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Despite of the increasing popularity of OpenACC directive-based acceleration for com-
putational fluid dynamics (CFD) codes using the general-purpose graphics processing units
(GPGPUs), an efficient implicit algorithm for high-order method on unstructured grids is
still a relatively unexplored area. This is mainly due to the fact that, the capacity of lo-
cal cache memory of a top-notch GPGPU is still far behind a common CPU. Thus many
state-of-the-art preconditioning algorithms (e.g. the Symmetric Gauss-Seidel (SGS) and
Lower Upper-Symmetric Gauss-Seidel (LU-SGS)), in which the matrix and strongly inher-
ent data dependent operations are heavily involved, become extremely inefficient because
of the local cache memory bound, when simply ported onto GPGPUs. In the present
study, an efficient implicit algorithm for a GPGPU accelerated reconstructed discontin-
uous Galerkin (DG) CFD code is introduced and assessed for the solution of the Euler
equations on unstructured grids. The block matrix operations are refined to element level.
A Gauss-Jordan elimination based matrix inversion algorithm is adopted to optimize the
performance on GPU platform. For SGS-type linear solver/preconditioner, a straightfor-
ward element reordering algorithm is employed to eliminate data dependency. As a result,
the developed algorithm is implemented on GPGPU to accelerate a high-order implicit
reconstructed discontinuous Galerkin (rDG) method as a compressible flow solver on 3D
unstructured grids. Several numerical tests are carried out to obtain the speed up factor as
well as the parallel efficiency, which indicates that the presented algorithm is able to offer
low-overhead concurrent CFD simulation on unstructured grids on NVIDIA GPGPUs.

I. Introduction

Nowadays, with increasing attention in science and engineering filed, the general-purpose graphics pro-
cessing unit (GPGPU?%) technology offers a new opportunity to significantly accelerate the CPU-based code
by offloading compute-intensive portions of the application to the GPU, while the remainder of the computer
program still runs on the CPU, which also make it expected to be a major compute unit in the near future.
Computational Fluid Dynamics (CFD), a branch of mechanics that applies numerical way to solve fluid
dynamics problem, has been one of the most significant applications on supercomputers. The presence of
GPGPU could outperform the traditional CPU based parallel computing and therefore to meet the needs to
solving complex simulation CFD problem.
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As a popular parallel programming model and and platform in GPGPU technology, NVIDIA’s CUDA
application programming interface (API) and CUDA-enabled accelerators has drawn many researchers’ at-
tention. Therefore, people have put effort in the investigation and development GPU-accelerated CFD
solvers with the CUDA technology.# 8 11713:23,25,30 Ag 4 matter of fact, the numerical methods range from
the finite difference methods (FDMs), spectral difference methods (SDMs), finite volume methods (FVMs),
discontinuous Galerkin methods (DGMs) to Lattice Boltzmann method (LBMs). For instance, Elsen et al.'®
reported a 3D high-order FDM solver for large calculation on multi-block structured grids; Klockner et al.'®
developed a 3D unstructured high-order nodal DGM solver for the Maxwell’s equations; Corrigan et al.”
proposed a 3D FVM solver for compressible inviscid flows on unstructured tetrahedral grids; Zimmerman et
al.?® presented an SDM solver for the Navier-Stokes equations on unstructured hexahedral grids.

For either production level or research level, people would prefer to maintain multi-platform compatibility
at a minimum extra cost in time and effort. As for the most popular programming model in GPU, that is,
CUDA technology, people would either need to start a brand new code design or extend an existing CPU code
to GPU platform to develop a GPU accelerated CFD solver. The former one is often the case of fundamental
study of a numerical model on GPU computing while the latter one requires applying NVIDIA CUDA model
to a legacy CFD code, which is not an easy job since the developer has to define an explicit layout of the
threads on the GPU (numbers of blocks, numbers of threads) for each kernel function.'* Nevertheless,
adopting CUDA might spell almost a brand new design and long-term project, and a constraint to the
CUDA-enabled devices, thus to lose the code portability on other platforms. Therefore, some alternatives
come into play including OpenCL:?? the currently dominant open GPGPU programming model (but dropped
from further discussion since it does not support Fortran); and OpenACC:*! a new open parallel programming
standard based on directives.

Similar to OpenMP, OpenACC is a directive based programing model. Therefore, what developers need
to do is simply annotate their code to identify the areas that should be accelerated by wrapping with the
OpenACC directives and some runtime library routines, instead of taking the huge effort to change the
original algorithms as to accommodate the code to a specific GPU architecture and compiler. In that case,
people benefit not only from easy implementation of the directives but also the freedom to compile the very
same code and conduct computations on either CPU or GPU from different vendors, e.g., NVIDIA, AMD
and Intel accelerators. Nevertheless, as for some cutting-edge features, OpenACC still lags behind CUDA
due to vendors’ distribution plan (note that Nvidia is among the OpenACC’s main supporters). But still,
OpenACC manages to offer a promising approach to minimize the effort to extend the existing legacy CFD
codes while maintaining multi-platform and multi-vendor compatibility, and thus to become an attractive
parallel programming model.

