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Figure 1: HTC Vive town data.

ABSTRACT

Modern scientific, engineering and medical computational simu-
lations and experimental and observational data sensing/measuring
devices produce enormous amounts of data. While statistical analy-
sis is one tool that provides insight into this data, it is scientific visu-
alization that is tactically important for scientific discovery, product
design and data analysis. But these benefits are impeded when the
scientific visualization algorithms are implementing from scratch
— a time consuming and redundant process in immersive applica-
tion development. This process then can greatly benefit by lever-
aging the state-of-the-art open source Visualization Toolkit (VTK)
and it’s community. But, over the past two (almost three) decades,
integrating VTK with a virtual reality environment has only been
attempted to varying degrees of success. In this paper, we demon-
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strate two new approaches to simplify this amalgamation of immer-
sive interface with visualization rendering from VTK. In addition,
we cover several enhancements to VTK that provide near real-time
updates and efficient interaction. Finally, we demonstrate the com-
bination of VTK with both Vrui and OpenVR immersive environ-
ments in example applications.

Keywords: Scientific visualization, immersive environments, vir-
tual reality

Index Terms: 1.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques; 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual Reality; H.5.2
[Information Interfaces and Representation]: User Interfaces—
Interaction StylesInput Devices and Strategies

1 INTRODUCTION

There is a growing body of evidence demonstrating measurable
benefits attained when exploring scientific data using immersive in-
terfaces. Molecular research at UNC [8], genetics at NCSA [7],
oil well placement at the University of Colorado [12], and confocal
microscopy data at Brown University [30], to name but a few. We
know too that while not scientifically verifiable, any time a scientist
expresses a case where they “discovered” some relationship in their
data while immersed in a virtual reality system, we can make the
case that the interface provided a utility that helped them advance
their work.

Yet, knowing that there are benefits is only half the equation. The



other half is the cost. And a considerable contribution to the cost
— one that is often not formulated — is personnel time to get data
into the VR system. That time expense is often exacerbated due to
a lack of tools that allow data to be directly imbibed into a virtual
environment.

A path that many research teams have taken is to use the es-
tablished and feature-rich Visualization ToolKit (VTK). VTK is a
programming-level API that provides quick access to an expanse
of scientific visualization rendering algorithms, as well as compo-
nents for displaying and interacting with the results on a desktop
display. However, while the concept of combining VTK with VR
was sound, the compatibility of VTK with other rendering software
presented a difficult challenge. There were several reasonably suc-
cessful attempts at this amalgamation, but in the end, there were ei-
ther too many inefficiencies to allow the software to be adequately
interactive, or the melding was too fragile to maintain as VTK and
the VR libraries each evolved.

Consequently, the better solution was to adapt VTK to enable
it to be more easily integrated into other rendering systems. Thus
we adapted VTK by adding new options for rendering. Rather than
always rendering into windows with graphics contexts created by
VTK itself, there is now the option to “externally” render into con-
texts provide by a collaborating system, or even integrate a VR sys-
tem directly into VTK.

Immersive visualization efforts are often associated with re-
search facilities that provide large-scale VR systems such as
CAVEs™and other large-screen walk-in displays. There is also
a growing audience of potential VR users who can now gain access
to immersive interfaces through the new abundance and low-cost of
head-mounted displays (HMDs). Ideally, there would be one so-
lution to reach both audiences, and while technically this is possi-
ble, the consumer systems offer a simpler approach that will entice
many devlopers to follow that path. Thus we offer two approaches,
one that addresses the simplier solution of integrating directly with
OpenVR, and other that allows integration into any full-fledged
VR integration library capable of interfacing with CAVE-style and
HMD displays.

OpenGL context sharing. Our vtkRenderingExternal
VTK module provides a complete integration API including proper
lighting, interaction, picking and access to the entire VTK pipeline.
This, enables simple utilization for application developers using
any OpenGL-based VR Toolkit.

VR Toolkit embedding. The OpenVR VTK module supports
several immersive environments directly without the issues faced
by previous work, and is a complete template for embedding other
VR Toolkits within VTK in future work.

Enhanced performance. As the nature of immersive interfaces,
especially HMDs, requires high-performance rendering, our effort
also includes VTK rendering enhancements These enhancements
include:

o A new default OpenGL 3.2+ pipeline;

e dual depth peeling for transparency; and

e symmetric multiprocessing (SMP) tools and algorithms.

Finally, we have exposed the framework of an image-based ap-
proach to the scientist through an advanced selection interface that
allows them to make sophisticated (time, storage, analysis, ...) deci-
sions for the production of in situ visualization and analysis output.

