

Performance Assessment of Dilute- Acid Leaching to Improve Corn Stover Quality for Thermochemical Conversion

John E. Aston, David N. Thompson,
Tyler L. Westover

December 2016

The INL is a
U.S. Department of Energy
National Laboratory
operated by
Battelle Energy Alliance

This is an accepted manuscript of a paper intended for publication in a journal. This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. The views expressed in this paper are not necessarily those of the United States Government or the sponsoring agency.

Prepared for the U.S. Department of Energy
Office of Nuclear Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

1 **Performance Assessment of Dilute-Acid Leaching to Improve Corn Stover**
2 **Quality for Thermochemical Conversion**

3

4 John E. Aston^{1†}, David N. Thompson¹ and Tyler L. Westover²

5 ¹Biological and Chemical Processing Department, Idaho National Laboratory, U.S.A.

6 ²Idaho National Laboratory, Biofuels and Renewable Energy Technology Department, Idaho
7 National Laboratory, U.S.A.

8

9 [†]John.Aston@inl.gov

10 Idaho National Laboratory

11 P.O. Box 1625

12 Idaho Falls, Idaho 83415

13 Phone: 208-526-1851

14 Facsimile: 208-526-0828

15

16

17

18

19

20

21

22

23

24

25

Abstract

26 Lignocellulosic biomass is a sustainable energy source that can help meet the increasing demand
27 for biofuels in the United States. However, the quality and availability of such feedstocks greatly
28 affect their suitability for downstream conversion. This work reports the effects of dilute-acid
29 leaching at various aqueous loadings, temperatures and catalyst loadings (sulfuric acid) on the
30 quality of a traditional biochemical feedstock, corn stover, as a potential feedstock for
31 thermochemical conversions.

32 At 95 wt% aqueous, dilute-acid leaching was observed to effectively remove 97.3% of the alkali
33 metals and alkaline earth metals that can negatively affect degradation pathways during pyrolysis
34 and result in greater yield of non-condensable gases. In addition, up to 98.4% of the chlorine and
35 88.8% of the phosphorus, which can cause equipment corrosion and foul upgrading catalysts,
36 respectively, were removed. At 25°C in the absence of the acid catalyst, only 6.8% of the alkali
37 metals and alkaline earth metals were removed; however, 88.0% of chloride was still removed.

38 The ratio of alkaline/acidic ash species has been suggested to proportionately relate to slagging
39 in combustion applications. The initial alkali/acid ratio of the ash species present in the untreated
40 corn stover was 0.38 (significant slagging risk). At 95 wt% aqueous, this ratio was decreased to
41 0.18 (moderate slagging risk) at 0 wt% catalyst and 90°C, and was decreased to 0.07, 0.08 and
42 0.06 at 0.5 wt% catalyst at 25°C, 50°C and 90°C, respectively (low slagging risk). Increasing the
43 catalyst loading to 1.0% slightly decreased the measured alkali/acid ratio of remaining ash.

44 The results presented here show that a water wash or a dilute-acid preprocessing step can
45 improve corn stover quality for pyrolysis, hydrothermal liquefaction and combustion.

46 **Key Words:** Corn stover, pyrolysis, hydrothermal liquefaction, combustion, leaching, ash

47 **1. Introduction**

48 More than one billion dry tons of lignocellulosic feedstocks are expected to be sustainably
49 available in the United States by 2030, an amount that would potentially provide enough
50 chemical energy to replace up to 30% of the United States' current petroleum consumption [1].
51 However, bioenergy is not yet a mature industry, and as such, an understanding of feedstock
52 quality and its impacts on conversion are not widely understood [2, 3].

53 Three major conversion pathways for lignocellulosic feedstocks are biochemical (alcohol or
54 organic acid fermentation), thermochemical (bio-oil formation through pyrolysis or hydrothermal
55 liquefaction (HTL) or syn gas production through gasification) and combustion. Currently,
56 feedstock quality specifications for these pathways are largely limited to total ash, organic
57 content and sugar content. These attributes may be used to predict a potential yield, but do not
58 account for inhibitors that affect reactivity, product degradation and/or corrode and foul
59 conversion equipment.

60 Factors such as these have driven the selection of feedstocks for given conversion pathways. For
61 example, the yield from biochemical conversion of lignocellulosic feedstocks to ethanol is more
62 a function of cellulose and hemicellulose content and less so of ash content; because of this,
63 high-ash herbaceous feedstocks such as corn stover are commonly used [4-6]. Conversely,
64 woody biomass is often used for thermochemical conversions such as pyrolysis and HTL
65 because the low ash content results in high yields with less catalytic poisoning, slagging and
66 equipment fouling [7-10]. These considerations notwithstanding, to strengthen and secure the
67 availability of feedstocks for the biofuels industry in the United States and globally, biorefineries
68 must eventually consider adapting for more flexible feedstock availability and quality.

69 One of the most prominent and widely available lignocellulosic feedstocks is corn stover.
70 However, the relatively high amount of inorganic contaminants found in corn stover, and other
71 agricultural residues, adds expense to the logistics, processing and conversion [11]. Further,
72 many of the ash species that adversely affect thermochemical conversions are physiological, and
73 therefore would require a chemical preprocessing step to be removed.