The objective of the effort discussed in the present work is to develop a OpenACC directive-based
implicit algorithm for a reconstructed discontinuous Galerkin method. This work is based on a class of
reconstruction-based rDG (PnPm) methods,%20:32:36738 which are recently developed in order to improve the
overall performance of the underlying standard DG(Pn) methods without significant extra costs in terms of
computing time and storage requirement. Due to the fact that OpenACC could offer multi-platform/complier
support with minor effort to code directives, it has been employed to partially upgrade a legacy CFD solver
with the GPU computing capacity. A face renumbering and grouping algorithm is used to eliminate “race
condition” in face-based flux calculation on GPU vectorization. Therefore, part of the solution modules
in a well verified and validated rDG flow solver have already been upgraded with the capability of both
single-GPU and multiple-GPU computing based on the OpenACC directives in our prior work.'”33735

A typical GPU has hundreds or even thousands of computation cores. However, compared with a typical
CPU core, the core on GPU card would has much less computation power and local cache memory. Therefore,
for optimal performance on GPU, the algorithm should be divided into smaller units, thus occupying more
cores with the same amount of work. In addition, the amount of data each core processes should be kept
as small as possible. Therefore, the fine granularity algorithm, which would has the two above-mentioned
benefits, is able to carry out high efficiency on GPGPU. Note that the latter aspect is particularly important
for solving a block-sparse system, which consists of a large amount of square sub-matrices of an identical
size. On each sub-matrix, if the operation is mapped to one GPU core, the algorithm easily becomes heavily
memory-bounded, especially when the dimension of the sub-matrix is large, resulting in serious performance
penalty. In other words, the key to achieve higher speed up factor on GPU platform is fine granularity.
On the other hand, fine granularity usually introduces more synchronization and memory access overhead.
Compared with other GPGPU programing model like OpenCL, OpenACC would suffer a more expensive
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overhead from kernel launches. Thus, the algorithm designers need to weigh costs and benefits to make a
balanced choice.

Nevertheless, it is generally difficult to port the implicit algorithm to GPU platform. First of all, the size
of sub-matrices would cause the memory-bounded issue, especially for higher order method. Secondly, it is
not straightforward to utilize some popular liner solver or preconditioner like Symmetric Gauss-Seidel (SGS)
or Lower Upper-Symmetric Gauss-Seidel (LU-SGS) due to the inherent data dependency. Additionally, the
iterative solver like Generalized Minimal Residual (GMRES) method would require additional storage for
some auxiliary arrays, which would bring challenge to GPU computing since the local cache memory of
GPGPU is limited.

This paper aims to overcome several above-mentioned difficulties to thread the implicit algorithm on
GPGPU based on OpenACC directives. First, we would need to refine the matrix operations for block
sub-matrices at the matrix element level to achieve optimal performance on GPGPU. For matrix-matrix
and matrix-vector multiplications, the fine-grained algorithms are straightforward, while the fine-grained
algorithm for matrix inversion is particularly elusive. It is accomplished by a parallel in-place Gauss-Jordan
elimination.?? Meanwhile, the LU-SGS or SGS solver/preconditioner is easy to vectorized by using hyper-
planes ¢ + j + k = const for structured mesh. However, when it comes to unstructured grids, an element
renumbering algorithm is carried out to generate hyperplanes, each consisting of data-independent elements.

The developed method is used to compute the compressible flows for a variety of test problems on
unstructured grids. Speed-up factors that achieved by strong scaling test, which compare the computing
time of the OpenACC program on an NVIDIA Tesla K20c GPU and that of the equivalent MPI program
on one single core and full sixteen cores of an AMD Opteron-6128 CPU indicate that implicit reconstructed
discontinuous Galerkin method is a cost-effective high-order scheme on OpenACC-based GPU platform. If
more than one GPU is used, the grid partitioning would be performed and loaded equally on each device.
Communication between the GPUs is done with the help of the host-based MPI. The weak scaling test would
be carried out to test the parallel efficiency by varying the number of GPU cards for a fixed problem size
per GPU card.

The outline of the rest of this paper is organized as follows. The governing equations are briefly introduced
in Section II. In Section III, the discontinuous Galerkin spatial discretization is described. In Section IV, the
idea of implicit reconstructed discontinuous Galerkin method is given. In Section V, the keynotes of porting
an implicit reconstructed discontinuous Galerkin flow solver to GPU based on the OpenACC directives is
discussed in detail. In Section VI, a series of numerical test cases are presented. Finally the concluding
remarks and some discussions on further improvements are given in Section VII.

