurements from one or 
more spectral wavelengths. We also remove the temperature 
dependence to simplify the modeling and due to the typically 
very small ���� coefficient [3] indicating that temperature has 
little impact on Isc. The resulting linear model is of the form:
I�� = C� + C�(POA	irr������°) + C�(SP�	/	POA	irr	)

+⋯C���(SP�	/	POA	irr	)
(1)

where ��…���� are constant multipliers, POA	irr������° is 
the vector timeseries of POA irradiance measurements
corrected to true module azimuth of 177°, POA	irr	is the raw 
POA measurement at due south azimuth, and each SP� is a 
vector containing spectral intensities.
POA	irr������° is obtained by multiplying the measured POA 
irradiance (at due south azimuth) by the ratio of the clear-sky 
model at 177° azimuth to the clear-sky model at due south 
azimuth. The SP� values are the timeseries vector of 
intensities of irradiance measurements at each wavelength n 
over the entire study period. For example,	SP����� would be
the timeseries of intensities at the 500nm wavelength for all 
clear days in October 2012. The spectral wavelengths are 
divided by the POA irradiance so that they can best describe 
the variation due to spectral changes at similar irradiances 
(i.e., the variation not explained by irradiance alone). 

Important spectral wavelengths were identified using 
sequential feature selection, which in this case selected a 
subset of spectral wavelengths that best predicted the Isc 
values. This was done by minimizing the root mean squared 
error (RMSE) between the modeled and the actual values of 
Isc. 

For comparison of the impact of other quantities, we 
additionally evaluated the RMSE for models of the forms:

I�� = C� + C�(POA	irr������°) + C�(��), (2)
where AM is air mass, 

I�� = C� + C�(POA	irr������°) + C�(��), (3)
where �� is the measured cell temperature, and
I�� = C� + C�(POA	irr������°) + C�(��) + C�(��). (4)

Equation (4) has the same predictors as those used in the 
SAPM, though in a slightly different model form. This will 

Figure 1: (a) Plot of POA irradiance and Isc as a function of solar azimuth 
on clear days in October, 2012; (b) Isc divided by POA irradiance; (c) 
POA irradiance as a function of angle of incidence on a latitude tilt, due 
south surface; (d) Isc as a function of angle of incidence.

Figure 2: Isc divided by POA irradiance at 177° azimuth. This is a repeat 
of Figure 1b but with POA irradiance adjusted to the suspected PV 
module orientation.
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allow us to compare the relative value of those predictors to 
the spectral predictors proposed here.

IV. RESULTS AND DISCUSSION

A. One Module: Polycrystalline Silicon

First, we apply Equation (1) with no spectral wavelengths 
as inputs; that is, we determine a linear model for Isc as a 
function of only the azimuth = 177° POA irradiance. The 
resulting model for a polycrystalline silicon module was:

I�� = −0.0515 + 0.084 × POA	irr������° (5)
and is plotted in Figure 3. The errors shown in Figure 3 are all 
small: the mean bias error (MBE) of 0.03% shows that the 
linear model does a good job of describing the overall trend in 
the data, and the root mean squared error (RMSE) of only 
1.24% shows that there is relatively little variation from the 
linear model. In the rest of this section, we aim to explain this 
little remaining variation in Isc not described by the POA 
irradiance. Quantitatively, this means reducing RMSE. 

To help understand the relationship between the remaining 
variance and the spectral intensity at each wavelength, the top 
plot in Figure 4 shows the spectral intensities divided by the 
POA irradiance (i.e.,	SP�	/	POA	irr) for each wavelength in 
the measured spectrum. Each line represents a separate 
spectral measurement (i.e., a different time), and the color of 
each line represents the value of ���/�������� 	 at that time, 
where �������� is the linear irradiance model shown in 
Equation (5). Thus, vertical color gradients at specific 
wavelengths indicate correlations between the spectral 
intensity at that wavelength (relative to the POA irradiance) 
and the Isc variation from the model in Equation (5). For 
example, between 400nm and 700nm, the Isc is high relative 
to the linear irradiance model (yellow colors) when the 
spectral intensity is high relative to the POA irradiance, and 
conversely, the Isc is relatively low (blue colors) when the 
spectral intensity is relatively low. These correlation are 
plotted explicitly in the bottom plot of Figure 4.

Sequential feature selection was applied to select the most 

important wavelength. The first most important wavelength 
chosen was 590nm, consistent with the maximum correlation 
seen in the bottom plot of Figure 4. The new model, with one 
spectral value, is:

I�� = −4.0122 + 0.082 × POA	irr������°
                           +2.9362 × (SP�����	/	POA	irr).

(6)

The model in Equation (6) has reduced the RMSE to 0.81%. 
We notice that the multiplier on the azimuth = 177° POA 

irradiance in both the models in Equation (5) and Equation (6)
is similar (0.084 and 0.082), showing that the importance 
importance of broadband irradiance has not waned even when 
adding the spectral wavelength 590nm. In fact, in their 
maximum values ( POA	irr������° = 1100 , 	(SP�����	/
	POA	irr	 = 1.7), the POA	irr������° term is about 18 times 
larger than the SP�����	/	POA	irr term ( 1100 × 0.082 =
90.2 vs. 2.9362 × 1.7 = 4.99), which shows the continued 
strong dependence on POA irradiance that is expected.  

