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Trends Towards Exascale ) i

= Trends in High Performance Computing
= More cores, threads, and nodes
= OpenMP
= Qthreads
= Argobots
= Tasking Models

= Fine grained communication
= Current performance warrants exploration of other models

= Parallelism models for Exascale systems
= MPI Thread Multiple for intra-node parallelism

= MPI RMA for inter-node parallelism
= Lack of benchmarks for these models, especially together




What do we need to know? ) e,

= Does RMA-MT work?
= How does RMA-MT perform?

= How do | choose what RMA functions to use in my RMA-MT
code?




The RMA-MT Benchmark Suite ) o,

= Two levels of measurement
= Microbenchmarks for Performance Measurement
= Proxy applications for Application impact

= Based on existing two-sided benchmarks/mini apps
= R. Thakur and W. Gropp’s Multithreaded Latency and Bandwidth
= Sandia Micro Benchmarks (SMBs)

= Mantevo Miniapplications
= HPCCG
= MiniFE
= MiniMD




Goals of the Benchmark Suite ) s,

= Test Functionality
= Check for Communication Correctness
= Check for impact on solutions

= Measure Performance
= |atency
= Bandwidth
= Message Rate
= Proxy Applications

= Explore Synchronization and Transfer Options




BACKGROUND




MPI RMA h) e,

= MPI’s implementation of one sided communication

= Four synchronization methods
= Fence
= Post/Start/Complete/Wait
= Lock/Unlock
= Lock-all/Unlock-all

= Avoids the majority of MPI processing
= Serialized Data Structures
= Unexpected Message Costs

Combined Synchronization Costs
= Communication and computation overlap

= Fine grained communication




MPI Thread Multiple ) i,

= MPI’s thread-safe mode

= Makes new communication patterns easier
" Fine grained messaging
= Communication and computation overlap

= Tested on Two sided

= Current Open Source Implementations are inefficient

* Synchronous data structures

= |mplemented using global locking




CREATING THE BENCHMARKS
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Multithreaded Bandwidth ) s,
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Multithreaded Bandwidth h) e,
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Multithreaded Bandwidth ) s,
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RMA-MT Bandwidth
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RMA-MT Bandwidth
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Window

Start synch
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RMA-MT Goals )

= Does it work?
= Check data resulting from transfer

= How does is perform?
= Time Measurement
= Accounting for thread overhead

= What options do | choose?
= Comparing transfer options (Put/Get)

= Comparing synchronization options




RESULTS
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Experimental Setup ) S

= Hardware
= 2 —Xeon E5 8 core processors running at 2.6 GHz
= Qlogic Infiniband network architecture

= Software
= OpenMPI Development Branch using OSC/PT2PT
= MVAPICH numbers are available in the paper

= Miniapps
= HPCCG uses Lock-all/Unlock-all
= MiniFE and MiniMD use Fence




latency (s)

Latency — OpenMP] ) o,

» All synchronization methods perform worse with Threads
« PSCW performs best in both cases

« PSCW has 4 low latency steps

« PSCW has an active synchronization on the receiver
* Lock has extra synchronization overhead

» Acquires a reader-writer lock
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Bandwidth - OpenMPI )

» Threads perform worse for messages smaller than 1MiB
« PSCW and Lock perform best in both cases
« Each require synchronization with each process communicated with
« Bandwidth test is one process communicating to a second
» Lock’s overhead is amortized with multiple transfers in an epoch
* Fence performs worst in 16 threaded case
 Fence is implemented as a collective
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Message Rate - OpenMPI ) .

« Performance is less impacted by threads
 Fence and PSCW perform best in both cases
« Fence synchronizes all neighbors with one call
« PSCW has a relatively low overhead
» Lock performs worst
» Likely due to overhead acquiring the reader-writer lock

Mesage Rate, OpenMPI, halo exchange, 8 node, 1 thread Mesage Rate, OpenMPI, halo exchange, 8 node, 16 thread
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Discussion rh) pea_

= Fence for the Mini Apps
= Fence is performant in Message Rate Halo Exchange
= Halo exchange matches the communication of the MiniApps

= Fence provides a simpler coding paradigm

= Lockall functionality issues

= Due to the development trunk

= MVAPICH numbers are available in the paper




Functionality h

= Running these tests exposed both performance and
correctness problems with RMA-MT code paths in MPI
implementations
= 3 Segmentation Faults
= 22 failed assertions
= 6 incorrect transfers
= Qut of 280 runs

= We've shared these benchmarks with developers who have
used them to test, fix, and optimize their implementations
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Proxy Applications h) =,

RG6
Runtime comparison for HPCCG, MiniMD, and MiniFE
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RG6 do you plan on saying here? It's easy to get lost in the crummy MVAPICH performance and miss the real message of thsi

slide
Ryan Grant, 5/17/2016



Performance )

= RMA-MT currently performs worse than single-threaded two-
sided
= Two-sided implementation of one sided calls
= Global locks in MVAPICH
= Queued until synchronization in MVAPICH

= These are software engineering challenges




Future Work

= How does RMA-MT interact with different network
architectures at scale?

= How will RMA-MT impact application performance using
Passive Target synchronization?

= How will RMA-MT impact asynchronous communication
algorithms?

= Can we adapt these benchmarks to other one sided
communication libraries such as OpenSHMEM?
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QUESTIONS?
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