ENERGY

SANDZ'O];G'- 4771C

Exceptional service in the national interest National
Laboratories

RI\/IA MT: A Benchmark Swte for

Assessing MPI Multi-threaded RMA

Performance

Matthew G. F. Dosanjh, Taylor Groves, Ryan
E. Grant, Ron Brightwell, Patrick G. Bridges

/i ¥
AN

Trends Towards Exascale) i

= Trends in High Performance Computing
= More cores, threads, and nodes
= OpenMP
= Qthreads
= Argobots
= Tasking Models

= Fine grained communication
= Current performance warrants exploration of other models

= Parallelism models for Exascale systems
= MPI Thread Multiple for intra-node parallelism

= MPI RMA for inter-node parallelism
= Lack of benchmarks for these models, especially together

What do we need to know?) e,

= Does RMA-MT work?
= How does RMA-MT perform?

= How do | choose what RMA functions to use in my RMA-MT
code?

The RMA-MT Benchmark Suite) o,

= Two levels of measurement
= Microbenchmarks for Performance Measurement
= Proxy applications for Application impact

= Based on existing two-sided benchmarks/mini apps
= R. Thakur and W. Gropp’s Multithreaded Latency and Bandwidth
= Sandia Micro Benchmarks (SMBs)

= Mantevo Miniapplications
= HPCCG
= MiniFE
= MiniMD

Goals of the Benchmark Suite) s,

= Test Functionality
= Check for Communication Correctness
= Check for impact on solutions

= Measure Performance
= |atency
= Bandwidth
= Message Rate
= Proxy Applications

= Explore Synchronization and Transfer Options

BACKGROUND

MPI RMA h) e,

= MPI’s implementation of one sided communication

= Four synchronization methods
= Fence
= Post/Start/Complete/Wait
= Lock/Unlock
= Lock-all/Unlock-all

= Avoids the majority of MPI processing
= Serialized Data Structures
= Unexpected Message Costs

Combined Synchronization Costs
= Communication and computation overlap

= Fine grained communication

MPI Thread Multiple) i,

= MPI’s thread-safe mode

= Makes new communication patterns easier
" Fine grained messaging
= Communication and computation overlap

= Tested on Two sided

= Current Open Source Implementations are inefficient

* Synchronous data structures

= |mplemented using global locking

CREATING THE BENCHMARKS

Basic Bandwidth

irecv()
irecv()

irecv()

waitall()

Sandia
National _
Laboratories

isend()

isend()
isend()

waitall()

Multithreaded Bandwidth) s,

iréév()

irecv()

(Jpuesi -

irecv()

(Jpuesi -

(Jpuesi -

waitall()

waitall() (________——————"”'_—___—_—_—_—_—__—__—— |
(&/

Sandia

Multithreaded Bandwidth h) e,

iréév() Thread Creation Overhead o
irecv() =

»

: 38

irecv() = | 2
2| o
waitall() // . O
/ 2
/'v
/ waitall()

Multithreaded Bandwidth) s,

iréév()

irecv()

)puas| "

Thread Synchronization

irecv()
waitall() / |
—
13

| ()m}esu
Opuosy -

waitall()

RMA-MT Bandwidth

Create
Window

Start synch
End synch

Sandia
National _
Laboratories

Start synch

P
——

End synch

RMA-MT Bandwidth

Create
Window

Start synch
End synch

Must not overlap destination in window
Destination must be known by receiver

Sandia
National
Laboratories

Start synch

Ond

End synch

RMA-MT Goals)

= Does it work?
= Check data resulting from transfer

= How does is perform?
= Time Measurement
= Accounting for thread overhead

= What options do | choose?
= Comparing transfer options (Put/Get)

= Comparing synchronization options

RESULTS

17

National

Experimental Setup) S

= Hardware
= 2 —Xeon E5 8 core processors running at 2.6 GHz
= Qlogic Infiniband network architecture

= Software
= OpenMPI Development Branch using OSC/PT2PT
= MVAPICH numbers are available in the paper

= Miniapps
= HPCCG uses Lock-all/Unlock-all
= MiniFE and MiniMD use Fence

latency (s)

Latency — OpenMP]) o,

» All synchronization methods perform worse with Threads
« PSCW performs best in both cases

« PSCW has 4 low latency steps

« PSCW has an active synchronization on the receiver
* Lock has extra synchronization overhead