It is worth noting that in this sequential feature selection, 
the second most important wavelength will not necessarily be 
a wavelength with high correlation in Figure 4. Instead, 
successive wavelengths chosen will provide orthogonal 
information to the predictors (POA irradiance and spectral 
wavelength(s)) already included. The second wavelength 
predictor chosen was 750nm. 

Figure 5 plots the errors and displays error metrics (RMSE, 
MBE, and MAE) for the Isc models shown in Eqs. (5) and (6) 
(top two plots). Figure 5 also shows the model errors for 
models using 2, 3, and 4 spectral wavelengths. Subsequent 
plots show the errors when using irradiance plus air mass, 
irradiance plus cell temperature, and irradiance plus air mass 
and cell temperature (i.e., the same inputs as the SAPM). In 
shifting from the top left plot in Figure 5 to subsequent plots 

Figure 3: Isc as a linear function of irradiance only for module U1C01, a 
polycrystalline silicon module. .  

Figure 4: Polycrystalline silicon module. [Top] Spectral intensity / POA 
irradiance, colored by values of Isc / modeled Isc (from Equation (5)). 
Vertical color gradients (light to dark or dark to light) thus indicate 
wavelengths at which spectral changes (relative to irradiance) are 
correlated to Isc changes not described by Equation (5). [Bottom] Plot of 
these correlations – correlation between spectral intensity / POA and Isc /
modeled Isc. 
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with spectral predictors, the reduced error shape is evident: 
adding one spectral predictor reduced the spread of errors; 
adding two spectral predictors eliminates most of the diurnal 
variation in the errors. Beyond two predictors, the 
improvements in error metrics are lesser. 

B. All Modules

Figure 6 shows the RMSE errors for all 10 different module 
types, with zero, one, two, three, or four wavelength 
predictors. The black lines in Figure 6 show the RMSEs when 
using the locally optimized spectral wavelengths, optimized 
individually for each module. Red dashed lines in Figure 6
show the RMSEs when using the globally optimized set of 
wavelengths that minimized errors across all modules. These 
globally optimized wavelengths are thus the same for all 
modules, and show the potential value of measuring a fixed 
set of wavelengths (rather than specific wavelengths for 
specific module technologies). Finally, the thin blue dashed 
lines in Figure 6 show the RMSE when using irradiance, air 
mass, and cell temperature as predictors.

Just as seen for the single module in Figure 5, all ten 
modules show value from using additional spectral 
wavelengths as predictors. However, this value diminishes 

with each added wavelength: generally the first one or two 
wavelengths are most valuable; by the fourth added
wavelength, very little value is gained. 

There is consistency between modules in the most 
important wavelengths selected. All modules except the 
bifacial mono Si, single a-Si, and CdTe had a wavelength 
between 590-592nm as their most important spectral 
wavelength. Many of the second most important wavelengths 
are consistent as well. This may suggest that a single sensor 
measuring only a few wavelengths could be used for spectral 
corrections to many different types of PV modules. 

The red dashed lines in Figure 6 show how sensitive model 
is to changing the wavelengths used. Most modules have 
similar RMSE values when using the one wavelength 
(648nm) from this optimization over all modules as they do 
from using the first wavelength found in their specific 
optimization. For all modules, the RMSE when using this 
648nm wavelength is smaller than the RMSE from using the 
traditional air mass and temperature predictors. 

To further test the sensitivity of using different wavelengths 
as predictors, Figure 7 shows the increase in RMSE when 
using each module’s spectral wavelength predictors applied to 

Figure 5: Errors (% of Isc) for irradiance only (top left), irradiance plus spectral wavelengths (top right, middle two, bottom left), and irradiance plus air mass 
(bottom right).
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other modules for the case when using irradiance plus two 
spectral wavelengths as predictors. 

A few trends are seen in Figure 7. First, when using the 
wavelengths found for poly Si modules (e.g., 590nm and 
750nm as found for the first poly Si module) errors are only 
slightly increased for all modules except the single a-Si and 
the CdTe. This is likely caused by the spectral response of 
these two modules being different than the other modules. 
Second, related to the first point, errors are increased when 
using either the single a-Si or CdTe predictors, again likely 
due to spectral response differences. Finally, errors are large 
even in the Si modules when using the bifacial mono-Si 
predictors. The converse (errors in bifacial mon-Si when 
using other Si predictors), though, does not result in as large 

of errors. A possible explanation for this is that the bifacial 
module is sensitive to both wavelengths important to 
traditional Si modules and also sensitive to a separate 
wavelength related to the reflected irradiance reaching the 
side of the module not facing the sun. The former sensitivity 
would mean that the traditional Si predictors are also good 
predictors of the bifacial module’s Isc, while the later 
sensitivity would have determined the optimal predictor 
wavelengths and thus have included a wavelength important 
to irradiance reaching the back side of the module.