In the sections that follow, we illustrate how our amalgamation
of VTK and VR Toolkits support our goals for enhancing scientific
visualization through immersive environments.

2 RELATED WORK

The use of scientific visualization in immersive environments is
simply natural, while tactically important for scientific discovery,
product design and data analysis. There are several high quality sci-
entific visualization virtual reality applications created from scratch

using OpenGL directly [4, 22, 35, 31] including the stunning GPU
accelerated hybrid volume and glyph approach for molecular dy-
namics visualization in the CAVE2 by Reda et al [32]. These
are certainly exemplary and valuable applications. However, when
building immersive applications, much like desktop applications,
with scientific requirements, it is often more efficient to leverage
the open source visualization toolkit (VTK) [34].

Throughout the past two decades, several research teams and
developers have integrated VTK with immersive environments to
varying degrees of success. Four fundamental approaches are avail-
able to bring VTK into an immersive rendering system:

e Geometry transport;

e OpenGL context sharing;

e VR toolkit embedding; and

e OpenGL intercept.

Our recent enhancements to the VTK platform contain solutions
for the desired integration that present a number of contributions,
and, therefore, we review related work for these areas.

Geometry transport An early approach to VTK-VR integra-
tion was the vtkActorToPF library [23]. In this method,
the generation of visualization geometry is decoupled from the
rendering of the geometry (see Figure 2). VTK generates the
geometry in the form of actors that consist of polygons and
properties. vtkActorToPF transforms these actors into pf-
Geodes (nodes) that are included in a Performer (OpenSceneGraph)
scene graph. The geometry is created by VTK, and the scene
graph is rendered without VTK. Only geometry is transformed.
Cameras, lights, rendering and interaction are not incorporated.
Several applications utilized the equivalent vtkActorToOSG
for an OpenSceneGraph-based scene graph [9] or directly into
OpenGL [28]. Others have used VTK in a preprocessing step to
produce geometries or textures eliminating the need for a direct
connection to VTK[S5].

VTK Performer
pipeline scenegraph
source translator
vtkActorToPFTranslator

vtkActor b
m m i pfGeode pfGeode

—— pipeline

edge
Figure 2: VTK, vtkActorToPF and Performer interaction diagram.
(Recreated from Paul Rajlich 2.)

VTK can be used to create, transport and save geometry without
rendering. As effective as this approach can be, the loose coupling
of VTK and a VR toolkit creates more obstacles than benefits from
an application developers perspective, and is not built upon by this
work.

OpenGL context sharing Rather than share just the VTK geom-
etry, the application developer would like to use all of the VTK API
from within their immersive application. In VTK, the renderer and
render window classes are responsible for rendering scenes. VTK
creates it’s own window and associates an OpenGL context with
that window to be used by the renderer. An OpenGL context rep-
resents: all of the state; the default framebuffer; and everything
affiliated with OpenGL with respect to the renderer, window and
application. The application developer would simply like to share
the OpenGL context from the VR Toolkit with a third party render-
ing software (e.g. Delta3D [24], OpenSceneGraph [42] and VTK).

In previous work, by Sherman et al. [37] and others, Delta3D and



OpenSceneGraph were quickly modified to instead use windows
and associated OpenGL contexts of a VR integration library such
as Vrui [20]. These solutions are generally limited in their integra-
tion. Specifically, a rendering library that is unaware of the actual
viewing matrix will generally not calculate lighting correctly, and
picking input operations do not conform to the shifted rendering.

Our vtkRenderingExternal VTK module formalizes this
integration providing lights, interaction and picking connectivity
lacking in other implementations, while allowing the application
developer complete access to the VTK pipeline.

VR Toolkit embedding A similarly time-proven approach is
based on the modification of the VTK renderer and render win-
dow [41, 13, 36, 2]. To render in an immersive environment, de-
rived classes of the vtkRenderer and vtkRenderWindow are
created, which depends on fundamental calls to the VR toolkit.
Thus, VTK-based applications can simply exchange these two
items to run on the desktop or immersive environment. VTK has
evolved significantly over the years, as have the diversity of virtual
reality products. vtkCave [39], for the CAVELIib [25], followed
by vjVTK [6] and VR JugglLua [29], for VRJuggler [3], created
third party software essentially deriving vt kRenderWindow and
vtkRenderer classes, but, from outside of VTK; lighting and
interaction were not shared and resulted in troublesome behavior.