» Acquires a reader-writer lock

Multithread OpenMPI Latency - 1 Thread Multithread OpenMPI Latency - 16 Thread
0.00035 0.00035
0.00083 | 0.0003
0.00025 | 0.00025
0.0002 | % 0.0002
0.00015 % 0.00015
0.0001 0.0001

0

% % % 6\’9 ’7?@

msg. size. per process (B) msg. size. per process (B)

Fence —e— Lock —®— PSCW —a&— Fence —e— Lock —®— PSCW —aA—

Bandwidth - OpenMPI)

» Threads perform worse for messages smaller than 1MiB
« PSCW and Lock perform best in both cases
« Each require synchronization with each process communicated with
« Bandwidth test is one process communicating to a second
» Lock’s overhead is amortized with multiple transfers in an epoch
* Fence performs worst in 16 threaded case
 Fence is implemented as a collective

Multithread OpenMPI Bandwidth - 1 Thread Multithread OpenMPI Bandwidth - 16 Thread
3500 4 3500
3000 3000
é’; 2500 ;32 2500
S 2000 S 2000 |
e e
5 X} |
E 1500 E 1500
C C
g 1000 1 g 1000 |
500 500
0 07:9:5';;:5‘;“7&/&6*/\30‘7
6 R % XS 6 % O OS850 1,
¢ 6 Rl v w @@@&/&)6’@9@@

msg. size per process (B) msg. size per process (B)

Fence —e— Lock PSCW —aA— Fence —e— Lock PSCW —aA—

Message Rate - OpenMPI) .

« Performance is less impacted by threads
 Fence and PSCW perform best in both cases
« Fence synchronizes all neighbors with one call
« PSCW has a relatively low overhead
» Lock performs worst
» Likely due to overhead acquiring the reader-writer lock

Mesage Rate, OpenMPI, halo exchange, 8 node, 1 thread Mesage Rate, OpenMPI, halo exchange, 8 node, 16 thread

2 2
3} ©
o o
(0] (0]
(@) (o))
(19 (49
[} [}
[} [}
(0] (0]
= =
0 o~ 2% & Js 7o 20 S 7, 0 o % & 7 7o 20 S 7,
% 7602000 20 4—4—4—4— 753 75, % 7602000 20 4—4—4—4— 753 7,
SRR 6‘<9v” CIRK SIS 4‘6, @ﬁ&e®@®e®@ SRR eé,e % o % '7-@ ,0’3&6’@6’@9@@
Message Size (Bytes) Message Size (Bytes)
Fence —e— PSCW —a— Fence —e— PSCW —a—
Lock —&— Two Sided Baseline —&— Lock —&— Two Sided Baseline —62—1

National

Discussion rh) pea_

= Fence for the Mini Apps
= Fence is performant in Message Rate Halo Exchange
= Halo exchange matches the communication of the MiniApps

= Fence provides a simpler coding paradigm

= Lockall functionality issues

= Due to the development trunk

= MVAPICH numbers are available in the paper

Functionality h

= Running these tests exposed both performance and
correctness problems with RMA-MT code paths in MPI
implementations
= 3 Segmentation Faults
= 22 failed assertions
= 6 incorrect transfers
= Qut of 280 runs

= We've shared these benchmarks with developers who have
used them to test, fix, and optimize their implementations

Sandia
National
Laboratories

Proxy Applications h) =,

RG6
Runtime comparison for HPCCG, MiniMD, and MiniFE

45%
40%
35%
30%
25%
20%
15%
10%

9%

0%
-5%

Percent overhead for Multi-threaded RMA

Number of Ranks

HPCCG-MVA s MiniMD-MVA mmmmm MiniFE-MVA
HPCCG-OMPI MiniMD-OMPI| s MiniFE-OMP|

24

Slide 24

RG6 do you plan on saying here? It's easy to get lost in the crummy MVAPICH performance and miss the real message of thsi

slide
Ryan Grant, 5/17/2016

Performance)

= RMA-MT currently performs worse than single-threaded two-
sided
= Two-sided implementation of one sided calls
= Global locks in MVAPICH
= Queued until synchronization in MVAPICH

= These are software engineering challenges

Future Work

= How does RMA-MT interact with different network
architectures at scale?

= How will RMA-MT impact application performance using
Passive Target synchronization?

= How will RMA-MT impact asynchronous communication
algorithms?

= Can we adapt these benchmarks to other one sided
communication libraries such as OpenSHMEM?

Sandia
National
Laboratories

QUESTIONS?

27

