SAND2017- 1444R

Weak scaling study: Semi-coarsening and
line-smoothing with MueLu

Tobias Wiesner

August 12, 2015

Chapter 1

Problem setup

1.1 Problem size

Antarctica problem

‘ 8km 4km 2km

Number of Dofs 2,522,040 18,509,612 141,467,550
Number of nnz 119,647,360 931,492,216 7,358,086,204
Number of layers 5 10 20
Number of procs 16 128 1024

Chapter 2

Scaling study 1

2.1 Multigrid setup for MueLu

The number of levels is set to 5. ML uses different level smoothers (Gauss-
Seidel sweeps). MueLu uses Jacobi and ILU as coarse solver.

2.1.1 8km resolution

-—= Multigrid Summary -

Number of levels
Operator complexity = 1.07

matrix rows nnz nnz/row procs
AO 2522040 119647360 47.44 16

A1 420340 7477960 17.79 16
A2 47352 656296 13.86 16
A3 4814 65236 13.55 4
A4 420 5448 12.97 1

Smoother (level 0) both : "Ifpack2::BlockRelaxation", "relaxation: type": Block Jacobi, sweeps: 2, damping factor: 0.3
Smoother (level 1) both : "Ifpack2::BlockRelaxation", "relaxation: type": Block Jacobi, sweeps: 2, damping factor: 0.3
Smoother (level 2) both : "Ifpack2::Relaxation", Type: Jacobi, sweeps: 2, damping factor: 0.3

Smoother (level 3) both : "Ifpack2::Relaxation", Type: Jacobi, sweeps: 2, damping factor: 0.3

Smoother (level 4) pre : "Ifpack2::ILUT", Level-of-fill: 1

Smoother (level 4) post : no smoother

2.1.2 4km resolution

- Multigrid Summary -

Number of levels
Operator complexity = 1.04

matrix rows nnz nnz/row procs
AO 18509612 931492216 50.32 128

A1 1682692 30048136 17.86 128
A2 188086 2625396 13.96 128
A3 18030 246124 13.65 18
A4 1678 22164 13.21 1

Smoother (level 0) both : "Ifpack2::BlockRelaxation", "relaxation: type": Block Jacobi, sweeps: 2, damping factor: 0.3
Smoother (level 1) both : "Ifpack2::BlockRelaxation", "relaxation: type": Block Jacobi, sweeps: 2, damping factor: 0.3
Smoother (level 2) both : "Ifpack2::Relaxation", Type: Jacobi, sweeps: 2, damping factor: 0.3
Smoother (level 3) both : "Ifpack2::Relaxation", Type: Jacobi, sweeps: 2, damping factor: 0.3
Smoother (level 4) pre : "Ifpack2::ILUT", Level-of-fill: 1
Smoother (level 4) post : no smoother
.
2.1.3 2km resolution
- Multigrid Summary -
Number of levels =5
Operator complexity = 1.08
matrix rows nnz nnz/row procs
AO 141467550 7358086204 52.01 1024
A1 13473100 482497456 35.81 1024
A2 6736550 120624364 17.91 1024
A3 744676 10458336 14.04 744
A4 70672 973136 13.77 70
Smoother (level 0) both : "Ifpack2::BlockRelaxation", "relaxation: type": Block Jacobi, sweeps: 2, damping factor: 0.3
Smoother (level 1) both : "Ifpack2::BlockRelaxation", "relaxation: type": Block Jacobi, sweeps: 2, damping factor: 0.3
Smoother (level 2) both : "Ifpack2::BlockRelaxation", "relaxation: type": Block Jacobi, sweeps: 2, damping factor: 0.3

Smoother (level 3) both : "Ifpack2::Relaxation", Type: Jacobi, sweeps: 2, damping factor: 0.3
Smoother (level 4) pre : "Ifpack2::ILUT", Level-of-fill: 1
Smoother (level 4) post : no smoother

2.2 General timings

Comparison of the timings between MueLu run and the results reported by
Ray.

MueLu ML
8&km 4km 2km 8km 4km 2km
Albany: ***Total Time*** 2334 2695 10780 | 622.6 669.6 1100
Albany: Setup Time 138.6 779.3 5631 | 39.76 50.36 83.82

AztecOO: GMRES total solve time | 1665 1415 4617 | 317.2 364.9 753.9
MueLu: Hierarchy: Setup (total) 87.09 85.93 1255 | 42.62 40.57 41.97
MueLu: Hierarchy: Solve (total) 1449 1165 3444 | 274.6 324.3 T711.9

Relative fraction of timings related to Albany total time. Note that the Solve
time is contained in the GMRES solve time.