74 Existing chemical preprocessing methods that target the removal of physiological ash
75 components are low-severity water and dilute-acid leaching. Water washing at temperatures from
76 ambient to near boiling can remove exogenous ash components such as sodium, alumina, iron
77 and silica introduced via soil entrainment [7]. However, significant removal of physiological ash
78 components, including the bulk of the alkaline earth and alkali metals that are inhibitory to
79 pyrolysis conversions, via their catalysis of secondary cracking of vapors and reduce bio-oil
80 yield and quality, may require dilute-acid leaching [12-16]. Other chemical treatments may also
81 be applied such as simple hot water washing, which may affect deacetylation and lower the pH
82 of the wash media.

83 The research presented here tested the efficacy of water washing and dilute-acid leaching as a
84 potential preprocessing method to improve the feedstock quality attributes of multi-pass corn
85 stover for thermochemical conversion. Equilibrium water washing and two concentrations of an
86 acid catalyst (sulfuric acid) were tested at three different aqueous loadings and temperatures. The
87 effects on soluble convertible material, ash, ash composition and nitrogen content are reported
88 here and discussed with respect to their relevance to pyrolysis, HTL and combustion.

89

90

91 **2. Materials and Methods**

92 *2.1- Sample Collection*

93 Approximately 400 kilograms of multi-pass corn stover harvested in Boone County, Iowa (2012)
94 was procured and stored at approximately 8 wt% moisture in a dry and covered condition until
95 use. The stover was ground to pass a 1-inch (25.4 mm) screen using a Vermeer BG480 Hammer
96 Mill (Pella, Iowa). After being milled, the stover was mixed in an overflow bin and stored in four
97 super sacks. An eight-way star splitter was used to individually split the four super sacks of
98 ground stover. After the first splitting, the splits from the four super sacks were recombined and
99 mixed. The splitting and mixing process was repeated two additional times. The mixed stover
100 was then divided into smaller aliquots of approximately 6.1 kg. These aliquots were then mixed
101 and split to create samples with masses of approximately 0.35, 0.87 and 1.75 kg to provide 98
102 wt%, 95 wt% and 90 wt% aqueous loading (i.e., 2 wt%, 5 wt% and 10 wt% solids) for the water
103 and dilute-acid leaching experiments. The aqueous loading by wt% represents the wt% of the
104 final leaching media that is comprised of water and the sulfuric acid catalyst.

105 *2.2 - Leaching Protocol*

106 An acid catalyst, sulfuric acid, was used to improve the removal of alkali metals and alkaline
107 earth metals. Table 1 shows the test matrix used to determine the effects of catalyst
108 concentration, temperature and aqueous loading on the removal of organics during leaching.
109 Experiments were completed with a single replicate at each set of conditions, and an additional 9
110 experiments were completed to estimate experimental error. These included minimal leaching
111 conditions (i.e. 0 wt% catalyst, 25°C and 90 wt% aqueous), moderate leaching conditions (0.5
112 wt% catalyst, 50°C and 95 wt% aqueous loading) and severe leaching conditions (1.0 wt%

113 catalyst, 90°C and 98 wt% aqueous), each in triplicate. These experimental sets were carried out
114 for twenty-four hours to achieve equilibrium conditions, which were verified by allowing
115 separate experiments to continue for up to 72 hours. Even at the most mild conditions tested,
116 25°C, 90% aqueous and 0 wt% catalyst, the longer experiments did not result in total ash,
117 potassium, sodium, magnesium, calcium, silica, iron or alumina measurements that were
118 statistically different than the shorter tests, as evaluated by the calculation of 95% confidence
119 intervals (data not shown). Additionally, from the initial untreated sample pool, six randomly
120 selected samples were characterized to measure base-line ash composition for comparison
121 against leached material.

122 Leaching media were prepared by adding acid catalyst (H₂SO₄, Sigma Aldrich) and deionized
123 (DI) water to the required volumes, dependent upon the desired aqueous loading, in a 30-liter
124 aluminum pot. The leaching solution was then heated on hot plates to temperature for each
125 experiment. The temperature was measured using calibrated thermocouples. While the solution
126 heated, a randomly-selected split sample of untreated corn stover was placed inside a concentric
127 cylindrical aluminum wire cage inside another 30-liter aluminum pot. Mixing was achieved
128 using a 3.5" magnetic stir bar rotating within the open center of the concentric cage. When the
129 leaching medium had reached the desired temperature, the solution was added to the pot/cage
130 assembly and placed on a hot plate to maintain temperature.

131 After 24-hours, the cage assembly was removed and placed into a stainless-steel pot containing
132 12 L of DI water, agitated, and washed for 45 minutes. This step was repeated once more. In
133 each instance of corn stover being transferred from a leachate or wash solution, the solution was
134 filtered subsequently through American Standard Test Sieves with 420 um and 75 um mesh,
135 (Humboldt, Elgin, Illinois), and the collected corn stover particulates were returned to the bulk

136 sample. Materials used in the handling of the sample were washed thoroughly between samples.
137 The wash solution was then filtered using the same method and collected material was returned
138 to the bulk solids.