In this work, we’ve created a new VTK module based on
OpenVR [40]. OpenVR is an application programming interface
(API) developed by Valve for supporting their SteamVR ecosys-
tem, compatible with the HTC Vive and other virtual reality hard-
ware [33]. The OpenVR module supports several immersive en-
vironments now without the issues faced by previous work, and
provides a template for embedding other VR Toolkits within VTK
in the future.

OpenGL intercept A fourth possible means for melding VTK
into a virtual environment system is the OpenGL intercept method
[15, 16, 43, 38, 26]. Here, at runtime, middleware is inserted be-
tween the application and the graphics card. With this technique,
closed-source applications can be rendered with the head-tracked
perspective rendering overriding the internal view matrix to pro-
vide the virtual reality experience. Thus, this technique enables
basic desktop tools to be used with an immersive interface — albeit
a limited interface given the open-loop nature of grabbing the ren-
dering, but not connecting back to the parameter interface. Yet, the
perspective rendering alone can be extremely valuable and allow
scientists, engineers or medical researchers to interact with their
desktop tools in a whole new way. However, many of these meth-
ods lack full functionality in the immersive environments, which
limits the usefulness to end users. Pure OpenGL, without any mod-
ifications or additions, is sure to work using interception. The dif-
ficulty of using intercept methods is that they require more coding
and tagging, and are not guaranteed to work at all, and this is be-
coming more difficult with OpenGL 3.0+, especially when using a
core OpenGL profile.

Enhanced performance Near real-time update of scientific vi-
sualization metaphors is crucial in immersive environments. The
field has seen several proposed solutions from decoupling render-
ing, and processing to parallel visualization [10, 41]. This effort
stands apart from all these previous efforts, which valiant as they
were, ultimately have been lost to time as VTK has continued to
evolve, making it difficult for tacked-together components to re-
main in sync with the APIL. Rather, by providing rendering access
from within the VTK API itself, new tools can rely on a stability
that hasn’t been available for techniques that perform functions out-
side the bounds of the API design, often accessing internal features
that do not have the assurance of stability. As a commercially sup-
ported open-source tool, VTK’s rendering performance is continu-
ally being advanced. VTK has been around since 1993 with over
one hundred thousand repository commits from over two-hundred

and fifty contributors. Having the latest algorithm implementation
requires using the existing implementation in VTK or contributing
the algorithm to VTK.

We present recent enhancements to VTK that significantly
impact immersive environment application development. The
OpenGL 3.2+ pipeline, described in Hanwell et al [14], provides
the most dramatic improvement in performance. We have supple-
mented this work with Bavoil and Myers dual depth peeling [1] and
symmetric multiprocessing (SMP) tools and algorithms to address
the performance issues for transparent geometry and computation-
ally intense algorithms (e.g. isosurfaces).

Finally, our work will eventually allow application developers
to leverage portable threaded data parallel algorithms capable of
running on next generation hardware from VTK-m [27]. VTK-m
has shown impressive results in its first two years of development,
and, as the number of filters available in VTK-m’s repository grows,
the plan is to make them available in the next major release of VTK.
Thus, if VTK-m is contained in VTK, then applications developed
using the integrations described in this paper can use it.

3 APPROACHES

To achieve broader usage it is important to require few if any
changes to either the VR toolkit or the third party scientific visu-
alization software, and to work as close as possible to the stan-
dard application development workflow. For VTK, this was accom-
plished by adding new features that fit within the existing architec-
ture. VTK provides a well-defined rendering pipeline through the
RenderWindow, Renderer, Camera, Actor, and Mapper
classes. This precise pipeline definition and clear-cut API of VTK
enabled us to primarily build upon existing code. In the next section
we cover details on these components from the architecture point of
view. In the implementation sub-section, we provide in-depth de-
tails of features we implemented to support configurable immersive
scientific visualization applications.

3.1 OpenGL context sharing

Traditionally, VTK creates and manages its own OpenGL context
and the data objects within the scene. The objective of this work is
to bring the high-quality scientific visualization computing and ren-
dering capabilities of VTK to virtual reality environments in a way
that is easier to develop and maintain. By bringing VTK into vir-
tual environments created by interface-specific tools such as GLUT,
VRUI, and FreeVR, we are providing the tools necessary to build
interactive, 3D scientific visualizations to the developers of the vir-
tual reality community.