II. Governing Equations

The Euler equations governing the unsteady compressible inviscid flows can be expressed as

oU  OF,(U
, OFL(U)

= = 1
8t c’)xk 0 ( )

where the summation convention has been used. The conservative variable vector U and advective flux
vector F, are defined by

P pu;
U= pu Fj = | pusu; + pdy; (2)
pe uj(pe +p)

Here p, p, and e denote the density, pressure, and specific total energy of the fluid, respectively, and wu; is
the velocity of the flow in the coordinate direction z;. The pressure can be computed from the equation of
state

p=O-1p (6 - ;Uzuz> (3)

which is valid for perfect gas. The ratio of the specific heats  is assumed to be constant and equal to 1.4
for air or diatomic perfect gas.
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III. Discontinuous Galerkin Spatial Discretization

The governing equations in Eq. 1 can be discretized using a discontinuous Galerkin finite element
formulation. We assume that the domain 2 is subdivided into a collection of non-overlapping arbitrary
elements €, in 3D, and then introduce the following broken Sobolev space V}”

VP ={on e [LA@)]" s valo, € [V;"] ¥, € 0} (4)

which consists of discontinuous vector polynomial functions of degree p, and where m is the dimension of
the unknown vector and V), is the space of all polynomials of degree < p. To formulate the discontinuous
Galerkin method, we introduce the following weak formulation, which is obtained by multiplying Eq. 1
by a test function Wy, integrating over an element 2., and then performing an integration by parts: find
Uj, € V/ such as

oW,
oxy,

d
%/ U, W,d<) —|—/ Fin,Wdl' —/ Fy dQ =0, YW, € V}f (5)
Q. r

e

where U, and Wy, are represented by piecewise polynomial functions of degrees p, which are discontinuous
between the cell interfaces, and n; the unit outward normal vector to the I'c: the boundary of Q.. Assume
that B; is the basis of polynomial function of degrees p, this is then equivalent to the following system of N
equations,

d aB
dt Jo, r Q. 393k

e

where N is the dimension of the polynomial space. Since the numerical solution Uy, is discontinuous between
element interfaces, the interface fluxes are not uniquely defined. This scheme is called discontinuous Galerkin
method of degree p, or in short notation DG(p) method. By simply increasing the degree p of the polynomials,
the DG methods of corresponding higher order are obtained. In the present work, the HLLC scheme? is
used for evaluating the inviscid fluxes.

By moving the second and third terms to the right-hand-side (r.h.s.) in Eq. 6, we will arrive at a system
of ordinary differential equations (ODEs) in time, which can be written in semi-discrete form as

dU
M— =R(U 7
= =R(U) (7)
where M is the mass matrix and R is the residual vector. The present work employs an GPU accelerated

implicit rDG method, which is a third-order, WENO reconstructed scheme.

IV. Euler Implicit time integration

Euler implicit time integration would rewrite the semi-discrete system of ordinary differential equations,
i.e., Eq. 7 as

M o0 Ry ®)

where the At is the time increment, and AU" the difference of unknown vector between levels n and n + 1.
The above equation can be linearized in time as

AU? OR?}
M, L =R}+ L AU;
At ¢ ou )
Now, we could solve a linear system as
M, OR"
AU; =R 1
(% %0) a0

The following simplified flux function is used to obtain the left-hand-side Jacobian matrix

R; = Z F(U;,ni;) + F(Uj,n5) — [A;[(U; — Us)llsiy) (11)
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where s
ij
[Aijl = [Vij - my5] + Cij + piilx; — x| (12)
where s;; is the area vector normal to the control volume interface associated with the element ij, n;; =
sij/\sij| its unit vector in the direction s;;, C; the speed of sound, and the summation is over all neighboring
interfaces. Using an elemental based data structure, the left-hand-side Jacobian matrix is stored in upper,
lower, and diagonal forms, which can be expressed as

1
Uij = =5 (J(Uy,mi5) = A1) 51 (13)
1
Lij = §(J(Uz‘anz‘j) + [XigX])[si;1 (14)
M 1
D;; = EI_Zi(t](Uianzj) + [Xi;I]) 5451 (15)

J

Eq. 9 represents a system of linear simultaneous algebraic equations and needs to be solved at each time step.
The most widely used methods to solve this linear system are iterative solution methods and approximate
factorization methods. The LU-SGS or SGS approximate factorization method is attractive due to its good
stability properties and competitive computational cost. Although those methods are more efficient than its
explicit counterpart, a significant number of time steps are still required to achieve the steady state solution,
due to the nature of the approximation factorization schemes. One way to speed up the convergence is to
use iterative methods like GMRES. It has been shown that GMRES+LU-SGS method would result in very
good convergence for unstructured meshes.'® 2127 In that case, the preconditioner must be very fast, and
at the same time it should resemble the original Jacobian matrix as close as possible. Preconditioning will
be cost-effective only if the additional computational work incurred for each sub-iteration is compensated
for by a reduction in the total number of iterations to convergence. Thus, even a moderate inefficiency in
parallelization of the preconditioner can be critical. The focus of this study would be on LU-SGS and SGS
solver /precondtioner while the effort on threading GMRES algorithm to GPGPU is currently being worked
on. Our final goal is not to solve the system entirely by LU-SGS or SGS approximate factorization but
rather implement GMRES+LU-SGS scheme on GPGPU based on OpenACC directives.