MueLu ML
8km 4km 2km | 8km 4km < 2km
Albany: ***Total Time*** 100.0 100.0 100.0 | 100.0 100.0 100.0
Albany: Setup Time 5.9 289 522 6.4 7.5 7.6
AztecOO: GMRES total solve time | 71.3 525 428 | 50.9 54.5 68.5
MueLu: Hierarchy: Setup (total) 3.7 3.2 1.2 6.8 6.1 3.8
MueLu: Hierarchy: Solve (total) 62.1 432 319 | 441 484 64.7

Filtered statistics with MueLu (only linear solves with less than 71 iterations
are taken into account)

MESH # NUM SOLVES Average iters Time per solve Time per iter

8km 33 16.3 23.789 1.459
dkm 34 23.9 24.884 1.041
2km 30 35.5 36.456 1.027

Results provided by Ray using ML

MESH # NUM SOLVES Average iters Time per solve Time per iter

8km 34 14.4 8.077 0.56

4km 33 17.9 9.829 0.548

2km 31 35.3 22.97 0.651
Findings:

e Albany setup time drastically increasing with problem size for Tpetra
stack. No increase of setup time in Epetra stack?

e MueLu setup about twice as expensive as ML setup. However: MueLu
uses ILU as coarse solver versus GS

e MueLu/Ifpack2 solve much more expensive than ML! (factor 3 to 7)

e Filtered statistics: average number of iterations comparably small.
Time per iteration by a factor of 2-3 more expensive in MueLu.

2.3 Number of iterations and timings
Findings:
e Number of iterations consistent with timings.

e Number of linear iterations increasing within nonlinear solver (use
adaptive tolerance for linear solver?)

Number of linear iterations slightly increasing with problem size

Timings less affected by increasing problem size

5

linear iterations

Solution time [s]

200

150

100

200

150

100

0 10 20 30 40
Linear system
| | |
0 10 20 30 40

Linear system

Chapter 3

Scaling study 2

3.1 Multigrid setup for MueLu

The coarse level size is chosen to be 15000. We use at maximum 2 levels of
semi-coarsening and smoothed aggregation on the coarser levels.

3.1.1 8km resolution

-—= Multigrid Summary -

Number of levels
Operator complexity = 1.08

matrix rows nnz nnz/row procs
AO 2522040 119647360 47.44 16

A1 420340 7477960 17.79 16
A2 47352 1323720 27.95 16
A3 4642 204732 44.10 4

Smoother (level 0) both : "Ifpack2::BlockRelaxation": '"relaxation: type": Block Jacobi, sweeps: 2, damping factor: 0.3
Smoother (level 1) both : "Ifpack2::BlockRelaxation": "relaxation: type": Block Jacobi, sweeps: 2, damping factor: 0.3
Smoother (level 2) both : "Ifpack2::Relaxation": Type: Jacobi, sweeps: 2, damping factor: 0.3

Smoother (level 3) pre : "Ifpack2::Relaxation": Type: Jacobi, sweeps: 2, damping factor: 0.3
Smoother (level 3) post : no smoother

3.1.2 4km resolution

- Multigrid Summary -

Number of levels
Operator complexity = 1.04

matrix rows nnz nnz/row procs
AO 18509612 931492216 50.32 128

A1l 1682692 30048136 17.86 128
A2 188086 5325780 28.32 128
A3 17078 738044 43.22 17

A4 900 35992 39.99 1

Smoother (level 0) both : "Ifpack2::BlockRelaxation": "relaxation: type":

Smoother (level 1) both : "Ifpack2::BlockRelaxation": "relaxation: type":

Smoother (level 2) both : "Ifpack2::Relaxation": Type: Jacobi, sweeps: 2,

Smoother (level 3) both : "Ifpack2::Relaxation": Type: Jacobi, sweeps:

Smoother (level 4) pre : "Ifpack2::Relaxation": Type: Jacobi, sweeps:

Smoother (level 4) post : no smoother

3.1.3 2km resolution

2

Block Jacobi, sweeps: 2, damping factor: 0.3
Block Jacobi, sweeps: 2, damping factor: 0.3
damping factor: 0.3
damping factor: 0.3

damping factor: 0.3

- Multigrid Summary

Number of levels =6
Operator complexity = 1.09

matrix rows nnz nnz/row procs
AO 141467550 7358086204 52.01 1024
A1 13473100 482497456 35.81 1024
A2 6736550 120624364 17.91 1024
A3 744676 21269816 28.56 744
A4 57400 2302976 40.12 57
A5 3586 159100 44.37 3

Smoother (level 0) both : "Ifpack2::BlockRelaxation": "relaxation: type":

Smoother (level 1) both : "Ifpack2::BlockRelaxation": "relaxation: type":

Smoother (level 2) both : "Ifpack2::BlockRelaxation": "relaxation: type":

Smoother (level 3) both : "Ifpack2::Relaxation": Type: Jacobi, sweeps: 2,

Smoother (level 4) both : "Ifpack2::Relaxation": Type: Jacobi, sweeps: 2,

Smoother (level 5) pre : "Ifpack2::Relaxation": Type: Jacobi, sweeps: 2,

Smoother (level 5) post : no smoother

3.2 General timings

Results for MueLu

Block Jacobi, sweeps: 2, damping factor: 0.3
Block Jacobi, sweeps: 2, damping factor: 0.3
Block Jacobi, sweeps: 2, damping factor: 0.3
damping factor: 0.3
damping factor: 0.3

damping factor: 0.3

MueLu

8km 4km 2km
Albany: ***Total Time*** 1792 2065 8760
Albany: Setup Time 109.4 744.1 5644
NOX Total Linear Solve 1117 785.1 2546
NOX Total Preconditioner Construction 111.3 99.71 141.1
AztecOO: GMRES total solve time 1136 803 2567
AztecOO: Operation Prec x 1024 690.8 1964
AztecOO: Ortho (Inner Product) 73.63 79.52 442.8
AztecOO: Ortho (Norm) 8.072 14.01 68.34
AztecOO: Ortho (Update) 37.27 41.01 299.4
MueLu: Hierarchy: Setup (total) 99.06 94.46 138.2
MueLu: TentativePFactory: Build (total) 4.103 3.134 2.646
MueLu: TentativePFactory: Build (total, level=3) 0.4572 0.5414 1.567
MueLu: TentativePFactory: Build (total, level=4) - - 0.5999
MueLu: SemiCoarsenPFactory: Build (total) 16.51 18.78 30.23
MueLu: SemiCoarsenPFactory: Build (total, level=1) 16.51 18.78 28.62
MueLu: SemiCoarsenPFactory: Build (total, level=2) - - 1.61
MueLu: Hierarchy: Solve (total) 1021 687.9 1955
MueLu: Hierarchy: Solve : residual calculation (total) 72.6 68.58 261.4
MueLu: Hierarchy: Solve : residual calculation (level=0) 65.48 62.13 187.6
MueLu: Hierarchy: Solve : residual calculation (level=1) 19.83 12.57 52.93
MueLu: Hierarchy: Solve : residual calculation (level=2) 1.282 7.665 48.26
MueLu: Hierarchy: Solve : residual calculation (level=3) - - 84.83
MueLu: Hierarchy: Solve : smoothing (total) 969 642.2 1814
MueLu: Hierarchy: Solve : smoothing (level=0) 637.5 465.3 1197
MueLu: Hierarchy: Solve : smoothing (level=1) 347.1 176.2 330
MueLu: Hierarchy: Solve : smoothing (level=2) 4.431 8.211 286.8
MueLu: Hierarchy: Solve : smoothing (level=3) - - 86.22
MueLu: Ifpack2Smoother: Setup Smoother (total) 37.28 37.31 56.91
MueLu: Ifpack2Smoother: Setup Smoother (total, level=0) 32.81 34.88 53.27
MueLu: Ifpack2Smoother: Setup Smoother (total, level=1) 4.421 2.403 2.261
MueLu: Ifpack2Smoother: Setup Smoother (total, level=2) | 0.04704 0.02916 1.374
MueLu: Ifpack2Smoother: Setup Smoother (total, level=3) - —0.02508

Filtered statistics with MueLu (only linear solves with less than 71 iterations
are taken into account)