139 *2.3 - Preparation of Leached Material for Analytic Applications*

140 The leached and washed corn stover was dried in an oven at 105°C for 48 to 72 hours to reduce
141 the moisture to below 2 wt%. The dried samples were ground to pass a 2-mm screen using a
142 Thomas Wiley Laboratory Knife Mill (Model 4, 1 horse power; Thomas Scientific, New Jersey).
143 The ground material was then divided into smaller representative samples for nitrogen and ash
144 composition analysis. A Retsch ZM200 Ultra Centrifugal Mill (Haan, Germany) equipped with
145 either a 0.2-mm screen or a 0.08-mm screen, respectively, was used to grind the samples for
146 these analyses.

147 *2.4 - Total Ash and Nitrogen Analysis*

148 Samples ground to pass a 0.2-mm screen were analyzed for proximate (total ash) and ultimate
149 (nitrogen content) by the Biomass Feedstock National User Facility Analytical Laboratory at
150 Idaho National Laboratory using American Society for Testing Materials International methods
151 D317-07a and D3176-09, respectively.

152 *2.5 - Elemental Ash Analysis*

153 Samples ground to pass a 0.08-mm screen were sent to Huffman Laboratories (Golden,
154 Colorado) for ash composition analysis. A brief description of the methods used is given here.
155 The samples were well mixed with lithium metaborate in a platinum crucible and fused for a
156 fixed time at 950°C. The cooled crucible was placed into a new polypropylene bottle containing
157 100.0 mL of dilute acid and shaken for several hours on a mechanical shaker until the fusion

158 bead completely dissolved from the crucible. This resulting solution was analyzed by inductively
159 coupled plasma – atomic emission spectroscopy for major and minor ash elements. Sample
160 concentrations for individual elements were calculated based on ash weight and then converted
161 to equivalent element oxides. This allowed for summation of the oxides and comparison to
162 100% as a means of analytical closure for quality control purposes.

163 *2.6 - Multivariate Analysis*

164 In order to simplify and generalize the trends observed in the data, multivariate least-squares
165 analysis was performed on key response variables, including the percentages of organic material,
166 total ash, potassium + sodium (alkali metals), and calcium +magnesium (alkaline earth metals)
167 remaining after leaching as functions of the predictor variables aqueous loading, catalyst loading
168 and temperature. Attempts were made using various equations to fit the data, including
169 Arrhenius-type formulations; however, more sophisticated approaches did not yield significantly
170 better fits than simple second-order polynomials. Step-wise regression was applied using a
171 combination of calculations in Matlab® and Microsoft Excel® to determine equations that
172 provided the most reasonable fits to the experimental data. These equations assumed linear
173 contributions to ash and organics removal from temperature, catalyst loading and aqueous
174 loading described by the experimental values of these terms multiplied by a constant. It also
175 assumed linear contributions from interactions between each of these parameters described by
176 the multiplication of these terms by each and a constant. Finally, the model considered secondary
177 effects from these terms represented by squaring the experimental values and multiplying by a
178 constant. The validity of each term was initially screen by p-value calculations for each term. P-
179 values greater than 0.05 resulted in the corresponding term being removed from the model, and
180 the p-values for each remaining term being recalculated; this was repeated until all p-values were

181 lower than 0.05. Following a reduction in terms based on p-value calculations, fit quality was
182 further judged by cross-validation and qualitatively by examining fit residuals to identify
183 residuals with the least amount of observable systematic patterns. Cross-validation was
184 performed by dividing the experimental results into four sub-sets. The first three sub-sets were
185 used as calibration points, while the fourth sub-set was removed from the model and used for
186 cross-validation. This process was repeated four times, removing a different sub-set of data each
187 time, to produce four values of root mean square error of cross validation (RMSE-CV). The
188 average of these four values was reported as the RMSE-CV of the model. Importantly, in the
189 interest of simplicity as prescribed by relatively high uncertainty in the experimental data,
190 second-order polynomial fits were selected as the most reasonable models. Consequently, the
191 models are considered to be coarse engineering approximations, not precise chemical formulas.

192

193 **3. Results and Discussion**

194 *3.1 - Ash Composition of Untreated Multi-Pass Corn Stover*

195 Table 2 shows the total ash and ash composition of the untreated corn stover used in this study.
196 These observations are consistent with published values [17-19], although due to the nature of
197 harvest, multi-pass corn stover may vary significantly in both total ash and ash composition.
198 These initial results were taken as a basis for each sample leached, and the percentage reductions
199 of various ash constituents were calculated from these values and used to develop Figures 2-5.
200 By mass, $7.7 \pm 1.0\%$ of the corn stover was inorganic ash. This includes both introduced (e.g.,
201 iron, alumina, titania and soil-derived silica) and physiological ash (e.g., structural silica,
202 phosphorus, alkaline earth metals, alkali metals and others). Because multi-pass corn stover was
203 used in this study, significant amounts of ash were likely entrained during harvest. Ash is

204 considered detrimental to conversion efficiency, equipment wear and waste handling; however,
205 specific ash species affect conversion through different mechanisms. The relevance of the
206 measured ash components are briefly discussed here.

207 Chlorine is a widely known corrosive when present in either pyrolysis vapor or deposited in slag
208 on heat transfer surfaces [20]. In addition, chlorine may contribute to catalyst poisoning during
209 catalyzed fast pyrolysis [9, 21]. Like chlorine, nitrogen is not known to directly affect
210 thermochemical reactions significantly; but does contribute to NO_x gas formation [22] and,
211 during HTL, reacts with degradation products to form solid deposits on catalyst surfaces [23-25].