A. The LU-SGS approximate factorization

As we shown above, the left-hand side Jacobian matrix A is stored in lower, upper, and diagonal forms,
which can also be expressed as

M OR"
A=(—I- =L D=(D+L)D%D —LD™! 1
(At aU) +U+ (D+L)D™(D+U) U (16)
Neglecting the last term, the system can be solved in the two steps. First, a lower (forward) sweep:
(D+ L)AU* =R (17)

and second, an upper (backward) sweep:

(D +U)AU = DAU* (18)

B. Symmetric Gauss-Seidel relaxation

As for SGS, we would zero the AU array first.

AU’ =0 (19)
Then the kpax subiteration are made using forward sweep:
(D + L)AU*/2 = R —UAU* (20)
and second, an upper (backward) sweep:
(D 4+ U)AUM = R — LAUFFL/2 (21)

Note that for one subiteration (kmax = 1), the SGS method is equivalent to the LU-SGS approximate fac-
torization method. These sweeps can be vectorized by using special ordering technique,?® but parallelization
of LU-SGS or SGS algorithm is not straightforward due to inherent data dependencies.
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V. OpenACC Implementation

The computation-intensive portion of this reconstructed discontinuous Galerkin method is a time march-
ing loop which repeatedly computes the time derivatives of the conservative variable vector as shown in Eq.
9. In the present work, the Euler implicit time integration is utilized to update conservative variable vector.
To enable GPU computing, all the required arrays are first allocated on the CPU memory and initialized
before the computation enters the main loop. These arrays are then copied to the GPU memory, most of
which will not need to be copied back the CPU memory. In fact, the data copy between the CPUs and
GPUs, usually considered to be one of the major overheads in GPU computing, needs to be minimized in
order to improve the efficiency. The workflow of time iterations is outlined in Table 1, in which <ACC> tag
denotes an OpenACC acceleration-enabled region, and the <MPI> tag means that MPI routine calls are
needed in the case that multiple devices are utilized. Clearly, two extra MPI routine calls are required for
the rDG method compared with the standard DG method, due to the fact that the solution vector at the
partition ghost elements need to be updated after each reconstruction scheme.

Table 1: Workflow for the main loop over the time loop.

! Main time loop
DO itime = 1, ntime

<ACC> Predict time-step size

<ACC> Compute R.H.S. vector R
!l P1P2 least-squares reconstruction
<ACC> IF (nreco > 0) CALL reconstruction_ls(...)

!l data exchange for partition ghost cells
<MPI> IF (nprcs > 1) CALL exchange(...)

!'! WENO reconstruction
<ACC> IF (nreco > 0) CALL reconstruction_weno(...)

!l data exchange for partition ghost cells
<MPI> IF (nprcs > 1) CALL exchange(...)
<ACC> Compute L.H.S. matirx A=M/dt-dR/dU

<ACC> Solve the linear system Au=R
!'Linear solver or iterative method
! Option 1: LU-SGS
! Option 2: SGS(k)
! Option 3: LUSGS + GMRES (not on GPU yet)

<ACC> update solution vector
!! data exchange for partition ghost cells

<MPI> IF (mprcs > 1) CALL exchange(...)

ENDDO

One would need to compute R.H.S. and L.H.S. and thus to apply the linear solver like LU-SGS, SGS(k),
or GMRES? 20 to solve the linear system. For the residual computing, the most expensive workload includes
both the reconstruction of the second derivatives and the accumulation of the right hand side residual vector
in Eq. 9. Thus these procedures need to be properly ported to acceleration kernels by using the OpenACC
parallel construct directives. In fact , the way to add OpenACC directives in a legacy code is very similar to
that of OpenMP. The example shown in Table 2 demonstrates the parallelization of a loop over the elements
for collecting contribution to the residual vector rhsel(1:Ndegr,1:Netot,1l:Nelem), where Ndegr is the
number of degree of the approximation polynomial (= 1 for P0, 3 for P1 and 6 for P2 in 2D; = 1 for PO, 4
for P1 and 10 for P2 in 3D), Netot the number of governing equations of the perfect gas (= 4 in 2D, 5 in
3D), Nelem the number of elements, and Ngp the number of Gauss quadrature points over an element. Both
the OpenMP and OpenACC parallel construct directives can be applied to a readily vectorizable loop like
in Table 2 without the need to modify the original code.

