
Extending the Binomial Checkpointing Technique for Resilience∗

Andrea Walther1 Sri Hari Krishna Narayanan2

Abstract
In terms of computing time, adjoint methods offer a very
attractive alternative to compute gradient information, re-
quired, e.g., for optimization purposes. However, together
with this very favorable temporal complexity result comes
a memory requirement that is in essence proportional with
the operation count of the underlying function, e.g., if algo-
rithmic differentiation is used to provide the adjoints. For
this reason, checkpointing approaches in many variants have
become popular. This paper analyzes an extension of the
so-called binomial approach to cover also possible failures of
the computing systems. Such a measure of precaution is of
special interest for massive parallel simulations and adjoint
calculations where the mean time between failure of the large
scale computing system is smaller than the time needed to
complete the calculation of the adjoint information. We de-
scribe the extensions of standard checkpointing approaches
required for such resilience, provide a corresponding imple-
mentation and discuss first numerical results.

1 Introduction

The usage of adjoint methods allows the computation
of gradient information within a time that is only a very
small multiple of the time needed to evaluate the under-
lying function itself. However, as soon as the considered
process is nonlinear, the memory requirement to com-
pute the adjoint information is in principle proportional
to the operation count of the underlying function, see,
e.g., [1, Sec. 4.6]. In Chap. 12 of the same book, several
checkpointing alternatives to reduce this high memory
complexity are discussed. Checkpointing strategies use
a small number of memory units (checkpoints) to store
the system state at distinct times. Subsequently, the
recomputation of information that is needed for the ad-
joint computation but not available is performed using
these checkpoints in an appropriate way. Several check-
pointing techniques have been developed all of which
seek an acceptable compromise between memory re-
quirement and runtime increase.

For this paper, we assume that the evaluation of the
function of interest has a time-step structure given by

xi = Fi(xi−1, ui−1), i = 1, . . . , l ,(1.1)

∗This work was funded in part by a grant from DAAD Project
Based Personnel Exchange Programme and by a grant from the

U.S. Department of Energy, Office of Science, under contract DE-

AC02-06CH11357.
1Universität Paderborn
2Argonne National Laboratory

for a given x0, where xi ∈ Rn, i = 0, . . . , l, denote the
state of the considered system and ui ∈ Rm the control.
The operator Fi : Rn × Rm 7→ Rn defines the time step
to compute the state xi. The process to compute xl for a
given x0 is also called forward integration. To optimize
a specific criterion or to obtain a desired state, the cost
functional

J(x(u), u) = J(x, u)

measures the quality of x(u) = (x1, . . . , xl) and u =
(u1, . . . , ul), where x(u) depends on the control u. For
applying a derivative-based optimization method, one
could use an adjoint integration of the form

ūl = 0 , x̄l given

(x̄i−1, ūi−1) = F̄i(x̄i, ūi, xi−1, ui−1), i = l, . . . , 1,(1.2)

where the operator F̄i denotes the adjoint time step.
Subsequently or concurrently to the adjoint integration,
the desired derivative information Ju(x(u), u) can be re-
constructed from x̄. As can be seen, the information
of the forward integration (1.1) is needed for the ad-
joint computation (1.2). To provide this information
within only a limited amount of memory, we use the
binomial checkpointing approach proposed in [2, 3] as
a basis to develop a checkpointing approach that can
also handle a failure of the computing system. This
includes a foreseen suspension, where the application
should suspend itself gracefully after completing the set
number of forward or adjoint time steps. However, also
an unforeseen failure has to be covered, where the ap-
plication is killed externally because of machine failure
or expired time allocation. This scenario occurs when
running the MIT General Circulation Model (MITgcm,
[4, 5]) on ARCHER, a UK based supercomputer. MIT-
gcm executes for around 351,000 timesteps to simulate
1 year of physical time. This requires around 24 hours
of wall clock computation time. Because the mean time
between failure (MTBF) of ARCHER is lower than 24
hours, administrative policies require applications exe-
cute for a fixed time allocation such as 6 hours at a
time before they are suspended. Typically, an applica-
tion can be restarted from suspension when checkpoints
containing intermediate data are available and the ap-
plication is aware of its position in the overall compu-
tation.