212 Of particular interest to thermochemical conversion, ash in the corn stover contains relatively
213 high amounts of alkali metals and alkaline earth metals, which affect pyrolysis kinetics, yield and
214 change the reaction pathways and decomposition mechanisms as a function of temperature [26,
215 27]. Potassium, sodium, calcium and magnesium combined to represent 24.5 ± 1.4 wt% of the
216 ash in the multi-pass corn stover used in this study, or approximatley 1.9% (19,000 ppm) of the
217 total feedstock. This is significantly higher than the 500 to 2,000 ppm of alkali metals and
218 alkaline earth metals typically found in clean pine, which is a common feedstock for
219 thermochemical conversions [28, 29]. Interestingly, unlike their inhibitory effects in pyrolysis,
220 these ash species may serve as natural catalysts in HTL, resulting in larger molecular weight bio-
221 oils, although the use of different catalysts may present the potential for these compounds to
222 affect some undesirable catalyst poisoning [30]. Therefore, a chemical preprocessing step to
223 improve feedstock quality for pyrolysis may make it less suitable for HTL.

224 Unlike the alkali metals and alkaline earth metals, silica is generally considered inert in pyrolysis
225 and HTL reactions [31]. Although, recent work suggests that SiO₂ may catalyze the cracking of
226 polymeric molecules, resulting in increased char and non-condensable gas formation [32].

227 Similarly, in the presence of alkali metals and alkaline earth metals, phosphorus may foul
228 upgrading catalysts [33], and increase char formation and destabilize pyrolysis oils by catalyzing
229 condensation reactions [34]. In addition, the formation of phosphoric acid may necessitate
230 neutralization and disposal [35]. Beyond a contribution to the overall ash content, iron and titania
231 are not widely considered to be significantly inhibitory to common thermochemical conversion
232 pathways.

233 In addition to inhibiting pyrolysis, potassium and silica may contribute to slag formation during
234 combustion by forming K_2SiO_4 , a eutectic with a low melting point. This low-melting point may
235 lead to glass formation that will cause slagging, and may trap corrosives such as chloride on a
236 reactor surface [36, 37].

237 *3.2 - Effect of Dilute-Acid Leaching on the Ash Composition of Multi-Pass Corn Stover*

238 Before considering the full set of leaching results, it is helpful to establish the uncertainty and
239 repeatability of the measurements and establish general trends using replicate tests. For this
240 purpose, three conditions corresponding to the least severe and most severe leaching conditions,
241 as well as an intermediate condition were each repeated three times. The results of the replicate
242 tests are shown in Figure 1 as a reduction of each species on a dry basis as a percent of total
243 mass. For example, the total ash content of the samples before leaching is assumed to be 7.66%
244 with a 95% confidence interval of 0.45%. After leaching, the average ash content of the three
245 samples leached at the least severe conditions was 5.90%, representing a 1.8% decrease in total
246 ash content, as shown in Figure 1. The uncertainty bars for the measurements of reduction of
247 different species shown in Figure 1 were estimated following the development by Figliola and
248 Beasley [38] and are given by

249
$$U_{R_i} = \sqrt{\frac{1}{6} t_{5,95}^2 (sd_i|_{B.L.})^2 + \frac{1}{2} t_{2,95}^2 (sd_i|_{A.L.})^2}$$
 Equation 1

250 where “*i*” refers to the species *i*, and *sd_i* is the standard deviation of measuring species *i*. The
 251 subscripts “*B.L.*” and “*A.L.*” refer to before and after leaching, respectively. Increased leaching
 252 severity removed greater amounts of potassium, calcium, magnesium and phosphorus. In
 253 contrast, sulfur and sodium became more concentrated in the corn stover leached at mid-severity
 254 and high-severity, conditions, respectively. It may be noted that sulfur is derived from both
 255 inorganic and organic sources in biomass feedstocks. The methods used here would not be
 256 considered ideal for targeting the organic sulfur sources, which would typically require alkaline
 257 or otherwise solvation methods of the cellular structure to liberate sulfur bound in thiol-protein
 258 groups. Therefore it is not surprising that sulfur was concentrated with respect to other ash
 259 species in the leached material. In addition, silicon also appeared to become more concentrated
 260 with increased leaching severity, although the increase was not statistically significant because of
 261 variation in silicon analyses. The overall result is that increasing severity of the leaching process
 262 had a greater effect on individual ash species than it did on the total concentration of ash.
 263 Table 3 shows the full set of leaching results using water and dilute-acid at temperatures between
 264 25 and 90°C at 98 wt%, 95 wt% and 90 wt% aqueous. These results are comparable to those
 265 observed in previous work using various feedstocks including switchgrass, corn stover and bark
 266 [12-16, 36], with respect to the effects of conditions on ash removal and the order-of-magnitude
 267 of removal for various ash species. However, studies under similar conditions using corn stover
 268 are lacking, as the majority of dilute-acid leaching work at relatively mild conditions has focused
 269 on woody feedstocks for ash removal. Conversely, dilute-acid leaching studies using herbaceous
 270 feedstocks often have focused on higher temperatures that affect the release of hemicellulose for

271 biochemical conversion applications. In contrast, the purpose of this work was to study ash
272 removal in a temperature regime that minimized the extraction of material convertible by
273 thermochemical applications.