For implicit algorithm, one would need to obtain the inversion of each sub-matrix. We have tested
both iterative methods like Jacobi method, Gauss-Seidel method and also direct method like Gauss-Jordan
elimination (GJE). The iterative methods can be easily ported to GPU platform and the speedup factor can
be achieved up to 69.02 according to our test. However, the great performance of iterative methods comes
with a cost. It can only work under the circumstance that the matrix is diagonal dominant, which is not the
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Table 2: An example of loop over the elements.

!'! OpenMP for CPUs:

!l loop over the elements
!$omp parallel

!$omp do

DO ie = 1, Nelem

!'! loop over the Gauss quadrature points
DO ig = 1, Ngp

!'! contribution to this element
rhsel (*,%,ie) = rhsel(*,%*,ie) + flux

!'! OpenACC for GPUs:

!'! loop over the elements
!$acc parallel

!$acc loop

DO ie = 1, Nelem

!'! loop over the Gauss quadrature points
DO ig = 1, Ngp

!'! contribution to this element
rhsel (*,%,ie) = rhsel(*,%*,ie) + flux

ENDDO ENDDO

ENDDO ENDDO
!$omp end parallel !$acc end parallel

common case for CFD simulation. However, all the direct inversion algorithm invariably involve recursive
process, and would be inefficient if we simply port it to GPGPU. In our study, we would adopt GJE based
direct inversion algorithm,?? whose sequential algorithm is given in Table 3. Since this method is highly
compact and does not require any extra storage, it would be particularly efficient on GPUs if we refine the
algorithm to element level. The outer r-loop corresponds to the index of the row being transformed in GJE.
Pivoting is generally not required, but it can be included if necessary. Although GJE is not the fastest
method to compute matrix inversion, it is rather parallelizable. Also, it can be performed in-place, avoiding
any thread-private arrays. Both factors are highly beneficial for GPU implementations. The algorithm must
be written as three kernels due to the data dependencies, and can be found in Table 4. These three kernels
have different mappings between GPU threads and loop iterations. Conditions have been translated into
index manipulations, avoiding idle threads for skipped iterations. Because the r-loop runs on a CPU, there
are 3n kernel launches to complete the inversion.

Table 3: Gauss-Jordan elimination without pivoting for an n X n matrix

DOr =1, n
DOs u=1, n
IF (u .NE. r) THEN
d(u,r)=-d(u,r)/d(r,r);d(r,u)=d(r,u)/d(r,r)
ENDIF
ENDDO
1
DOu=1,n
DO v =1,n
IF ((u .NE. r) .AND. (v .NE. r)) THEN
d(u,v)=d(u,v)+d(u,r)*d(r,v)*d(r,r)
ENDIF
ENDDO
ENDDO
1
d(r,r)=1/d(r,r)
ENDDO

However due to the unstructured grid topology, the attempt to directly wrap a loop over the dual-edges
for collecting contribution to the residual vector with either the OpenMP or OpenACC directives can lead
to the so-called “race condition”, that is, multiple writes to the same elemental residual vector, and thus
result in the incorrect values. The “race condition” can be eliminated with a moderate amount of work by
adopting a mature algorithm of face renumbering and grouping. This algorithm is designed to divide all the
faces into a number of groups by ensuring that any two faces that belong to a common element never fall in
the same group, so that the face loop in each group can be vectorized without “race condition”. An example
is shown in Table 5, where an extra do-construct that loops over these groups is nested on top of the original
loop over the internal faces, and executed sequentially. The inner do-construct that loops over the internal
faces is vectorized without the “race condition” issue.

In fact, this kind of algorithm is widely used for vectorized computing on unstructured grids with
OpenMP. The implementation details can be found in an abundance of literature.'® The number of groups
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Table 4: ACC version of GJE without pivoting for nelem matrices of size n x n

DOr =1, n
!$acc kernels
! kernel # 1
!$acc loop independent
DO ip= 0,2(n-1)*nelem-1
ie = ip/2/(n-1)
= ip - iex2x(n-1)+1; ie = ie + 1
=a+ (a>r1); a=a+ (a> atn)
(a > r? 1:0)
= a-t*n; b = tx(a-r)
u=r+b; v=a-b;
d(u,v,ie) = (1-2t)*d(u,v,ie)/d(r,r,ie)
END DO
! kernel # 2
!$acc loop independent
DO ip = 0, (n-1)*(n-1)*nelem-1
ie = ip/(n-1)/(n-1)
t = ip - iex(n-1)*(n-1)
=t/(@-1;v =t - ax(n-1)+1
ije=ide+1; a=a+1
u=u+ (u>r); v=v+ (v >= 1)
d(u,v,ie) = d(u,v,ie)+d(u,r,ie)*d(r,v,ie)*d(r,r,ie)

Pt
[}

END DO

! kernel # 3

!$acc loop independent
DO ie = 1, nelem

d(r,r,ie) = 1/d(r,r,ie)

ENDDO

!$acc end kernels

ENDDO

for each subdomain grid is usually between 6 and 8 according to a wide range of test cases, indicating some
overheads in repeatedly launching and terminating the OpenACC acceleration kernels for the loop over the
face groups. This kind of overheads is typically associated to GPU computing, but not for the code if par-
allelized by OpenMP for CPU computing. Nevertheless, the most favorable feature in this design approach
is that it allows the original CPU code to be recovered when the OpenACC directives are dismissed in the
pre-processing stage of compilation. Therefore, the use of this face renumbering and grouping algorithm will
result in a unified source code for both the CPU and GPU computing on unstructured grids. In a word, the
face renumbering and grouping method can suit well in the present work, for its simplicity and portability to
quickly adapt into the original source code without any major change in the legacy programming structures.