MESH # NUM SOLVES Average iters Time per solve Time per iter

8km 35 14.2 21.278 1.498
4km 35 13.5 14.598 1.078
2km 33 17.7 18.54 1.046

3.3 Number of iterations and timings
Findings:
e Number of iterations consistent with timings.

e Number of linear iterations increasing within nonlinear solver (use
adaptive tolerance for linear solver?)

e Number of linear iterations slightly increasing with problem size
e Timings less affected by increasing problem size

e The increasing absolute timings in the overall table comes mainly from
the failing linear solves

e Ifpack2 is about a factor 2-3 slower than Ifpack?

200 \ 50 \
—o—8km —o—8km
—a—4km 40 —a—4km ||
2 150 —-2km || & —e—2km
2 2
£ £ 30 .
— —
g g 20 :
R R
L
* * 10 :
O | | |
0 10 20 30 40
Linear system Linear system

10

Solution time [s]

200 50
40 -
150 H =
(]
g s0)
-
100 1 = .
E 20
= 1
50 1 @] '
10 +
0 0
0 10 20 30 40 0 10 20 30
Linear system Linear system

11

Chapter 4

Conclusion

e With an increasing problem size of factor 8 the Albany setup time is
increasing with a factor 7.6 (using 8 times more processors). Optimal
would be a constant setup time.

e The overall absolute timings are biased for the 2km example due to
failing linear solves. Timings per iteration are rather constant but by
a factor of 2-3 higher than for Ifpack based smoothers.

e Compared to the optimized TentativePFactory the SemiCoarsenPFac-
tory seems to be slow (setup costs)

12

Chapter 5

Identified issues

5.1 Incredibly high setup times for Albany

Tested different versions of Albany and Trilinos on hopper. It seems that the
problem is related with Albany.
The slow version of Albany is:

commit 78820bf24e09f2dfaae764a21fde508d4a10bl0c
Author: Eric Phipps <etphipp@sandia.gov>
Date: Wed Jul 22 15:36:13 2015 -0600

No problems have been observed with the version:

commit 4ebadc18d0d943afc775c3cb853854d65213f1d1
Merge: d727d9a c1£2938

Author: Irina K. Tezaur <ikalash@sandia.gov>
Date: Thu Jul 30 15:27:55 2015 -0700

13

5.2 Setup costs for multigrid

1216 % 96 x

nPFactory<>::BuildP

192x 48 x

192x 87 744 x 87 744 x

BandedContainer<>::compute()

—192x 87 744 x

294 89.

1214 54, 29612

d >::operator[](Long)
- 7%

uildP (

15

e LineSmoother setup expensive

e Check SemiCoarsenP setup

5.3 Setup costs for LineSmoothing

The Setup for the line smoother is expensive since it has to extract the
diagonal blocks of the matrix. Note that the following graphs have been
produced with a debug version of Trilinos and Albany for a 16km greenland
example on 4 processors.

16

187 744 x 187 744 x

Ifpack2::BandedCont: compute()

29612,

17

186 443 x

::BandedContainer<>:

[126 886 ... 1614 20...

operator[](long)

296 12. 296 1z2..

ebug_assert_
valid_ptr() const

011 %

18

e Refactored code to determine optimal bandwidth for Ifpack2: :BandedContainer
to save computational time. Bandwidth is still calculated separately
for each diagonal block! Avoid isNodeLocalElement etc...

e TODO: Calculate optimal bandwidth once in MueLu’s MueLu: : Ifpack2Smoother
and use it for all diagonal blocks. This solution is less general but for
usual FEM matrices ok, as the pattern of the diagonal blocks is always
the same. Make it an option in the parameter lists such that the user
has the choice between the general but more expensive routine (default)
and the fast routine (based on some assumptions).

19

5.4 MuelLu

118767

18767

double con:

double con:

118767,

slower than ML — iteration phase

1 215x

tra: MultiVector<> const8, Tpets
ultiVector<>&, Teuchos:ETransp,
double, double) const

12 230 1. 12230 1.

322301, 122301 14 460 3.. 122301..

16690 4.

[189206..

20

[C180642...

13 380

!4 4603... !2 2301..
89206... !Z 2300...
22300..

22301. /zz301.

-
1876 7. 21769..

6 6904...