274 Generally speaking, the removal of total ash and ash species increased with increasing aqueous
275 loading and increasing temperature. The exception was nitrogen, which was not removed to a
276 significant extent, and the removal that was measured was not a function of catalyst
277 concentration, aqueous loading or temperature. This indicates that that the conditions tested did
278 not affect structural changes necessary to release significant amounts of protein, where large
279 amounts of cellular proteins are located, from the biomass cells.

280 The parameter observed to have the smallest step-wise effect on ash removal was aqueous
281 loading between 95 wt% and 90 wt%, possibly suggesting some solubility limitations in the
282 experimental set-up. Conversely, temperature had a significant effect on ash removal. Using the
283 unleached stover as a basis (Table 2), in the absence of the catalyst, 10.4% ash reduction was
284 observed using 98 wt% aqueous at 25°C. However, increasing the temperature to 90°C resulted
285 in a 41.6% increase in ash reduction.

286 When the catalyst was added, similar to the water-only leaching results, total ash and ash species
287 removal trended with temperature and aqueous loading. However, the data in Tables 2 and 3
288 suggests that the addition of catalyst increased ash removal to a greater extent at lower
289 temperatures than it did at higher temperatures. For example, at 98 wt% aqueous and 25°C, ash
290 reduction increased from 10.2% to 37.2% when catalyst was added to 0.5 wt%; however, at 98
291 wt% aqueous and 90°C, ash reduction only increased from 41.6% to 43.9% when catalyst was
292 added to 0.5 wt%.

293 At the most severe conditions tested, dilute-acid leaching (1.0 wt% catalyst, 90°C and 98 wt%
294 aqueous) removed 97.3% of the alkali metals and alkaline earth. In addition, up to 98.4% of the
295 chlorine and 88.8% of the phosphorus were removed under these conditions. In comparison,
296 under the most mild conditions tested (no catalyst, 25°C and 90 wt% aqueous), 6.8% of the alkali
297 metals and alkaline earth metals, and 19.0% of the phosphorus were removed. However, 88.0%
298 of chloride was still removed. This suggests a simple cold water wash may be an ideal
299 preprocessing step for HTL to remove the corrosive chloride while leaving the majority of the
300 beneficially catalytic alkaline metals and alkaline earth metals in place. However, for catalyzed
301 fast pyrolysis, where the alkaline metals and alkaline earth metals act as inhibitors, a dilute-acid
302 leach may be more beneficial.

303 Although Table 3 shows that the most effective treatment was the more severe acidic treatment
304 at the highest temperature with the highest aqueous loading, it is worth noting that moderate
305 conditions (0.5% catalyst and 50°C) achieved ash removals close to the more severe conditions.
306 These more moderate conditions would likely incur lower costs due to using less acid and heat.
307 As pointed out already, conditions were tested that removed significant amounts of an ash
308 species deleterious for a given thermochemical conversion pathway, while removing relatively
309 small amounts of ash species that may be beneficial to that pathway (*i.e.*, chlorine versus alkali
310 metals and alkaline earth metals for HTL). By understanding how the removal of various ash
311 species is affected by different processing conditions, it is theoretically possible to optimize the
312 leaching conditions with respect to the feedstock ash composition, target conversion pathway,
313 and cost of performing the preprocessing. To accomplish this, it is necessary to understand the
314 functionality between the processing conditions (e.g., temperature, acid catalyst concentration
315 and aqueous loadings) and an independent variable (e.g., ash removal). This functionality could

316 then be evaluated against the cost to achieve a given extent of ash removal to determine optimal
317 process conditions. Although the economic analyses of implementing a set of process conditions
318 to achieve a given extent of ash species removal is outside the scope of this work, a recent study
319 did estimate the cost to achieve various extents of ash species removal using acid leaching [39].

320 To this end, multivariate least-squares analysis was performed on key response variables,
321 including the percentages of organic material ($\%Org_{rem}$), total ash ($\%Ash_{rem}$), potassium +
322 sodium ($\%K+Na_{rem}$) and calcium + magnesium ($\%Ca+Mg_{rem}$) remaining after leaching as
323 functions of the predictor variables aqueous loading (AL), catalyst loading (CL) and temperature
324 (T). Parameters of selected models are shown in Table 4. For simplicity, models are only shown
325 for data gathered from experiments at 95 wt% aqueous. All models have high coefficients of
326 determination of the fits (R^2), and the root mean square errors of calibration ($RMSE-C$) are well-
327 matched to those of cross-validation ($RMSE-CV$), indicating good fits to the data. Figure 2A uses
328 a surface plot and contour plot to show the results of Model 1 in Table 4 and compare with
329 measured values of organic material for aqueous loadings of 95%. Figure 2B compares the
330 measured and predicted values of organic materials for Model 1 and shows that the model
331 provides good fits to the data with similar errors for all three aqueous loadings. It must be
332 remembered; however, that the second-order polynomial fit is an engineering approximation, not
333 a theoretical formula.