Table 5: An example of loop over the edges.

!'! OpenMP for CPUs (without race condition):
!l loop over the groups
Nfacl = Njfac

DO ipass = 1, Npass_ift
NfacO = Nfacl + 1
Nfacl = fpass_ift(ipass)
!'! loop over the edges
!$omp parallel
!$omp do
DO ifa = NfacO, Nfacil

'l left element
iel = intfac(l,ifa)
!'! right element
ier = intfac(2,ifa)
!'! loop over Gauss
DO ig = 1, Ngp

rhsel(*,%*,iel) =

rhsel(*,%*,ier) =
ENDDO

quadrature points
rhsel (*,*,iel) - flux

rhsel (*,*,ier) + flux

ENDDO
!'$omp end parallel

ENDDO

!'! OpenACC for GPUs (without race condition):
!'! loop over the groups
Nfacl = Njfac
DO ipass = 1, Npass_ift
NfacO = Nfacl + 1
Nfacl = fpass_ift(ipass)

!'! loop over the edges
!$acc parallel
!$acc do
DO ifa = NfacO, Nfacl
'l left element
iel = intfac(l,ifa)
!l right element
ier = intfac(2,ifa)
!'! loop over Gauss
DO ig = 1, Ngp
rhsel(*,%*,iel) =
rhsel(*,*,ier) =
ENDDO

quadrature points
rhsel(*,*,iel) - flux

rhsel (*,*,ier) + flux

ENDDO
!$acc end parallel

ENDDO
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For structured grid, the LU-SGS or SGS solver is easy to vectorized, for the sweeps would be performed
by using hyperplanes i + j + k =const, where ¢, j, and k are the indices of a grid cell. Thus, forward sweep
updates point (4,7, k) using already updated values at (i — 1,4, k), (i,5 — 1,k), and (i,5,k — 1), whereas
backward sweep uses cells (i + 1,7, k), (¢,7+1,k), and (i, j,k+1). For the unstructured grid, we would refer
to Sharov and Nakahashi’s work?® to renumber the elements and generate the hyperplanes, whose algorithm
can be found in Table 6. In this case, the lower matrix L would be computed by the surrounded elements
whose group marks are lower than the host element. Similarly, the upper matrix U would be computed
by the neighbour elements with higher group marks. Therefore, the sweeps are performed by increasing or
decreasing the group mark numbers. And in each group, the computation can be done concurrently, thus,
the algorithm can be vertorized.

Table 6: Reordering algorithm vectorize LUSGS/SGS

1) Mark the starting element as hyperplane number 1.
Set the current group mark Np as 1.

2) Add all the unmarked neighbour element of current group to Np+1.
Set Np = Np + 1.

3) Repeat Step 2) until all the elements are marked.

4) Examine each hyperplane to make sure that any two of the elements in the same
group would not be neighbour. Assign and updates the group marks if necessary.

5) Color each interface accordingly. That is, for forward sweeps, color the face
by the larger ending group mark, and for backward sweeps, color the face by
the smaller ending group mark.

Note that if this reordering algorithm is applied to structured grid with taking the corner element (1,1, 1)
as a starting element, one would have each hyperplanes as i+ j + k =const. And this reordering is performed
only once before the main time loop. Memory overhead of this method is minimal, since the only extra
memory is to store the group marks, which make it suitable for GPU computing.

VI. Numerical examples

Performance of the developed GPU code based on OpenACC was measured on the North Carolina State
University’s research-oriented cluster ARC, which has 1728 CPU cores on 108 compute nodes integrated by
Advanced HPC. All machines are 2-way SMPs with AMD Opteron 6128 (Magny Core) processors with
8 cores per socket (16 cores per node). The GPGPU card used in the present work is NVIDIA Tesla
K20c¢ GPU containing 2496 multiprocessors and NVIDIA Telsa C2050 GPU containing 448 multiprocessors.
The performance of the equivalent MPI-based parallel CPU program was measured on an AMD Opteron
6128 CPU containing 16 cores. The source code was written in Fortran 90 and compiled with the PGI
Accelerator with OpenACC (version 13.9) + OpenMPI (version 1.5.1) development suite. The unit time

Tunit is calculated as

Trun X Ngpus

Tunit = x 10% (microsecond)

Ntime X Nelem

where Ty, refers to the time recorded for completing the entire time marching loop with a given number of
time steps Ntime, excluding the start-up procedures, initial/end data translation, and solution file dumping.