An additional aspect that has to be taken into
account is the actual location where checkpoints are
stored. Checkpoints stored in memory can be lost on
failure. For the sake of resilience or because future su-
percomputers may be memory constrained, checkpoints
may have to necessarily be stored to disk. Therefore, the
access time to read or write a checkpoint is not negligible
in contrast to the assumption frequently made for the
development of checkpointing approaches. There are a
few contributions to extend the available checkpoint-
ing techniques to a hierarchical checkpointing, see, e.g.,
[6, 7, 8]. However, to derive a first checkpointing tech-
nique that incorporates resilience we ignore this hierar-
chical nature and assume throughout that the writing
or reading process for a checkpoint is performed asyn-
chronously such that it does not interfere with the ad-
joint computation.

This paper has the following structure. In Sect. 2,
we describe the functionality of the software revolve [3]
that we will use as a starting point for a checkpoint-
ing approach that can also cover resilience. The exten-
sions of revolve that are required for this purpose are
described in Sect. 3. First results with respect to the
temporal complexity will be given in Sect. 4. Finally,
we draw conclusions and give an outlook of future work
in Sect. 5.

2 Binomial Checkpointing using revolve

For large scale applications like the MITgcm, because
of limited storage or the time to store checkpoints,
it is only possible to store a very limited number of
intermediate states as checkpoints. Hence, one obvious
question is where to place these checkpoints during
the forward integration to minimize the amount of
required recomputations. It was shown in [3] that
a checkpointing scheme based on binomial coefficients
yields for a given number of checkpoints the minimal
number of time steps to be recomputed.

To apply such an optimal checkpointing strategy,
one can use the software revolve that provides a data
structure r to steer the checkpointing process and the
storage of all information required for this purpose.
Then, the forward integration as well as the correspond-
ing adjoint computation is performed within a do-while-
loop of the structure in Fig. 1, where steps and snaps
denote the number l of time steps of the forward simu-
lation and the number c of checkpoints, respectively.

Hence, the routine revolve determines the next ac-
tion to be performed which must by supported by the
application being differentiated. For example, this ac-
tion may be the execution of a part of the forward inte-
gration based on the routine forward(x,u), where x rep-
resents the state of the system and u the control, one

. . .
r=new Revolve(steps,snaps)
do

whatodo = r–>revolve()
switch(whatodo)

case advance: for r–>oldcapo < i ≤ r–>capo
forward(x,u)

case takeshot: store(x,xstore, r–>check)
case firsturn: eval J(x,u)

init(bu,bx)
adjoint(bx,bu,x,u)

case youturn: adjoint(bx,bu,x,u)
case restore: restore(x,xstore, r–>check)

while(whatodo <> terminate)
. . .

Figure 1: revolve algorithm with calls to the application
interface

step of the actual adjoint computation performed in the
routine adjoint(bx,bu,x,u), where bx denotes the adjoint
state and bu the adjoint control. For the checkpoint-
ing approach, it is required to store the current state
as a checkpoint, i.e., execute the routine store(x,xstore,
r–>check), where xstore represents an array to store sys-
tem states and r–>check is the number of the entry,
where the checkpoint has to be stored. Finally, to re-
compute the required intermediate information a check-
point has to be read, i.e., restore(x,xstore, r–>check) has
to be performed.

It is important to note that this checkpointing
approach is completely independent from the method
that is actually used to provide the adjoint information.
As can be seen, as soon as an adjoint computation is
available only a very limited effort is needed to combine
this with binomial checkpointing to reduce the memory
requirement. We have to stress that revolve provides
a so-called serial checkpointing which means that only
one forward time step or one adjoint step is performed
at each stage of the adjoint computation. This is in
contrast to so-called parallel checkpointing techniques
where several forward time steps might be performed in
parallel even in conjunction with one adjoint step.

Up to now it was always assumed that for the serial
checkpointing the computation of the forward time step
and the adjoint step are free of failures. In reality, the
computation of the forward step or the adjoint step may
be performed heavily in parallel, i.e., may be evaluated
on a large scale computer system. This is precisely the
situation where we have to take resilience into account
and therefore an appropriately adapted extension of
binomial checkpointing approach is required.