3.1.1 Architecture

Integrating VTK into external rendering systems required over-
riding some of the behavior of the vtkRenderWindow,
vtkRenderer, and vtkCamera classes. A Renderer is at-
tached to a RenderWindow, a Mapper to an Actor, and a
Camera to a Renderer. In a typical VTK application the
RenderWindow class is responsible for creating a rendering con-
text, and defining width and height of the visualization viewport.
The Renderer class is responsible for rendering one-or-more
Actors and managing the viewport within the RenderWindow.
The Actor class is a drawable entity, which uses a Mapper to ren-
der specific data within a Renderer. Figure 3 shows the classes
and interactions between them.

Each of these components has its corresponding derived classes
that implement the API using OpenGL, VTK’s underlying graphics
API. Using OpenGL provides VTK with the ability to use hard-
ware acceleration that ultimately leads to better visualizations and
near real-time performance as required by many interactive appli-
cations especially ones that are designed for immersive environ-
ments. Each component of VTK participates in a specific way and



communicates with other components via the public API. For in-
stance, the RenderWindow typically creates the context in which
Renderer draws drawable entities, i.e. Actors.

vtkRenderWindow

A

vtkRenderer

( vtkActor J ( vtkCamera )

A

vtkMapper

Figure 3: vtkRenderWindow, vtkRenderer, vtkCamera, vtkActor, and
vtkMapper interaction diagram.

Since vtkRenderWindow typically creates the context,
and vtkRenderer controls objects of a scene in a given
viewport, the rendering pipeline is constructed with proper-
ties and other attributes set specifically to support this most
general use case. However, in the case of external environ-
ments, the context is created outside of VTK, and non-VTK
graphical elements (such as the GUI) may be rendered before
or after the VTK rendering. In addition, the environment
may render its own visualization objects in the same context.
To handle this situation, we have introduced a new module
in VTK called vtkRenderingExternal that comprises
four new classes: vtkExternalOpenGLRenderWindow,
vtkExternalOpenGLRenderer,
vtkExternalOpenGLCamera and External VTKWidget.

vtkExternalOpenGLRenderWindow - This class is an
extension to the vtkGenericOpenGLRenderWindow class,
which provides a platform-agnostic VTK OpenGL window. The
external render window class prevents a new VTK render window
from being created and, instead, uses an existing OpenGL context.
It is also responsible for fetching stereo parameters from the parent
OpenGL application and setting them on the VTK pipeline.

vtkExternalOpenGLRenderer - This class derives from
vtkRenderer and provides all of its features and functionalities.
The external renderer offers an API that prevents it from clearing
the OpenGL color and depth buffers at each frame. This ensures
that the main application holds control over the OpenGL context
and preserves rendered elements in the scene, of which VTK is un-
aware.

vtkExternalOpenGLCamera - This class inherits
vtkCamera and provides the ability to set the projection and
modelview matrices on the camera. This allows the external
rendering framework to easily set the view and orientation on the
VTK camera. The external camera also uses this scene information
to compute accurate lighting matrices.

ExternalVTKWidget - This is a collective imple-
mentation that provides a plug-and-play approach to the
vtkRenderingExternal module. It allows the consumer
application to use all the new classes as described above in just
one step. The overarching application needs only to instantiate
this class to use VTK’s external rendering capabilities. The
ExtenalVTKWidget creates a new external render window or
uses one provided to it from the external library / application.

3.1.2 Implementation

One of the most important prerequisites of this work was seamless
stereo rendering and user interaction with the two rendering sys-
tems.

Stereo Rendering The OpenGL context maintains the state ma-
chine in which OpenGL commands change the state of the system
or query a particular state as needed. To support stereo, we utilized
the OpenGL context, set by the VR toolkit, to determine the type
of stereo (Quad Buffer, Side-by Side, or Top-Bottom stereo) and
simply render using the OpenGL context, which sets active buffer,
stenciling, etc. This is set only once, immediately after the context
has been created, and is maintained by the VR toolkit over time.

2D and 3D Interface Widgets In most cases, VTK elements will
not be the only objects in a scene. There will probably be some
GUI elements that will also be rendered in addition to the VTK ele-
ments. Thus, the VTK rendering will be mixed with other OpenGL
elements. The new ExternalRenderer class does not clear the
depth or color buffers, leaving that to the display integration library
or application. The depth buffer can then act to allow OpenGL ele-
ments to be mixed (composited) in three-space with closer elements
occluding farther ones.