A. Inviscid flow past a sphere

In this test case, an inviscid subsonic flow past a sphere at a free-stream Mach number of M., = 0.5 is
considered in order to assess the performance of OpenACC-based GPU acceleration on implicit reconstructed
DG method. The explicit counterpart can be found in authors’ previous work.?® Computation is conducted
on a sequence of three successively refined tetrahedral grids, displayed in Figs. 1(a) — 1(c). The cell size
is halved between two consecutive grids. Note that only a quarter of the configuration is modeled due to
symmetry of the problem. And the computed surface pressure contours by implicit rDG(P1P2) are shown
in Figs. 1(d) — 1(f).The quantitative measurement of the discretization errors has been done in the authors’

9 of 14

American Institute of Aeronautics and Astronautics



previous work,?> which indicates that explicit rDG(P1P2) method achieved a formal order of accuracy of
convergence, convincingly demonstrating the benefits of using the rDG method over its underlying baseline

DG method.
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Figure 1: Subsonic flow past a sphere at a free-stream Mach number of M, = 0.5: (a) — (c) Surface
triangular meshes of the three successively refined tetrahedral grids; (d) — (f) Computed pressure contours

obtained by implicit rDG(P1P2) on the surface meshes.

A strong scaling timing test is carried out on same sequence of four successively refined tetrahedral grids.
The simulations are done by GPU-accelerated DG(P1) or rDG(P1P2) with SGS solver and original CPU
code, so that we can see the effect of the GPU computing. A single NVIDIA Telsa K20c GPU card is used in
this case, compared with single CPU serial computation. The detailed timing measurements are presented
in Table 7, showing the statistics of unit running time. From the results we can see that GPU performs
better when it comes to larger Nelem, and can achieve higher speedup factor when we use DGP1.

Table 7: Timing measurements of using implicit rDG methods for subsonic flow past a sphere.

Tunit by implicit DG(P1) Tunit by implicit rDG(P1P2)
Nelem GPU CPU Speedup GPU CPU Speedup

2,426 41.63 74.60 1.79 44.52 81.62 1.83
16,467 15.18 77.43 5.10 18.22  85.89 4.71
124,706 11.18 80.99 7.12 14.03 88.85 6.33

For better illustration, a breakdown of the averaged one main loop run times is given in Figure 2. The
result is based on running implicit rDG(P1P2) on the most fine mesh. From the breakdown, we can see the
primary bottleneck for the current GPU implementation is LHS computing, which takes large percentage
of the time while the speed up factor is only 3.29. The reason behind this is the memory bound issue,
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since we have large amounts of memory accessed for a relatively small amount of computation. This part
is implemented in a coarse-grained fashion, as the computation for each element is mapped to one GPU
thread, making them highly memory-bound. To obtain full performance on GPUs, an ongoing effort is being
undertaken to develop fine-grained versions of the related subroutines.

1CPU

1GPU . 1.75s
0.00 2.00 4.00 6.00 8.00 10.00 12.00
B LHS(3.29x) M Inversion(20.08x) [ RHS(16.43x) I Solver(4.84x) B Update(24.68x)

Figure 2: Averaged one main time loop run times (in seconds) for running implicit rDG(P1P2) on the finest
mesh for the inviscid sphere case.

Next, a weak scaling test is carried out on a sequence of four successively refined tetrahedral grids. These
four grids correspond to the use of one, two, four, and eight NVIDIA Tesla C2050 GPU cards respectively,
ensuring an approximately fixed problem size per GPU card. The total number of time iterations is set to be
10,000 for all of these four grids. The detailed timing measurements are presented in Table 8, showing the
statistics of unit running time and parallel efficiency obtained on each grid. Both the DG(P1) and rDG(P1P2)
methods have achieved good parallel efficiency in the case of eight GPUs, being 89.7% and 88.3% respectively.
The primary loss of efficiency in multi-GPU mode is due to the overheads in GPU-to-CPU and CPU-to-GPU
data copies, and MPI communication and synchronization between the host CPUs.

Table 8: Timing measurements of weak scaling obtained on a cluster of NVIDIA Tesla C2050 GPU cards
for inviscid subsonic flow past a sphere.