3 Binomial Checkpointing for Resilience

The ability to recover from a possible failure poses
two additional challenges for the checkpointing scheme.
First, the distance between two checkpoints should not
be too large such that a restart of the computation is
not too costly. Hence, there has to be an additional
bound on the distance of two checkpoints in terms of
the number of time steps that are performed before the
next checkpoint is set. Second, since a failure may also
occur during the adjoint computation also the adjoint
state has to be checkpointed. Due to the nature of the
adjoint computation, only one adjoint state is required
to restart the adjoint computation. However, since the
adjoint state itself is assumed to be large it is not possi-
ble to checkpoint every adjoint state computed. There-
fore, we also have to define a distance between these so-
called adjoint checkpoints. This distance corresponds to
the number of adjoint steps performed after which the
current adjoint state is stored again. Hence, two new
variables were introduced in the data structure provided
by revolve, namely resilience distance for the maximal
number of forward time steps between two checkpoints
and adjoint distance for the number of adjoint steps per-
formed before the current adjoint state is stored again.

Internally, only the maximal distance between two
checkpoints, i.e., the value of resilience distance inter-
feres with the optimal binomial checkpointing approach.
To limit the number of time steps between two con-
secutive checkpoints, first the distance required for
the optimal, i.e., binomial checkpointing, is computed.
This number is then compared with the value of re-
silience distance. If the value of resilience distance is
smaller than the number of time steps chosen by revolve,
only resilience distance steps are performed despite the
fact that this might lead to a suboptimal checkpoint-
ing schedule. This comparison is performed each time
a checkpoint has to be stored. Therefore, revolve im-
plements the optimal checkpointing approach whenever
possible. An analysis of this possibly suboptimal check-
pointing approach is presented in Sect. 4.

If a failure actually occurs, one faces two possibil-
ities: First the failure happens during the forward in-
tegration. Then, the computation can just restart at
the last checkpoint stored. Second, the failure happens
after the start of the adjoint computation. Then it may
happen that the checkpoint distribution at the time of
the failure differs from the one when the last adjoint
checkpoint was written. As a small example to illus-
trate this we consider the case, when there are l = 100
time steps performed during the forward integration,
five checkpoints can be stored, the resilience distance
is 30 and an adjoint checkpoint is stored every 10 ad-
joint steps. Assume now, that the failure happens di-

rectly after the computation of the 57th adjoint step.
Hence, the adjoint states 59, 58, and 57 are lost. How-
ever, because the adjoint state is stored every 10 adjoint
steps, the 60th adjoint state is available and the adjoint
computation can be restarted at this point. Using the
original revolve version, the following states would serve
as checkpoints when storing the last, i.e., 60th, adjoint
state:

0 45 54 56 58

As can be seen, there are more than 30 time steps be-
tween the first and the second checkpoint violating the
bound of 30 for resilience. Therefore, the correspond-
ingly adapted version of revolve would yield the check-
point distribution

0 30 60 61 62

Hence, one clearly sees the influence on the resilience
distance on the distribution of the checkpoints since
now there are no more than 30 time steps between the
checkpoints. At that stage of the adjoint computation,
the states 61 and 62 are still stored as checkpoints.
Therefore, they still occur here in the checkpoint list.
They will be reset within the next actions to earlier
states. Due to this realocation of the checkpoints, the
following states serve as checkpoints at the failure:

0 30 44 51 56

Therefore, to recover the three adjoint steps that were
lost due to the failure, it is not possible to just restart
revolve at the current checkpoint distribution. To
handle this situation, we developed two new routines
to extract the current checkpointing distribution and
the checkpointing distribution that was available when
the last adjoint checkpoint was written:

r–>get last checkpoint distribution(. . .)
r–>get checkpoint distribution stored(. . .)

such that this information can be extracted and stored
before a failure happens. To restart the adjoint compu-
tation after a failure, the stored information is read. In
our example, two specific files are used to store this data.
One of the files stores the state of the system such as the
actual values contained in the checkpoints. In the ex-
ample below, this file is named state.txt. The other one
stores the information required by revolve itself. There-
fore, it is named revolve.txt in the example below. If
the files do not exist, the computation just starts and
the usual initialization of revolve can be used. If such
files exist they contain all the data required to restart
the adjoint computation with binomial checkpointing at
the last adjoint state saved as a checkpoint if the failure