334
335 Figure 3A shows the measured and modeled (Model 2, Table 4) percent of total ash remaining
336 after leaching ($\%Ash_{rem}$) for aqueous loadings of 95%. The residuals of the model are plotted in
337 supplementary Figure 2A, and predicted values are plotted as a function of measured values in
338 supplementary Figure 2B (similar supplementary figures plot the residuals corresponding to
339 Figures 3 – 7). It is observed that Model 2 fits $\%Ash_{rem}$ with good accuracy and notably,

340 substantially more ash is removed than biomass. Figure 3B plots the percent of total ash
341 remaining after leaching ($\%Ash_{rem}$) as a function of the percent of organics remaining after
342 leaching and includes data from the replicate tests. Notably, leaching at the least severe
343 conditions achieved substantial ash removal with loss of very little organics (less than 1%). The
344 replicate tests at more severe leaching conditions removed greater amounts of total ash but also
345 removed nearly stoichiometric amounts of organic material, so that more severe leaching did not
346 reduce the concentration of total ash in the material, in agreement with Figure 1. Figure 3B also
347 shows that experiments with the highest aqueous loading achieved the greatest amount of total
348 ash reduction while minimizing the loss of organic material.

349
350 Similar plots for alkali metals (potassium and sodium) and alkaline earth metals (calcium +
351 magnesium) are shown in Figures 4 and 5, respectively. Unusual behaviors are observed in
352 Figures 4A and 5A. In Figure 4A, at a catalyst loading of 1%, the percent amount of potassium
353 and sodium remaining in the sample ($\%K+Na_{rem}$) increases with increasing temperature contrary
354 to expectations and contrary to the response with zero catalyst. However, this may be a result of
355 experimental variation propagating through the mathematical model, as in either case, the
356 majority of these species are removed, introducing more significance to any analytical errors.
357 Figures 4B and 5B indicate that nearly all of the alkali metals and alkaline earth metals can be
358 removed using 95% aqueous loading while retaining between 85% and 90% of the organic
359 material.

360 Ratios of removal for various ash species were calculated and plotted to illustrate how the
361 collected data may be used to inform potential conditions for various applications. As an
362 example, figure 5 shows the ratio of chlorine to alkali metal and alkaline earth metal removal.
363 This illustrates conditions that removed significant amounts of a corrosive ash species (chlorine)

364 while removing relatively low amounts of alkali metals and alkaline earth metals, which may be
365 beneficial for some HTL applications that can benefit from the catalytic effects of potassium,
366 sodium and calcium [30].

367 *3.3 - Combustion Applications*

368 In addition to considering pyrolysis and HTL, which result in the direct production of bio-oils,
369 possible effects on the suitability of a high-ash feedstock (*i.e.*, multi-pass corn stover) for
370 combustion applications was considered.

371 Biomass combustion is a method to recoup energy from otherwise unused chemical potential
372 within biomass; typically high-lignin or other fractions otherwise undesirable for conversion to
373 bio-oils. However, biomass combustion releases inorganic compounds that contribute to slagging
374 and fouling deposits and decreased heat-transfer efficiency. Agricultural residues, in particular,
375 are often high in total ash, including silica and potassium and lower in calcium and sodium.

376 Potassium, chlorides and silica may form alkali-chlorides and silicates with low melting
377 temperatures that subsequently deposit as slag and cause fouling. An index developed by
378 Teixeira [40], has been reported to predict the significance of slagging, due to the formation of
379 low-melting eutectics, and is predicated on the ratio of basic to acidic species and is given here:

$$380 \frac{\text{Alkaline (B)}}{\text{Acidity (A)}} = \frac{\text{Fe}_2\text{O}_3 + \text{CaO} + \text{MgO} + \text{K}_2\text{O} + \text{Na}_2\text{O}}{\text{SiO}_2 + \text{TiO}_2 + \text{Al}_2\text{O}_3} \quad \text{Equation 2}$$

381 Experimentally, it has been determined that:

382 $\frac{B}{A} < 0.2 = \text{Low risk of slagging}$; $0.2 < \frac{B}{A} < 0.4 = \text{Moderate risk of slagging}$; and that
383 $\frac{B}{A} > 0.4 = \text{High risk of slagging}$.

384 Using elemental ash data from Tables 2 and 3, Figure 7 was developed to show the effects of
385 dilute-acid leaching on this index for multi-pass corn stover. As shown in Figure 7, the
386 application of dilute-acid leaching reduced the B/A ratio from 0.38 (significant risk of slagging)
387 to nearly 0.05 (low risk of slagging) when 1.0 wt% catalyst was applied at 90°C. More mild
388 conditions (0.5 wt% catalyst at 50°C) still reduced the ratio to 0.08 (low risk of slagging).

389 This index was applied recently [41] to identify ideal applications for fractions of various
390 feedstocks (both woody and herbaceous) that were generated via air classification [42, 43]. In a
391 similar fashion, combining a dilute-acid leaching preprocessing step with the mechanical
392 fractionation of high-ash fractions may be a viable approach to generating fractions of
393 herbaceous biomass suitable for thermochemical applications while keeping drying costs
394 relatively low. For example, the application of 1.0% catalyst at 90°C resulted in a 97.3% removal
395 of roughly 19,000 ppm of alkaline metals and alkaline earth metals, which would yield a final
396 concentration of approximately 500 ppm. However, given that whole pine is typically between
397 500 and 2,000 ppm [28, 29], it may be that the dilute-acid leaching of a portion of the corn
398 stover, or a mechanically generated high-ash fraction of the corn stover could yield a feedstock
399 of suitable quality for thermochemical conversions, such as pyrolysis, even after recombination
400 with the unleached bulk feedstock.