Unit time (ms) Parallel efficiency
Grids  Elements GPU’s P1 P1P2 P1 P1P2

Level 1 62,481 x1 26.25 31.69 - -

Level 2 124,706 X2 28.48 34.00 92.2% 93.2%
Level 3 249,945 x4 28.80 34.89 91.1% 90.8%
Level 4 501,972 %8 29.28 35.87 89.7% 88.3%

B. Transonic Flow over a Boeing 747 Aircraft

In the second test case, we choose a transonic flow pasting a Boeing 747 aircraft at a free stream Mach
number of M., = 0.85, and an angle of attack of & = 2°. This case could test the ability of computing
complex geometric configurations by a OpenACC-based GPU program. The configuration of Boeing 747
includes the fuselage, wing, horizontal and vertical tails, under-wing pylons, and flow-through engine nacelle.
The grids we are using here are tetrahedron grid. Similarly, we only model half of the aircraft because of
the symmetry of the problem. The grid is shown in Fig. 3(a). The computed pressure contours obtained by
implicit rDG(P1P2) solution in the flow field are shown in Figs.3(b). Again, the explicit part can be found
in authors’ previous work.3?

First, we would conduct a strong scaling test on a NVIDIA Telsa K20c GPU, with the timing measurement
obtained by implicit rDG method presented in Table 9. Speedup factor of up to 8.23 can be achieved for
the GPU code by comparing with the CPU code running sequentially. The speed up factor is similar to the
previous case, indicating that our method could handle complex geometry pretty well on GPU platform.

A weak scaling test is carried out on a sequence of four successively refined tetrahedral grids. These
four grids correspond to the use of one, two, four, and eight NVIDIA Tesla C2050 GPU cards respectively,
ensuring an approximately fixed problem size per GPU card. The detailed timing measurements are presented
in Table 10. The parallel efficiency ratios of 90.2% and 90.4% were obtained for DG(P1) and rDG(P1P2) in
the case of eight GPUs, respectively. The speed up factor and the parallel efficiency shows that the presented
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algorithm can handle the simulation over complex geometry pretty well. Above all, this parallel rDG solver
based on the OpenACC directives exhibits a competitive scalability for computing inviscid flow problems on
multiple GPUs.
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Figure 3: Transonic flow past a at a free-stream Mach number of M, = 0.85 and a angle of attack of

a = 2°: (a) Unstructured mesh used for computation; (b) Computed pressure contours obtained by implicit
rDG(P1P2)

Table 9: Timing measurements of using implicit rDG methods for transonic flow past a Boeing 747 aircraft.

Tunit by implicit DG(P1) Tunit by implicit rDG(P1P2)
Nelem GPU CPU Speedup GPU CPU Speedup

64,066 11.86 90.84 7.66 15.30 102.71 6.71
127,947  11.02 90.66 8.23 13.47 101.14 7.51

Table 10: Timing measurements of weak scaling obtained on a cluster of NVIDIA Tesla C2050 GPU cards
for transonic flow past a Boeing 747 aircraft.

Unit time (ms) Parallel efficiency
Grids  Elements GPU’s P1 P1P2 P1 P1P2

Level 1 64,066 x1 25.58 30.28 - -

Level 2 127,947 X2 26.57 32.20 96.3% 94.0%
Level 3 253,577 x4 28.08 32.81 91.1% 92.3%
Level 4 512,280 %8 28.35 33.48 90.2% 90.4%

VII. Conclusion and outlook

In this study, a GPU accelerated, implicit reconstructed discontinuous Galerkin method has been de-
veloped based on the OpenACC directives for the solution of compressible flows on 3D unstructured grids.
The parallelization of high-order implicit algorithm has been a historical challenge because of the nature of
GPGPU. More specifically, the computation power and local cache memory size of each core on GPU are
way less than those of a typical CPU core, which would require fine granularity algorithm to achieve high
efficiency on GPGPU. Therefore, sub-matrix operations are refined into element level. Efforts are made to
adopt a compact in-place direct inversion algorithm based on the Gauss-Jordan elimination. In addition, a
special element reordering algorithm is carried out to resolve the inherent data dependency of some featured
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preconditioning algorithm, like LU-SGS or SGS. Indeed, the current OpenACC directive-based algorithm
may not outperform other GPU program models like CUDA, however the biggest benefit from adopting Ope-
nACC to a current CFD solver still stands: it only requires minimum intrusion and algorithm alteration to
an existing CPU code, and renders an efficient approach to upgrade a legacy solver with the GPU-computing
capability without compromising its cross-platform portability and compatibility with the mainstream com-
pilers, which make it a remarkable design feature in the present scheme. A series of inviscid flow problems
have been presented for obtaining the speed up factor as well as the parallel efficiency, indicating that the
presented GPU accelerated implicit algorithm is a cost-effective method on a NVIDIA GPU card.

There is much room for further improvement of the current implicit algorithm. First of all, a fine-
grained versions of the left hand side computing algorithm needs to be developed, since the memory bound
issue caused by the current coarse-grained fashion has made it the major bottleneck of the current scheme.
Secondly, an OpenACC directive-based GMRES scheme would need to be carried out so that the GMRES
4+ LU-SGS scheme can be efficient on GPGPU. Finally, the work should be extended to consider viscous
terms and thus Navier-Stokes equations can be solved to simulate the viscous flow problems on the GPU
framework.
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