. . .
r=new Revolve(steps,snaps)
r–>set resilience distance(distance resil)
r–>set adjoint distance(distance adjoint)
if(fileExists(”state.txt”) && fileExists(”revolve.txt”)){

init status(. . .)
restart revolve internals(. . .)}

do
whatodo = r–>revolve()
switch(whatodo)

case advance: for r–>oldcapo < i ≤ r–>capo
forward(x,u)

case takeshot: store(x,xstore, r–>check)
case firsturn: eval J(x,u)

init(bu,bx)
adjoint(bx,bu,x,u)
store adjoint(bx,bu)

case youturn: adjoint(bx,bu,x,u)
case youturn with check: adjoint(bx,bu,x,u)

store adjoint(bx,bu)
case restore: restore(x,xstore, r–>check)

while(whatodo <> terminate)
. . .

Figure 2: revolve algorithm with adjoint checkpoints

happened in the adjoint computation. If the failure oc-
curred in the first forward integration, the computation
is restarted at the last state stored as checkpoint. For
these purposes, we provide the additional routine

restart revolve internals(. . .)
to set up the data structure of revolve and the checkpoint
distribution if required correspondingly. Hence, the
adjoint computation with checkpointing as illustrated
above has to be adapted as shown in Fig. 2. As can
be seen, in addition to the required initializations only
one new action is introduced, namely the execution of
one adjoint step in combination with the storage of the
current adjoint state. Hence, if one has already set
up the adjoint computation with the original binomial
checkpointing, it requires remarkably few changes to
adapt it for resilience purposes.

4 A First Complexity Study

To illustrate the deviation of the extended checkpointing
approach from the optimal binomial checkpointing, we
consider the adjoint computation for the following small

50 100 150 200
1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

checkpoints

#
 a

d
d

it
io

n
a

l
s
te

p
s

resil_dist=steps

resil_dist=500

resil_dist=400

resil_dist=300

resil_dist=200

Figure 3: Additional time steps needed for adjointing
10,000 steps

academic test case

min J(x, u) with J(x, u) ≡ x2(1),

s.t. x′1(t) = 0.5x1(t) + u(t), x1(0) = 1

x′2(t) = x1(t)2 + 0.5u(t)2, x2(0) = 0

t ∈ [0, 1] .

Since for this optimization problem, the adjoint can be
derived analytically yielding

λ′1(t) = −0.λ1(t)− 2 ∗ x1(t)λ2(t) λ1(1) = 0

λ′2(t) = 0 λ2(1) = 1

it is possible to verify the correctness of the adjoint com-
putation also for the checkpointing with resilience, i.e.,
with the restart using the information stored in the ad-
ditional files. We tested and verified the binomial check-
pointing with resilience for up to 100,000 time steps and
failures occurring at numerous different places. As a
representative observation, Fig. 3 illustrates the addi-
tional recomputations needed as a solid line for 10,000
steps and a varying number of checkpoints. The ad-
ditional recomputations needed by the binomial check-
pointing approach that incorporates resilience are illus-
trated with dotted lines for the resilience distances of
200, 300, 400, and 500 steps. Here, one has to note
that the number of checkpoints denoted with c and the
resilience distance denoted with d can not be chosen
completely independent from each other. Because d is
the maximal number of steps between two consecutive
checkpoints, it must hold for the computation to be ad-
jointed comprising of l time steps that

l ≤ d · c .

This bound limits the resilience distance from below
for a very small number of checkpoints as illustrated

0 50 100 150
10

0

10
1

10
2

10
3

10
4

checkpoints

c
h
o
s
e
n
 d

is
ta

n
c
e
 b

e
tw

e
e
n
 c

h
e
c
k
p
o
in

ts

steps between first and second checkpoint

steps between second and third checkpoint

steps between third and fourth checkpoint

Figure 4: Distance of the first four checkpoints chosen
by revolve

also in Fig. 3. If l is close to the upper bound d · c a
lot of recomputations have to be performed since this
corresponds to the strategy of complete recomputation
for a large part of the forward integration. This explains
the very high number of additional time steps required
for a c, d- combination where the product of both values
is close to l. On the other hand, it can be seen for this
example that the binomial checkpointing with resilience
only interferes with the optimality of the binomial
checkpointing if the number of checkpoints is less than
0.6 % of the computed intermediate states.