User Interactions Generally, in the case of a VR toolkit, inter-
action such as navigation in the scene space, grab, and rotation
of various scene objects are handled by the VR integration library
(e.g., Vrui). VTK has its own classes and methods for interaction
and scene object manipulation. To synchronize the navigation in
these two systems, the vtkExternalOpenGLCamera class has
been added. This class empowers the external application to man-
age camera interaction for VTK objects. We added a GL query in
the external renderer, which uses the GL state system to get the
projection and modelview transformation matrices. These two ma-
trices determine the location and orientation of the user’s eye (cam-
era) in the scene. The vtkExternalOpenGLRenderer sets
these matrices on the vtkExternalOpenGLCamera. Setting
these matrices directly on the camera leaves the camera parame-
ters such as position, focal point, and view up direction to incorrect
values, Therefore, we compute appropriate viewing coordinates for
the camera by multiplying the modelview matrix with the camera
initial default position in the OpenGL coordinate system. Once, ev-
erything is set on the camera, the navigation and lighting works as
expected by the user.

The application itself handles the secondary kind of interactions
such as interactive slicing and clipping of the scientific datasets.
VTK provides classes (filters) to perform thresholding, clipping,
slicing, etc. These filters take parameters such as thresholding
value, slicing position, and clip position. In our implementation, the
application receives the 6-DOF tracker position data, and, based on
the mode of the application, uses this information to set appropri-
ate values on a specific filter. For example, the left hand controller
might be used to position the clipping plane. This integration is
straightforward because our module makes the coordinate system
consistent between the two rendering systems.

3.1.3 Enabling vtkRenderingExternal

This work has been merged into the VTK as of release 7.0 available
athttp://www.vtk.org. To enable this module when compil-
ing VTK with CMake, set Module_vtkRenderingExternal
to ON (default is OFF).

3.2 VR Toolkit Embedding (OpenVR)

The potential VR user base has grown profusely with the emerging
proliferation of consumer-level HMD VR displays along with their
associated software ecosystems, such as Valve’s SteamVR. For de-
velopers who are willing to specifically target this audience, per-
haps excluding users of CAVE-style VR displays, a simpler VTK-
VR alternative is also available. The trade-off — for developers
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who don’t already have expertise in a full-fledged VR integration
library — is avoiding the programming of the alternative VR inte-
gration library, and immediately gaining access to HMDs compati-
ble with OpenVR, but not to other VR display systems.

To make it possible to use OpenVR-compatible devices with
VTK, we embedded OpenVR into VTK within a module, called
vtkOpenVR. Our goal is to allow VTK programs to use the
OpenVR library with few changes, if any. If you link your exe-
cutable to the vt kOpenVR module, the object factory mechanism
will replace the core rendering classes (e.g., vt kRenderWindow
and vtkRenderer) with the OpenVR-specialized versions in
VTK.

3.2.1 Implementation

The vt kOpenVR module contains the following classes as drop-in
replacements in VTK.

vtkOpenVRRenderWindow - This is a derived class of the
RenderWindow class. The current implementation creates one ren-
derer that covers the entire window. As described in the Related
work section, this class (and vt kOpenVRRenderer) is the loca-
tion for embedding the VR toolkit, and handles the bulk of interfac-
ing to OpenVR.

vtkOpenVRRenderer - This is a derived class of the Render
class. The vtkOpenVRRenderer class computes a reasonable
scale and translation, and sets the results on OpenVRCamera. It
also sets an appropriate default clipping range expansion. Again,
this class (and vtkOpenVRRenderWindow) is the location for
embedding the VR toolkit.

vtkOpenVRCamera - This is a derived class of the Camera
class. vtkOpenVRCamera gets the matrices from OpenVR to use
for rendering. It contains a scale and translation that are designed
to map world coordinates into the HMD space. Accordingly, the
application developer can keep world coordinates in the units best
suited to their problem domain, and the camera will shift and scale
into units that make sense for the HMD.

vtkOpenVRRenderWindowIneractor - VIK is designed
to pick and interact based on two-degrees of freedom, desk-
top X and Y mouse/window coordinates. In contrast, OpenVR
provides X, Y and Z 3D world coordinates and 3D orienta-
tions. The vtkOpenVRRenderWindowInteractor class
catches controller events and converts them to mouse/window
events.  In addition, this class also stores the world co-
ordinate positions for the styles or pickers that need them.
vtkOpenVRRenderWindowInteractor supports multiple
controllers through the standard PointerIndex approach that VTK
uses for MultiTouch.

vtkInteractorStyleOpenVR - In concert with the
vtkOpenVRRenderWindowInteractor class, we derived
the vtkInteractorStyleOpenVR class to use 3D world co-
ordinates to adjust Actors. This class provides a common grab-
and-move style of interaction that is common to OpenVR and other
VR toolkits.

vtkOpenVRPropPicker -  Finally, the  derived
vtkOpenVRPropPicker class determines what Actors
or Props VTK picks. Note that Prop is an abstract superclass
for any object that can exist in a rendered scene (either 2D or
3D), and defines the API for picking, LOD manipulation, and
common instance variables that control visibility, picking, and
dragging. The vtkOpenVRPropPicker class uses the 3D
world coordinate as the picking value as opposed to an intersecting
aray, which is slower.