—18767..

21

Probably less a problem of Muel.u but of Ifpack2

It seems that we loose quite a bit time in the gather and scatter
calls which are necessary to copy (7) the corresponding vector entries
between the big local vector (the part that the processor owns) and the
small local vector of size of the current block (allowing for permuta-
tions).

In Tpetra we have to access the data through the getData routines
and handle ArrayRCPs?

The corresponding code in ML for a block Jacobi looks like this:

if (blkOffset == NULL) BlkPtr = (int *) ML_allocate((NBlks+1)*sizeof (int));
RowsInBlk = (int *) ML_allocate((Nrows+1)*sizeof (int));

dtemp = (double *) ML_allocate((Bsize+1)*sizeof (double));

res = (double *) ML_allocate((inlen+1)*sizeof (double));

if (res == NULL)
pr_error ("Error (ML_LineJacobi): Not enough space\n");
if (blkOffset == NULL) {
for (i = 0; i < NBlks; i++) BlkPtr[i] = i*Bsize;
for (i = 0; i1 < Nrows; i++) RowsInBlk[BlkPtr[block_indices[i]]++]= i;
ML_free(BlkPtr);

}

else
for (i = 0; i < Nrows; i++)
RowsInBlk[Bsize*block_indices[i] + blkOffset[i]] = 1i;

strcpy (N, "N");
for (iter = 0; iter < smooth_ptr->ntimes; iter++) {

if ((iter '= 0) || (smooth_ptr->init_guess == ML_NONZEROD)) {
ML_Operator_Apply(smooth_ptr->my_level->Amat, inlen, x, inlen, res);
for (i = 0; i < inlen; i++) res[i] = rhs[i] - resl[il;

X

else for (i = 0; i < inlen; i++) res[il

rhs[i];

for (i = 0; i < NBlks; i++) {

for (k = 0; k < Bsize; k++) dtemp[k] res[RowsInBlk[i*Bsize+k]];

22

DGTTS2_F77(N,&Bsize, &one, trid_dl[i], trid_d[i], trid_dul[i],
trid_du2([i], trid_ipiv[i],dtemp,&Bsize);

for (k = 0; k < Bsize; k++) res[RowsInBlk[i*Bsize+k]] = dtemp [k];
}

for (i = 0; i < inlen; i++) x[i] += (omega * res[i]);

That is, we directly access the memory using the RowsInBlk helper
array.

Is something similar possible in Tpetra? Maybe as a special high-speed
expert variant?

According to the callgrind data, the two gather calls and the scatter
call costs about 60% of the apply call. The costs for the applyImpl
seem to be fair though.

Rewrote gather and scatter routines using the Kokkos: :View mech-
anism instead of ArrayRCP. The resulting call graph then looks like

23

3720

— 4. [264609.. 13234,

13234 13234 13234, ! J52938. 26469

11130, 13234

179408,

11130 379408,

24

e The overall timings are somewhat reduced. More important: the rel-
ative time fraction of the gather and scatter calls compared to the
applyImpl call is now 44% instead of 61%

25

Chapter 6

Scaling study 3

We use exactly the same setup as for the previous scaling study. The Trilinos
version is

commit 89b3865d6aeb4a28cf76bf2863cb8f13eb18302d
Author: Tobias Wiesner <tawiesn@sandia.gov>
Date: Tue Aug 11 15:58:26 2015 -0600

The Albany version is

commit 90981b6a0ab44e6384cf6ea97992ea39b56cd7ed
Author: David Littlewood <djlittl@sandia.gov>
Date: Mon Aug 3 16:38:28 2015 -0600

6.1 Timings

The following table shows the maximum timings over all processors for the
specific tasks. The number in brackets gives the maximum timings from the
previous run in comparison.