401

402

403

404

405

406 **4. Conclusions**

407 To develop a more robust and lower-risk bioenergy market, conversion processes may need to
408 draw from a wider range of feedstock types and quality. Low-temperature water washing and
409 dilute-acid leaching is a potential approach to mitigating the inorganic inhibitors that render
410 many herbaceous feedstocks unsuitable for thermochemical applications, especially pyrolysis.
411 The data generated here shows that this approach removes up to 97.3% of the physiological ash
412 species that negatively affect pyrolysis; over 85.0% of corrosive species that increase capital
413 costs for pyrolysis, HTL and combustion; and minimizes the amount of convertible material that
414 is solubilized and extracted during the process. In addition, by managing the dilute-acid leaching
415 conditions, it is possible to selectively mitigate specific ash species to allow feedstocks to be
416 optimized for specific conversion pathways. The benefits of this approach may increase
417 significantly if coupled to methods developed previously that use mechanical methods to
418 generate feedstock fractions with various quality attributes that make them more economically
419 attractive to selectively target for quality management.

420

421 *Acknowledgments*

422 This work was supported by the US Department of Energy, Office of Energy Efficiency and
423 Renewable Energy under DOE Idaho Operations Office Contract No. DE-AC07-05ID14517.
424 Additional analytic support was provided by Rachel Emerson, Manunya Phanphanich and Karen
425 Delezene-Briggs at the INL. Huffman Laboratories performed the ash compositional analyses of
426 untreated and treated samples.

427

428

References

1. Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply. Technical Report, Oak Ridge National Laboratoy. Accession Number: ADAA436753.
2. Kenney KL, Smith WA, Gresham GL, Westover TL (2013) Understanding biomass feedstock variability. *Biofuels* 4:111-27.
3. Thompson DN, Campbell T, Bals B, Runge T, Teymouri F, Ovard LP (2013) Chemical preconversion: application of low-severity pretreatment chemistries for commoditization of lignocellulosic feedstock. *Biofuels* 4:323-40.
4. Tao L, Templeton DW, Humbird D, Aden A (2013) Effect of corn stover compositional variability on minimum ethanol selling price (MESP). *Bioresource Technol* 140:426-30.
5. Chen XW, Shekiro J, Pschorn T, Sabourin M, Tao L, Elander R, et al (2014) A highly efficient dilute alkali deacetylation and mechanical (disc) refining process for the conversion of renewable biomass to lower cost sugars. *Biotechnol Biofuels* 7:98-108.
6. Hsu DD, Inman D, Heath GA, Wolfrum EJ, Mann MK, Aden A (2010) Life Cycle Environmental Impacts of Selected US Ethanol Production and Use Pathways in 2022. *Environ Sci Technol* 44:5289-97.
7. Kenney KL, Smith WA, Gresham GL, Westover TL (2013) Understanding biomass feedstock variability. *Biofuels* 4:111-27.
8. Carpenter D, Westover TL, Czernik S, Jablonski W (2014) Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. *Green Chem* 16:384-406.
9. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. *Biomass Bioenerg* 38:68-94.
10. Carrier M, Joubert JE, Danje S, Hugo T, Gorgens J, Knoetze J (2013) Impact of the lignocellulosic material on fast pyrolysis yields and product quality. *Bioresource Technol* 150:129-38.
11. Foust T, Aden A, Dutta A, Phillips S (2009) An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion processes. *Cellulose* 16:547-65.
12. Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. *Bioresource Techno* 101:4900-4906.
13. Schell DJ, Farmer J, Newman M, McMillan JD (2003) Dilute-sulfuric acid pretreatment of corn stover in pilot scale reactor. *Appl Biochem Biotech* 105:69-86.
14. Deng L, Zhang T, Che DF (2013) Effect of water washing on fuel properties, pyrolysis and combustion characteristics, and ash fusibility of biomass. *Fuel Process Technol* 106:712-20.
15. Liu X, Bi XT (2011) Removal of inorganic constituents from pine barks and switchgrass. *Fuel Process Technol* 92:1273-1279.

472 16. Dayton DC, Jenkins BM, Turn SQ, Bakker RR, Williams RB, Belle-Oudry D, Hill LM
473 (1999) Release of inorganic constituents from leached biomass during thermal
474 conversion. *Energy Fuels* 13:860-870.

475 17. Morey R, Vance V, Sears DL, Tiffany R (2006) Characterization of feed streams and
476 emissions from biomass gasification/combustion at fuel ethanol plants. ASABE Meeting
477 Paper; Volume 64180.

478 18. Hoskinson RL, Karlen DL, Birrell SJ, Radtke CW, Wilhelm WW (2007) Engineering,
479 nutrient removal, and feestock conversion evaluations of four corn stover harvest
480 scenarios. *Biomass and Bioenergy* 31:126-136.

481 19. Yu F, Deng S, Chen P, Liu Y, Wan Y, Olson A, Kittelson D, Ruan R (2007) Physical and
482 chemical properties of bio-oils from microwave pyrolysis of corn stover. *Applied*
483 *Biochemistry and Biotechnology* 136:957-970.

484 20. Thy P, Yu CW, Jenkins BM, Lesher CE (2013) Inorganic Composition and
485 Environmental Impact of Biomass Feedstock. *Energ Fuel*. 27:3969-87.

486 21. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: A
487 critical review. *Energy Fuel* 20:848-89.