These OpenVR derived classes work from within VTK to pro-
vide seamless access to cameras, lighting, interaction and the com-
plete VTK pipeline.

3.2.2 Enabling vtkOpenVR

To use VTK with OpenVR, first download the master branch of
VTK from the VTK repository on GitHub (see http://www.
vtk.org). The remote module for vtkOpenVR can be found
at https://goo.gl/0jemOV. Place this file into the Remote
folder of your VTK source tree. You must also install two exter-
nal libraries: Simple DirectMedia Layer 2 (SDL2) and OpenVR.
To enable this module, use CMake to set Module_vtkOpenVR to
ON (default is OFF'). Ensure you build an optimized version of VTK
to maximize performance while using these new capabilities.

3.2.3 Future Developments

The vtkOpenVR module is currently in the alpha phase and has
been tested on the HTC Vive HMD. Moving forward, we look to
add support for the OpenVR overlay, which provides support for
user interface components. We also expect to make the module
faster and include more event interactions.

3.3 Performance enhancements

VTK is one of the most commonly used libraries for visualization
and computing in the scientific community. Primarily written in
C++, VTK provides classical and model visualization algorithms
to visualize structured, unstructured, and point data sets on desk-
top, mobile, and web environments. VTK provides state-of-the-art
implementations accessible via an API call. The benefit in using
VTK comes from the fact that having the latest algorithm imple-
mentation simply requires using the existing implementation from
the open source, community driven VTK repository or contributing
one.

To allow VTK to function at levels needed for head-tracked ren-
dering, many other enhancements have been added to the over-
all VTK system: using modern OpenGL, rendering transparencies
with dual-depth peeling, and expanding the use of multi-threading.

3.3.1 OpenGL 3.2+

The legacy rendering code in VTK is a group of implementation
modules collectively called “OpenGL.” Through a grant from the
National Institutes of Health, the OpenGL group has been rewrit-
ten as a drop-in replacement set of implementation modules collec-
tively called “OpenGL2”. This work aims to support rendering on
modern graphics cards [14].

The results have been nothing short of spectacular. Polygon ren-
dering demonstrates a ten fold speedup for first frame rendering
followed by a two-hundred fold speed up for subsequent frames for
one to thirty million triangles. The previous volume rendering was
also graphics processing unit (GPU) aware, and, thus, the improve-
ment is a modest but substantial two fold speedup.

To realize these performance enhancements, VTK now uses an
OpenGL 3.2+ context, which is available on fairly low end mod-
ern GPUs. However, for those application developers using the
X11 window system on a Mac OSX system, xQuartz does not cur-
rently provide a suitable OpenGL context. But, as xQuatrz utilizes
newer versions of Mesa going forward, we expect future versions
will eventually meet the OpenGL2 requirements.

3.3.2 Dual-Depth Peeling

As we developed several example programs leveraging the
vtkRenderingExternal module, we found that the rendering
performance slowed as transparency was introduced into the scene.
We have developed a dual-depth peeling algorithm to overcome this
issue.

In OpenGL, polygons are broken up into fragments through the
rasterization process. Each fragment corresponds to a pixel. An
OpenGL fragment shader is a customizable program that deter-
mines the color of a fragment where all fragments for a single
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pixel are blended to determine the final color of the pixel. Com-
posing multiple translucent fragments into a single pixel must be
done carefully. There are three common strategies to this composi-
tion:

e Simple Alpha Blending - The fragments are processed
(blended using just alpha) in random order. It is very fast,
but provides unpredictable and generally incorrect results.

e Sorted Geometry - Geometry must be resorted each time the
camera moves using vtkDepthSortPolyData. Sorting
is an expensive (slow) operation, but provides generally con-
sistent results with some artifacts where primitives overlap.

e Depth Peeling - Extract and blend fragments in a multi-
pass render, and, therefore, requires multiple geometry render
passes.