At first sight this might be a little surprising,
especially because the resilience distance is considerably
smaller than the distance of the checkpoints chosen
by the optimal binomial checkpointing approach as
illustrated in Fig. 4 for the first four checkpoints to
compute the adjoint of 10,000 steps with a varying
number of checkpoints. However, as analyzed in [3],
the checkpointing strategy implemented in revolve is in
most cases only one out of a whole variety of choices that
would lead to a minimal number of step recomputations.
The approach realized in revolve was taken, because
it also minimizes the number of times a checkpoint
is written [3, Prop. 2]. If one wants to minimize
the distance between two consecutive checkpoints, for
example for resilience, a completely different strategy
for setting the next checkpoint has to be taken as
described in detail in the remainder of this section.

For a given number of time steps l the adjoint
of which has to be computed and a given number of
checkpoints c, let r be the unique integer such that

β(c, r − 1) < l ≤ β(c, r) ≡
(
c+ r

c

)
holds. It was shown in [3], that then no time step is

0 50 100 150
10

0

10
1

10
2

10
3

10
4

checkpoints

m
in

im
a
l
d

is
ta

n
c
e
 b

e
tw

e
e

n
 c

h
e
c
k
p
o

in
ts

steps between first and second checkpoint

steps between second and third checkpoint

steps between third and fourth checkpoint

Figure 5: Alternative distance of the first four check-
points

executed more than r + 1 times. For given values of l,
c, and hence r, the proof of [3, Prop. 1] yields that the

next checkpoint has to be set to a state l̂ that fulfills

max{β(c, r − 2), l − β(c− 1, r)} ≤ l̂

≤ min{β(c, r − 1), l − β(c− 1, r − 1)}

to minimize the overall number of recomputations. The
application of this rule in a recursive way then leads to
a checkpointing strategy to compute the adjoint with
the least possible number of recomputations. Hence,
if one wants to minimize the distance between two
checkpoints, the state

l̂ = max{β(c, r − 2), l − β(c− 1, r)}(4.3)

has to be chosen as next checkpoint. For the very small
example of Sect. 3, i.e., l = 100 and c = 5, one obtains
for the computation of the 60th adjoint state then the
checkpoint distribution

0 30 44 55 58

Hence, this checkpointing distribution fits to the re-
silience distance of 30. For the larger example consid-
ered above, the effects on the checkpointing distribution
are illustrated in Fig. 5. As can be seen, the number
of time steps between two consecutive checkpoints can
be drastically reduced. One can observe in the Figs. 4
and 5 that the distance between two consecutive check-
points decreases in most cases but unfortunately not
always. This observation makes it difficult to explain
the surprisingly good complexity result for the bino-
mial checkpointing with resilience. However, for special
cases it is possible to justify the good complexity. For
this purpose, assume that the identity l = β(c, r−1)+1

l 10,000
r 3 ≤ 2
c 38,. . . ,139 ≥ 140
l 100,000
r 3 ≤ 2
c 83,. . . ,445 ≥ 446
l 1,000,000
r 3 ≤ 2
c 180,. . . ,1412 ≥ 1413

Table 1: Checkpoint numbers for r ∈ {2, 3}

for r ≥ 3 holds. Then, using the Eq. (4.3) recursively
yields that

l = β(c, r − 1) + 1 = β(c, r − 2) + β(c− 1, r − 1) + 1

= β(c, r − 2) + β(c− 1, r − 2) + β(c− 2, r − 1) + 1

=

c∑
γ=0

β(γ, r − 2) + 1.

According to Eq. (4.3), for this specific choice the

checkpoints are set to the states l̂i, i = 0, . . . , c−1, with

l̂i =

c∑
γ=c−i+1

β(γ, r − 2), i = 0, . . . , c− 1 .