488 22. Guo Y, Yeh T, Song WH, Xu DH, Wang SZ (2015) A review of bio-oil production from
489 hydrothermal liquefaction of algae. *Renew Sust Energ Rev* 48:776-90.

490 23. Elliott DC, Biller P, Ross AB, Schmidt AJ, Jones SB (2015) Hydrothermal liquefaction
491 of biomass: Developments from batch to continuous process. *Bioresource Technol*
492 178:147-56.

493 24. Akhtar J, Amin NAS (2011) A review on process conditions for optimum bio-oil yield in
494 hydrothermal liquefaction of biomass. *Renew Sust Energ Rev* 15:1615-24.

495 25. Ramirez JA, Brown RJ, Rainey TJ (2015) A review of hydrothermal liquefaction bio-
496 crude properties and prospects for upgrading to transportation fuels. *Energies* 8:6765-94.

497 26. Carpenter D, Westover TL, Czernik S, Jablonski W (2014) Biomass feedstocks for
498 renewable fuel production: A review of the impacts of feedstock and pretreatment on the
499 yield and product distribution of fast pyrolysis bio-oils and vapors. *Green Chemistry*
500 16:384-406.

501 27. Antal MJ (1983) Effects of reactor severity on the gas-phase pyrolysis of cellulose- and
502 kraft lignin-derived volatile matter. *Industrial & Engineering Chemistry Product*
503 *Research and Development* 22:366-75.

504 28. Dyer TJ, Ragauskas AJ. Deconvoluting chromophore formation and removal during kraft
505 pulping: influence of metal cations. International Symposium on wood, fiber and pulping
506 chemistry, Auckland, New Zealand, May 2005.

507 29. Sannigrahi P, Ragauskas AJ, Tuskan GA (2010) Poplar as a feedstock for biofuels: A
508 review of compositional characteristics. *Biofuels, Bioproducts and Biorefining* 4:209-
509 226.

510 30. Li C, Aston JE, Lacey JA, Thompson VS, Thompson DN (2016) Impact of feedstock
511 quality and variation on biochemical and thermochemical conversion. *Renewable and*
512 *Sustainable Energy Reviews* 65:525-536.

513 31. Jonsson L, Alriksson B, Nilvebrant N-O (2013) Bioconversion of lignocellulose:
514 inhibitors and detoxification. *Biotechnol Biofuels* 6:16.

515 32. Selig MJ, Adney WS, Himmel ME, Decker SR (2009) The impact of cell wall acetylation
516 on corn stover hydrolysis by cellulolytic and xylanolytic enzymes. *Cellulose* 16:711-22.

517 33. Argyle MD, Bartholomew CH (2015) Heterogeneous catalyst deactivation and
518 regeneration: A review. *Catalysts* 5:145-269.

519 34. Suarez-Garcia F, Villar-Rodil S, Blanco CG, Martinez-Alonso A, Tascon JMD (2004)
520 Effect of phosphoric acid on chemical transformations during nomex pyrolysis.
521 *Chemistry of Materials* 16:2639-2647.

522 35. Ruddy DA, Schaidle JA, Ferrell Iii JR, Wang J, Moens L, Hensley JE (2014) Recent
523 advances in heterogeneous catalysts for bio-oil upgrading via "ex situ catalytic fast
524 pyrolysis": catalyst development through the study of model compounds. *Green
525 Chemistry* 16:454-90.

526 36. Thompson DN, Shaw PG, Lacey JA (2003) Post-harvest processing methods for
527 reduction of silica and alkali metals in wheat straw. *Applied Biochemistry and
528 Biotechnology*. 105:205-218.

529 37. Dutta A, Talmadge M, Hensley J, Worley M, Dudgeon D, Barton D, Groenendijk P,
530 Ferrari D, Stears B, Searcy EM, Wright CT, Hess JR (2011) Process design and
531 economics for conversion of lignocellulosic biomass to ethanol. Technical Report.
532 NREL/TP-5100-21400.

533 38. Figliola RS and Beasley DE (2006) Theory and design for mechanical measurements. 4th
534 Edition, Wiley. Hoboken, New Jersey.

535 39. Hu H, Cherry R, Westover TL, Aston JE, Lacey JA (Submitted to Bioresource
536 Technology, 2016) Process simulation and cost analysis for removing inorganics from
537 wood chips using combined mechanical and chemical preprocessing.

538 40. Teixeira P, Lopes H, Gulyurtlu I, Lapa N, Abelha P (2012) Evaluation of slagging and
539 fouling tendency during biomass co-firing with coal in a fluidized bed. *Biomass
540 Bioenergy* 39:192-203.

541 41. Thompson VS, Lacey JA, Hartley DH, Jindra MA, Aston JE, Thompson DN (2016)
542 Application of air classification and formulation to manage feedstock cost, quality and
543 availability for bioenergy. *Fuel* 180:497-505.

544 42. Lacey JA, Aston JE, Westover TL, Cherry RS, Thompson DN (2015) Removal of
545 introduced inorganic content from chipped forest residue via air classification. *Fuel*
546 160:265-273.

547 43. Lacey JA, Emerson RM, Thompson DN, Westover TL(2016) Ash reduction in corn
548 stover facilitated by anatomical and size fractionation. *Biomass and Bioenergy* 90:173-
549 180.