VTK by default uses depth peeling. To enhance ren-
dering performance with transparency we implemented
vtkDualDepthPeelingPass, which was originally proposed
by nVidia in 2008 [1]. Dual-depth peeling extends traditional depth
peeling by extracting two layers of fragments per-pass: from the
front and back simultaneously. Uses a two-component depth buffer
to track of peel information and three types of geometry passes:

e InitializeDepth - Initializes buffers using opaque geometry

information.

e Peeling - Repeated pass that extracts and blends translucent
geometry peels. It extracts both near and far peels while
blending far peels into accumulation buffer.

e AlphaBlending - An optional pass to clean up unpeeled frag-
ments and used with occlusion thresholds.

This algorithm provides a two fold speedup for compositing in

the appearance of transparent geometry.

3.3.3 VvtkSMPTools

The field of parallel computing is advancing rapidly due to inno-
vations in GPU and multicore technologies. The VTK community
is working to make parallel computing for scientific visualization
easier by introducing vtk SMPTools, an abstraction for threaded
processing which uses different libraries such as TBB, OpenMP and
X-Kaapi. The typical target application is coarse-grained shared-
memory computing as provided by mainstream multicore, threaded
CPUs such as Intel’s i5 and i7 architectures.

For several of the example programs utilizing the
vtkRenderingExternal module, we leveraged a new
contouring algorithm in VTK that is readily parallelizable using
vtkSMPTools and still incredibly efficient in serial mode,
called vtkFlyingEdges2D and vtkFlyingEdges3D.
While the OpenGL2 group improves rendering performance,
vtkSMPTools can be used to enhance the geometry generation
performance for scientific visualization.

4 RESULTS

To demonstrate the utility of our VTK enhancements pro-
vide scientific visualization efforts, and test various use cases,
we have implemented three kinds of applications for the
vtkRenderingExternal approach, as well as a simple exam-
ple using vtkOpenVR. Using the VRUI VR integration library,
we created the applications: GeometryViewer, VolumeViewer, and
MooseViewer. As the name suggests, the Geometry Viewer enables
end-users to load geometry files from a file, the Volume Viewer ren-
ders a structured dataset using VTK’s GPU-based volume rendering
technique, and MooseViewer renders a multi-block unstructured
dataset as geometry or volume depending on the end-user’s inter-
active selections.

4.1 Immersive Environments

A variety of immersive environment display styles exist from head-
mounted displays (HMD) to low cost 1Q-station [37] and even four

or six sided CAVEs. Immersive applications need to support a large
number of immersive environments, as each has their strength and
applicability in real world scenarios. We have tested our work in
following virtual environments:

e afour-sided CAVE,

e alow cost IQ-station, and

e an HTC VIVE.

In the first two cases, the vtkRenderingExternal module
was used with the Vrui VR toolkit provided the configuration nec-
essary to run the application. For the HTC VIVE, we leveraged
vtkOpenVR.

4.2 VRUI Implementation

The task of a VR toolkit is to shield an application developer from
the particular configuration of an immersive environment, such that
applications can be developed quickly and in a portable and scal-
able fashion. Three important parts of this overarching goal are:
encapsulation of the display environment; encapsulation of the dis-
tribution environment; and encapsulation of the input device envi-
ronment.

The Vrui VR toolkit supports fully scalable and portable appli-
cations that run on a range of immersive environments starting from
a laptop with a touchpad, over desktop environments with special
input devices such as space balls, to full-blown immersive VR envi-
ronments ranging from a single-screen workbench to a multi-screen
tiled display wall or CAVE. Applications using the Vrui VR toolkit
are written without a particular input environment in mind, and
Vrui-enabled immersive environments are configured to map the
available displays and input devices to the application such that they
appear to be written natively for the environment. For example, a
Vrui application running on the desktop should be as usable and
intuitive as any 3D application written specifically for the desktop.

We developed some example applications that serve as vali-
dation of the this effort. There is an example within the VTK
source tree for vtkRenderingExternal module that ren-
ders a VTK sphere in a GLUT window. Three advanced appli-
cations are also developed that illustrate VTK rendering within
a Vrui created OpenGL context. These applications exhibit
varying capabilities of the VTK infrastructure leveraged by the
vtkRenderingExternal module.

