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INTRODUCTION

The common definition of the diffusion coefficient as the
inverse of three times the transport cross section is not compat-
ible with voids. Morel introduced a non-local tensor diffusion
coeflicient that remains finite in voids [1]. It can be obtained
by solving an auxiliary transport problem without scattering or
fission. Larsen and Trahan successfully applied this diffusion
coeflicient for enhancing the accuracy of diffusion solutions
of very high temperature reactor (VHTR) problems that fea-
ture large, optically thin channels in the z-direction [2]. It
was demonstrated that a significant reduction of error can be
achieved in particular in the optically thin region. Along the
same line of thought, non-local diffusion tensors have been ap-
plied to modeling the TREAT reactor confirming the findings
of Larsen and Trahan [3].

Previous work of the authors have introduced a flexible
Nonlinear-Diffusion Acceleration (NDA) method for the first
order S y equations discretized with the discontinuous finite
element method (DFEM), [4], [5], [6]. This NDA method
uses a scalar diffusion coefficient in the low-order system
that is obtained as the flux weighted average of the inverse
transport cross section. Hence, it suffers from very large and
potentially unbounded diffusion coefficients in the low order
problem. However, it was noted that the choice of the diffusion
coefficient does not influence consistency of the method at
convergence and hence the diffusion coefficient is essentially
a free parameter. The choice of the diffusion coefficient does,
however, affect the convergence behavior of the nonlinear
diffusion iterations.

Within this work we use Morel’s non-local diffusion coef-
ficient in the aforementioned NDA formulation in lieu of the
flux weighted inverse of three times the transport cross section.
The goal of this paper is to demonstrate that significant en-
hancement of the spectral properties of NDA can be achieved
in near void regions. For testing the spectral properties of
the NDA with non-local diffusion coeflicients, the periodical
horizontal interface problem is used [7]. This problem consists
of alternating stripes of optically thin and thick materials both
of which feature scattering ratios close to unity.

THE NONLINEAR DIFFUSION ACCELERATION
METHOD

The original form of the NDA method for solving the
multigroup, first order Sy eigenvalue equations is briefly in-
troduced. This method closely follows the description in Ref.

[6]. The FEM weak form of the first-order, multigroup, S y
equations is:
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In Eqgs. 1 and 2 standard transport notation is used stressing in
particular that g is a fine energy group index running from 1
to G; the quantities Q; o, and Oy, . Will be specified later. In
addition, ®* is an arbitrary, angularly isotropic test function,
E is an FEM element’s face, n is an arbitrarily oriented normal
vector on E (outward normal vector on D), f* and f~ are
upwind and downwind values of f, respectively, I is the set
of all interior faces, [[f]] = f* — f~ is the jump across an
element’s face with the upwind and downwind sides being
defined by ©,,, and
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It is noted that all quantities related to the Sy problem are
denoted in capitalized symbols, e.g. X, and all quantites
related to the diffusion problem are denoted by lower case
symbols with the exception of the diffusion coefficient. The
weak form of the interior penalty DFEM diffusion equations
is given by:
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where the dependence on the S y transport solution is denoted
by the square bracket, and
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where p is the coarse group index, P is the total number of
coarse energy groups, ﬁp is the diffusion coeflicient, o, is
the removal cross section, ), is the penalty parameter, [ f] =
ST — f~ is the jump across an element’s face with the upwind
and downwind side being defined by the face’s normal vector
(normal vector n points from — to +), {f} = %(fJr + f7). For

details on the utilized quantities consult Ref. [6]. The closure
term ¢ [¥] (¢, ¢¥) is defined as:
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where D, is the drift vector, &, is the face closure, and @, is
the boundary coefficient. Definitions of these parameter are
provided in Ref. [6]. The diffusion coefficient is computed as
the flux weighted inverse of the transport cross section:
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where 1 is the identity matrix, IT[-] denotes the projection
operator defined in Ref. [6]. The scalar diffusion coefficient
defined by Eq. 8 becomes unbounded in void regions and
destroys effectiveness of the NDA method in optically thin
regions. Finally, the update of the Sy equations is given by
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where @, is the Sy transport scalar flux, K, is the fission
spectrum and IT7! [-] is the prolongation operator defined in

(6].
Morel’s non-local diffusion diffusion tensor is obtained
as the solution of the simple linear transport problem [1]:
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Following Ref. [2] reflective boundary conditions are applied
on all exterior boundaries unless stated otherwise ensuring that
in the limit of a homogeneous medium with finite total cross
section, the scalar diffusion coeflicient 1/3%;, is obtained.
The auxiliary transport problem Eq. 10 is discretized using
the same discretization in space and angle as the solution
of the primary transport problem. However, it is noted that
high accuracy of the tensor diffusion coefficients might not be
necessary for rendering an effective NDA algorithm. Further,
Eq. 10 constitutes a system of decoupled, linear transport
problems that can be solved using a single transport sweep
if we neglect the reflective boundary conditions. Depending
on the optical thickness of the domain, a small number of
transport sweeps might be necessary to obtain the solution of
Eq. 10 in case reflective boundary conditions are applied.