Furthermore, the inequalities

β(γ, r − 2) ≥ β(γ − 1, r − 2)

hold for all γ ∈ {1, . . . , c}. Therefore in this case,
β(c, r− 2) is the maximal distance between two consec-
utive checkpoints and provides one possibility to deter-
mine a resilience distance that does not interfere with
the optimal binomial checkpointing. To examine this
distance more closely, we make the following observa-
tion. Since the overall adjoint computation should not
be too expensive, it is desirable to have r ∈ {2, 3}. In
these cases, the forward integration needed for the com-
putation of the adjoint needs three to four times the
time to perform one forward calculation. For numerous
cases, this is still doable but reaches almost the limit of
acceptable runtimes. To illustrate the relation between
l, c, and r, Table 1 shows the number of checkpoints re-
quired to reach r = 2 and r = 3, respectively. As can be
seen, already a reasonable small number of checkpoints
yields r ≤ 3. For r = 3, one has

β(c, r − 2) = β(c, 1) =

(
c+ 1

c

)
= c+ 1

and therefore the number of checkpoints plus one equals
the minimal resilience distance for l = β(c, r−1)+1 that

does not interfere with the optimality of the binomial
checkpointing. This is also true for a larger range of
l. However, there is much more difficult to show this
property since the difference to the value β(c, r−1) may
lead to a different checkpoint distribution. Furthermore
the case r = 2 is more complicated to analyze since then
one has to consider the case

l̂ = l − β(c− 1, r) = max{1, l − β(c− 1, r)}
= max{β(c, r − 2), l − β(c− 1, r)}.

5 Conclusions and Future Work

We have presented a modified binomial checkpointing
algorithm that supports the restart of the adjoint com-
putation after a failure of the computing system. The
modified algorithm maintains the optimality of binomial
checkpointing while limiting the maximum distance be-
tween successive forward and adjoint checkpoints. The
required changes were integrated in the software pack-
age revolve for binomial checkpointing and will be made
available on the web site of revolve as stated at the tool
list web site on www.autodiff.org.

We plan to apply the resilient binomial checkpoint-
ing algorithm to compute the adjoint of the MITgcm.
It has previously been differentiated by OpenAD [9] us-
ing the original binomial checkpointing algorithm. This
requires us to examine the additional data that must be
checkpointed in order to support restart of the applica-
tion. This includes OpenAD’s tape data structures that
are used to hold intermediate values as well as global
data structures that are used outside the time stepping
loop. We plan to use a modified version of OpenAD’s
template mechanism for revolve to support the restart
of the computation.

References

[1] A. Griewank and A. Walther. Evaluating Derivatives:
Principles and Techniques of Algorithmic Differentia-
tion. SIAM, 2008.

[2] A. Griewank. Achieving logarithmic growth of tempo-
ral and spatial complexity in reverse automatic differ-
entiation. Optimization Methods and Software, 1:35–
54, 1992.

[3] A. Griewank and A. Walther. Algorithm 799: Revolve:
An implementation of checkpoint for the reverse or
adjoint mode of computational differentiation. ACM
Transactions on Mathematical Software, 26(1):19–45,
2000.

[4] Alistair Adcroft, Chris Hill, and John Marshall. Rep-
resentation of topography by shaved cells in a height
coordinate ocean model. Monthly Weather Review,
125(9):2293–2315, 1997.

[5] Alistair Adcroft, Jean-Michel Campin, Chris Hill, and
John Marshall. Implementation of an atmosphere
ocean general circulation model on the expanded spher-
ical cube. Monthly Weather Review, 132(12):2845–
2863, 2004.

[6] G. Aupy, J. Herrmann, P. Hovland, and Y. Robert.
Optimal multi-stage algorithm for adjoint computa-
tion. SIAM Journal on Scientific Computing, 2016.
to appear.

[7] Michel Schanen, Oana Marin, Hong Zhang, and Mi-
hai Anitescu. Asynchronous two-level checkpointing
scheme for large-scale adjoints in the spectral-element
solver nek5000. Procedia Computer Science, 80:1147
– 1158, 2016. International Conference on Computa-
tional Science, ICCS 2016.

[8] P. Stumm and A. Walther. Multi-stage approaches for
optimal offline checkpointing. siam journal of scientific
computing. SIAM Journal of Scientific Computing,
31(3):1946–1967, 2009.

[9] Jean Utke, Uwe Naumann, Mike Fagan, et al. Ope-
nAD/F: A modular open-source tool for automatic
differentiation of Fortran codes. ACM Trans. Math.
Softw., 34(4):18:1–18:36, 2008.

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne
National Laboratory (“Argonne”). Argonne, a
U.S. Department of Energy Office of Science labo-
ratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for it-
self, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.