4.2.1 GeometryViewer

Wit
P

Figure 4: The geometry represents Idaho’ Nation Laboratory’s Ad-
vanced Test Reactor (ATR) reactor core, and is used to virtually un-
derstand maintenance processes in this extreme environment



Geometry Viewer [17] reads and renders a Wavefront (.obj) file
that defines a geometry. The file is read using the standard
vtkOBJFileReader that creates vtkPolyData from the ge-
ometry. The vtkPolyData is then mapped using VTK’s poly-
data rendering pipeline as a vtkActor. The main menu of the
application allows the user to center the geometry to the screen as
well as change its representation. The Center Display button cal-
culates the transformation from the current camera position and di-
rection to the center position. The Rendering Options sub-menu
allows the end-user to change the opacity of the vtkActor, leverag-
ing our work on dual depth-peeling, as well as its representation to
either points, wireframe or surface. In addition to VTK level mod-
ifications, the application has support for OpenGL level widgets
(e.g. glClipPlane). This shows that native OpenGL operations
can also be interactively performed when using the VTK rendering
pipeline.

In Figure 4, we show Vrui’s user interface (UI) showing render-
ing options dialog allowing us to adjust the transparency of the ATR
reactor core. In addition, we used Vrui’s Ul to build an interface for
the lighting color.

4.2.2 VolumeViewer

Figure 5: This is a digitized well “rock” core. The yellow isosurfaces
isolate the oil trapped within the shale rock.

VolumeViewer [19] reads and renders VTK ImageData (.vti)
files that define structured points datasets. The application instanti-
ates a pipeline that allows volume rendering of the dataset. Several
pre-defined Color Maps help change mapping of scalar values to
colors. A Transfer Function Editor allows changes to the color and
opacity of the rendered volume.

Figure 5 depicts our implementation of a transfer function
editor using Vrui’s UL In addition, we are leveraging the
vtkFlyingEdges3D to display the oil isosurfaces in yellow
while blending the results in the volume.

Widgets such as Isosurfaces, Contours, Slice provide VTK-level
operations that can be carried out on the dataset. To circumvent pos-
sible interaction problems when dealing with large datasets, a low
resolution mode is provided that down-samples the dataset. This
lets the end-user fulfill actions quickly that would otherwise take
more time on the full dataset, and then revert back to the full size
when ready to visualize the complete dataset.

Figure 6 shows the VruiVTK Volume Viewer utilized for use
seamlessly in a CAVE environment. This data shows a researcher
analyzing anuerism data with the transfer function editor and slices.

Figure 6: This is a CAVE rendering of anuerism data.

4.2.3 MooseViewer

Figure 7: A MOOSE Framework application BISON simulates a nu-
clear pin with missing cladding on one of the fuel pellets.

MooseViewer [18] brings the ability of reading and displaying
Moose framework [11,21] ExoduslI (.ex2, .e) files to immersive en-
vironments. The application uses vtkExodusIIReader to read
geometry defined in Exodusll files as well as associated attributes
(e.g. temperature, burnup, etc.). The application permits only user-
selected variables to be loaded as data arrays, thus, reducing mem-
ory overhead. A ”Color By” sub-menu is dynamically populated
with user-selected variables that maps the chosen variable scalars
to colors using the selected ”Color Map”. An interesting feature
of the application is animation of the dataset over time. The “Ani-
mation Dialog” helps play through the time steps with controls for
looping and stepping through the time steps.

We see, in Figure 7, surface geometry colored by the selected
temperature attribute animated using the “Animation Dialog”.

4.3 OpenVR Implementation

This example creates a trivial VTK pipeline that reads a polygonal
geometry file using the vtkPLYReader and maps it to the scene
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Figure 8: Polygonal rendering of a sample dataset by VTK for
OpenVR on HTC Vive.

using the vtkOpenVR classes described above. As seen in Figure
8, the rendering classes create a stereo pair from the view and warp
it to the camera model of the HTC Vive. The example is available
as a test case under the vt kOpenVR module in the VTK source.
The modest amount of code needed to put VTK-generated poly-
gons into the Vive HMD attests to the modularity and complete in-
tegration of an existing VR framework — in this case vt kOpenVR.

5 CONCLUSION

As the user base for virtual reality flourishes, there will be many
new users looking to use VR as a tool for scientific visualization.
Rather than write new algorithms and tools entirely from scratch,
our extensions to the VTK system lowers the hurdles to cleanly
meld community-tested high-quality visualization algorithms into
existing VR integration libraries that can immersively render to
all-types of immersive systems, from large walk-in CAVE-style
displays to consumer-grade HMDs designed for games and game
ecosystems (such as SteamVR).

VTK has also been enhanced in ways that provide more efficient,
and therefore faster rendering — orders of magnitude faster in many
cases. Combined, we have moved VTK forward to where it can be
the tool of choice for immersive visualization development.
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