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Background and motivation Pacific Nofdue
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» Most land models in Earth System Models include numerous sub-
models, each representing key processes with mathematical
equations and model parameters.

» Quantifying parametric uncertainties and optimizing the parameter
values may improve model skill in capturing the observed behaviors.

» The land models are highly computationally expensive. It is crucial to
take advantage of advances in applied mathematics (e.qg., efficient
sampling and surrogate model construction) and high performance
computing (e.g., big data analytics and parallel algorithms).
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An Uncertainty Quantification Framework for Pacific Northwest

NATIONAL LABORATORY

CLM4SP hydrologic parameters
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Output responses:

* Latent heat fluxes (LH)

* Sensible heat fluxes (SH)
* Total runoff

Calculate selected metrics for

* Global sensitivity analysis; _

» Parameter screening; . SUfFOSat? const‘ruc‘uo’n
= Bayesian inversion using surrogates/

real model

* Assessing parameter transferability



Sensitivity of Simulated Surface Fluxes and ~7
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» CLM4-SP simulated water/energy
fluxes show the largest sensitivity =, ..

Larger sensitivity to
parameters of

) 90.00 - - subsurface processes
to subsurface runoff generation < -l
parameters. o

50.00 A
40.00

» Simulations using default il
parameters (red) are significantly .. . .
different from observations at R

ARM SGP (blue) and a co-located
MOPEX site (green).

» With the observations falling
within the range of parameter
uncertainties, it is feasible to use
model inversion to improve
water/energy simulations.
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Inverse Modeling of Hydrologic Parameters ~7
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using Surface Flux and Runoff Observations

» A Markov Chain Monte
Carlo (MCMC) — Bayesian ??/%\KA
!

inversion algorithm was
implemented to CLM4;

» We evaluated the effects of
surface flux and streamflow i
. egen
observations on the . USGS stations

A Selected flux towers for inversion

inve rSIOn resu |tS d nd I Selected MOPEX basin for inversion - %%
compare their consistency £ Fluxtowers in HOU2012

[ | MOPEX basins in HUANG2012
and reliability using both
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» Our results suggest that
parameter inversion of
CLMA4SP is possible, at least
at the site level;
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May 17, 2016 Sun et al., 2013, HESS MCMC-Bayesian calibrated parameters can significantly;
improve CLM simulation of energy fluxes and runoff
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» Use parameter sensitivity

patterns/ attributes, together Sensitivity-based classification of the 431 MOPEX Basins basins
with climate and soil conditions %ﬁi
to cI:-:us.S|fy-the I?a5|ns: The "o PR
classification yields six classes  (qa T
with unique sensitivity of <., “T@
streamflow simulations to " ’ o IR
variations in hydrological At o K - B
parameters. 9 » Qﬁ%

» By grouping a large number %; k‘ 4y @ Gasst 54 aes
basins into a reasonably small g A e
number of classes with similar J | G iotn

sensitivity behaviors, the same
optimization strategy can be
used within each class. Model
optimization effort can be
further reduced given the
parameter similarity and
transferability.

May 17, 2016 Ren et al., J Hydrology, 20166
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Surrogate-based MCMC-Bayesian Inversion : ~7
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» Assessed the feaSIblllty of —— Cl. averaged — — CLMdefault — ~ Lower bound — =
applying a Bayesian calibration @UsHal . (b) US-ARM
technique in combination with v
surrogates to estimate CLM4SP
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generally improved at all sites;

» The calibration method also
results in credibility bounds
around the simulated mean fluxes
which bracket the measured data;
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» The computational cost is significantly reduced when surrogates are used.
On the other hand, a surrogate-based calibration procedure is intrinsically
subject to errors as a result of approximating a complex model using

simplified functions. Ray et al., SIAM-JUQ, 2015

Huang et al., JGR, in revision
May 17, 2016
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» Problems with MCMC

B Sampling cost: Many samples needed; each sample leads to 1 model
evaluation

B Poor proposals: If proposal distribution is sub-optimal, most proposals will
be rejected

B Bad start: What’s a good place to start
» Solutions:
B Sampling cost: Distribute sampling over m chains

B Poor proposals: adaptive Metropolis-Hasting sampling

@ Periodically, use samples collected to compute a multivariate Gaussian
approximation to f(: | :)

@ Inflate its variance and use it as a proposal

® Only works if you have some samples to work with

B Bad start: Have m chains start from an over-dispersed set of p,

May 17, 2016 8
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Addressing sampling cost Pacific Nofdue
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Chains run
asynchro-
nously

Generation i

Each generation

———  consists of
1. proposal
Communicate | generation
samples & 2. model run
recompute - 3. accept/reject of
proposal o proposal
distribution

incrementally
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Addressing bad starts Pacific Nofdue
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» When there aren’t enough samples, how to make a good proposal
distribution?
B Use genetic algorithm (Differential Evolution) to collect a few good samples
B Use parallel and snooker updates to construct proposals
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B Switch to adaptive Metropolis-Hastings when we have a few good samples
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CLM calibration with real LH observations Pacific Northwest

Proudly Operated by Battelle Since 1965

» Calibrate: F ., log(Q,), b T g
» Use observations from ARM/SGS site ¢ - _ LJ AEH T

for 2003 Htr
B Observations are latent heat fluxes ' ' '
B Averaged to their monthly value

MCMC generations

- Evolution of the chains
Predictions using posteriors

— Nomina < — = S—
«  Observatons
<= Ensemble predictions MCMGC generations
= L » The likelihood is flat near the minimum
- X error point, hard to converge:
L .'::‘_"’,‘:  \\ .
: PoeNR \ B The chain for b has converged
= 'f:{. ".~\\\ R . .
3 -~-f<‘1,§??§\\\ B The other chains are still wandering
\\-\. B Far from convergence @ 600 generations
2 4 5 8 1w

Bao et al., mathematical Geoscience, submitted;
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