V. POTENTIAL APPLICABILITY AT A DIFFERENT LOCATION

The methods in this analysis were repeated using data 
collected at Sandia National Laboratories in Albuquerque, 
NM. This Albuquerque dataset had several limitations over 
the Los Alamos data: PV modules were typically only tested 
for a few days at a time (so long-term analysis is not 
possible), and broadband irradiance, spectral, and Isc 
measurements were all collected at different times with 
different spacing between measurements. An additional 
difference between the Albuquerque and Los Alamos datasets 
is that all Albuquerque measurements are collected on a two-
axis tracker that is always normal to the sun, rather than the 
fixed orientation of the Los Alamos measurements. 

Despite these differences between the two datasets, we 
performed a simple to see test whether the important 
wavelengths found in section IV. For this test we chose the 
clear day May 27, 2014 in Albuquerque. A longer test period 
such as the month used for Los Alamos was not possible due 
to the short Isc collection periods for each module in 
Albuquerque. Figure 8 shows the spectral correlations for a 
monocrystalline silicon module in Albuquerque, just as 
Figure 4 did for the polycrystalline module in Los Alamos. 

Figure 6: RMSE errors (% of Isc) for each of the 10 different module types. 
The x-axis shows added predictors (i.e., the second entry includes 
irradiance plus one spectral wavelength; the last entry includes all four 
spectral wavelengths as predictors). The black lines show RMSEs when 
using the optimal wavelengths for each PV technology individually, i.e., 
wavelengths used change from module to module. The red dashed lines 
show the RMSEs for the set of wavelengths that minimized errors over all 
modules, i.e., the wavelengths used are the same for all modules. The thin 
blue dashed line is the RMSE when using irradiance, air mass, and 
temperature (but no spectral wavelengths) as predictors.

Figure 7: Increase in RMSE when using each different module’s predictors 
instead of a module’s optimal predictors, for irradiance plus two spectral 
wavelengths as predictors. For example, the bottom right grid cell shows that, 
when using the CdTe predictor wavelengths (1262nm and 506nm), the error in 
the poly Si module Isc prediction was increased by 0.15% (from 0.67% to 
0.82%) compared to the optimal poly Si wavelengths (590nm and 750nm).
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Differences between Figure 4 and Figure 8 may be due to 
differences is spectral changes between Los Alamos and 
Albuquerque, though they could also be due to data collection 
differences (collection times of measurements, fixed tilt vs. 
two-axis tracking, etc.). 

Figure 9 shows the RMSE errors when adding additional 
spectral wavelength predictors for a monocrystalline silicon 
module in Albuquerque, analogous to Figure 6. The RMSE 
errors for the optimum predictors (black line) are smaller than 
those found in Los Alamos, perhaps because of the coplanar 
irradiance and Isc measurements in Albuquerque (both are 
taken on the two-axis tracker), rather than the suspected 3˚
offset between irradiance and Isc measurements in Los 
Alamos.

Also included in Figure 9 are the wavelengths found to 
minimize the errors for all Los Alamos modules (red dashed 
line) and for a monocrystalline silicon module in Los Alamos 
(blue dashed line). Both are still improvements over 
irradiance as the only predictor. And, the Los Alamos 
monocrystalline wavelengths do seem to be better predictors 
than the general Los Alamos wavelengths, suggesting that 
may be a geographically independent set of optimal 
wavelengths for monocrystalline silicon modules. However, 
due to the limited data analyzed and the inconsistent 
measurement times in Albuquerque, these results still need 
further verification.

VI. CONCLUSIONS AND FURTHER WORK

Initial results are promising that a few spectral wavelengths 
can be added as meaningful predictors of Isc. The analysis has 
been extended to another location (Albuquerque, NM), and 

results were found to be consistent in general terms: one or 
more spectral wavelengths were beneficial as predictors of 
Isc. Further work could be done to compare other locations, 
and to test the sensitivity and consistency across different 
locations or seasons of the spectral wavelengths used as 
predictors.
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Figure 8: Monocrystalline silicon module in Albuquerque. [Top] Spectral 
intensity / POA irradiance, colored by values of Isc / modeled Isc (from 
Equation (5)). Vertical color gradients (light to dark or dark to light) thus 
indicate wavelengths at which spectral changes (relative to irradiance) are 
correlated to Isc changes not described by Equation (5). [Bottom] Plot of 
these correlations – correlation between spectral intensity / POA and Isc /
modeled Isc. 

Figure 9: RMSE errors (% of Isc) for a monocrystalline silicon module in 
Albuquerque. The x-axis shows added predictors (i.e., the second entry 
includes irradiance plus one spectral wavelength; the last entry includes all 
four spectral wavelengths as predictors). The black line shows RMSEs when 
using the optimal wavelengths. The red dashed lines show the RMSEs for the 
set of wavelengths that minimized errors over all Los Alamos modules. The 
blue dashed line is the RMSE when using the set of wavelengths found for a 
monocrystalline silicon module in Los Alamos.
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