26

8km 4km 2km
Albany: ***Total Time*** 1672 (1792) | 1443 (2065) | 3216 (8760)
Albany: Setup Time 12 (109) | 21.27 (744.1) 72 (5644)
NOX Total Linear Solve 1090 (1117) 823 (785) 2572 (2546)
NOX Total Preconditioner Construction 108 (111) 105 (99.7) 129 (141)
AztecOO: GMRES total solve time 1111 (1136) 840 (803) 2592 (2567)
AztecOO: Operation Prec x 997 (1024) 712 (691) 1946 (1964)
AztecOO: Ortho (Inner Product) 72 (73) | 904 (79.5) 461 (443)
AztecOO: Ortho (Norm) 78 (8.07) | 151 (14.0) 70.5 (68.3)
AztecOO: Ortho (Update) 37.23 (37.27) | 41.0 (41.0) 294 (299)
MueLu: Hierarchy: Setup (total) 96.2 (99.06) | 99.73 (94.46) 125.9 (138.2)
MueLu: TentativePFactory: Build (total) 4.08 (4.10) | 3.74 (3.13) 2.651 (2.646)
MueLu: TentativePFactory: Build (total, level=3) 0.561 (0.457) | 0.58 (0.54) | 1593 (1.567)
MueLu: TentativePFactory: Build (total, level=4) - - - - | 05751 (0.5999)
MueLu: SemiCoarsenPFactory: Build (total) 16.61 (16.51) | 23.92 (18.78) 29.49 (30.23)
MueLu: SemiCoarsenPFactory: Build (total, level=1) 16.61 (16.51) | 23.92 (18.78) 27.83 (28.62)
MueLu: SemiCoarsenPFactory: Build (total, level=2) 1.67 (1.61)
MueLu: Hierarchy: Solve (total) 994.6 (1021) 709 (688) 1936 (1955)
MueLu: Hierarchy: Solve : residual calculation (total) 72.6 (72.6) | 83.74 (68.58) 272.9 (261.4)
MueLu: Hierarchy: Solve : residual calculation (level=0) 65.6 (65.5) | 69.28 (62.13) 193.9 (187.6)
MueLu: Hierarchy: Solve : residual calculation (level=1) 19.8 (19.8) | 15.22 (12.57) 57.77 (52.93)
MueLu: Hierarchy: Solve : residual calculation (level=2) 1.21 (1.28) | 9.39 (7.665) 50.77 (48.26)
MueLu: Hierarchy: Solve : residual calculation (level=3) 81.13 (84.83)
MueLu: Hierarchy: Solve : smoothing (total) 943 (969) | 646.3 (642.2) 1760 (1814)
MueLu: Hierarchy: Solve : smoothing (level=0) 624.4 (637.5) 474 (465) 1183 (1197)
MueLu: Hierarchy: Solve : smoothing (level=1) 333.5 (347.1) 175 (176) 319.8 (330)
MueLu: Hierarchy: Solve : smoothing (level=2) 351 (4.43) | 11.6 (8.2) 270 (287)
MueLu: Hierarchy: Solve : smoothing (level=3) - - - - 84.71 (86.22)
MueLu: Ifpack2Smoother: Setup Smoother (total) 34.6 (37.28) | 352 (37.3) 44.81 (56.91)
MueLu: Ifpack2Smoother: Setup Smoother (total, level=0) | 30.23 (32.81) | 30.9 (34.9) 41.32 (53.27)
MueLu: Ifpack2Smoother: Setup Smoother (total, level=1) | 4.34 (4.42) 2.3 (2.4) 2.15 (2.26)
MueLu: Ifpack2Smoother: Setup Smoother (total, level=2) | 0.044 (0.047) | 0.027 (0.029 1.346 (1.374)
MueLu: Ifpack2Smoother: Setup Smoother (total, level=3) - - - — | 0.02502 (0.02508)

27

Filtered statistics with MueLu (only linear solves with less than 71 iterations
are taken into account)

MESH # NUM SOLVES Average iters Time per solve Time per iter

8km 35 14.2 20.797 1.465
8km 35 14.2 20.822 1.466
8km 35 14.2 20.871 1.47
4km 35 13.5 15.747 1.163
2km 33 17.7 18.128 1.023

6.2 Conclusions

e The problem with the expensive Setup in Albany is fixed.

e Running the same simulation with the same executable using the same
amount of resources on hopper gives different timings. Variation in
timings are higher than expected savings. Some of the nodes seem
much slower than others. This affects the maximum timings as well as
mean timings over all processors. Giving the minimum timings does
not make sense due to rebalancing (min time often is just zero)

e Especially the timings of the residual calculation vary drastically:

MinOverProcs MeanOverProcs MaxOverProcs
MueLu: Hierarchy: Solve : residual calculation (level=0) 87.34 124.1 193.9

Problem seems to be imbalanced on the finest level.

28