Within this work, we replace the scalar diffusion coeffi-
cients Eq. 8 by the tensor diffusion coefficients defined by
Eq. 10. The resulting NDA algorithm listed in Alg. 1 is
implemented into the radiation transport code Rattlesnake
[8]. The tensor diffusion coefficients are pre-computed be-
fore commencing Picard iterations solving the NDA system of
equations as they only depend on the supplied cross sections
and the geometry neither of which change during the solution
of the presented test problems. In general multi-physics set-
tings, it would be necessary to recompute the Dg,,-, ;j whenever
feedback from other physics changes X, ,.

Algorithm 1 Nonlinear diffusion acceleration algorithm with
non-local tensor diffusion coefficients.

Solve Eq. 10 and transfer Dg,,-, ; to the diffusion problem.
Set/=0,¥ =1.
while € > tol do
1. Project ¥/, i.e. compute IT¥/, and compute
low order cross sections.
2. Obtain ¢'*!/2 by solving the low order
eigenvalue/fixed source problem using MOOSE’s
NonlinearEigen/PJFNK solver capability.
3. Prolongation, i.e. evaluate IT™! [¢’+” 2_ HCI)’].

4. Obtain W"*! by performing a single transport sweep.
5. Compute @1,
6. € =1 = /D5, I =1+ 1.

end while

NUMERICAL RESULTS

The periodical horizontal interface (PHI) problem is a
well-known litmus test for numerical methods [7]. It consists
of alternating horizontal stripes of optically thin and thick
materials of thickness 1 cm as depicted in Fig. 1 with one-
group total and scattering cross sections given by:

ZRI=T
X R1 = CZRI
1
z:z,RZ = -
p
25 R2 = CLiRo, (11)



where the two parameter 7 and the scattering ratio c¢ are varied
during the following parameter study. The parameter T con-
trols the material discontinuity at the interface of regions one
and two, while ¢ controls the relative amounts of scattering
and absorption. The domain size is kept fixed at 11 x 11 cm
and it is discretized using a uniform quadrilaterial mesh with
11 by 11 elements. Vacuum boundary conditions are applied
on all exterior boundaries. It should be pointed out that these
boundary conditions can differ from the boundary conditions
applied to the auxiliary transport problem Eq. 10. Note that in
this setup the optically thin regions are adjacent to the bottom
and top boundaries. The Sy equations are discretized using
the Sg level symmetric quadrature. A uniform distributed
source of strength one is present throughout the domain.

Opt. Thin

/

Opt. Thick

Fig. 1. Geometry of the periodical horizontal interface prob-
lem used for numerical tests of the NDA method.

Spectral radii for the PHI problem with log,(v) = 1, ..,7
and ¢ = 0.9,0.99, 0.9999, 0.999999 are listed in Tables I and
IL, respectively. These results demonstrate a superior perfor-
mance of the non-local diffusion coefficients. For the scalar
diffusion coefficients the spectral radii approach the scatter-
ing ratio ¢ with increasing 7 while for the non-local diffusion
tensors, they approach a different limit that is smaller than the
scattering ratio. In addition, the non-local diffusion tensor’s
spectral radii go through a maximum spectral radius before
approaching their limit for 7 — co. The spectral radii for the
scalar diffusion coefficients increase monotonically.

The D, and Dy,y components of the diffusion tensor for
the case of 7 = 1.2 and 7 = 1000 are plotted in Fig. 2 and Fig.
3, respectively. While all convergence results are obtained
using a uniform 11 by 11 mesh and linear discontinuous rep-
resentation of the diffusion coeflicients, the plots depicting the

TABLE 1. Spectral radii of the NDA method obtained for the
PHI problem using the flux weighted scalar diffusion coeffi-
cient.

Scattering Ratio

logo(r) 09 099 0.9999
0 027 030 03006
1 0.73 0.87 0.8826
2 087 097 09905
3 089 099 09970
4 09 099 0.9992
5 09 099 0.9998

TABLE II. Spectral radii of the NDA method obtained for the
PHI problem using the non-local diffusion coefficients.

Scattering Ratio

log,o(r) 09 099 0.9999 0.999999 1
0 027 030 0.30 0.30 0.30
1 0.56 0.64 0.63 0.63 0.63
2 055 0.78 0.75 0.75 0.75
3 049 0.74 0.80 0.78 0.78
4 048 0.67 0.81 0.78 0.80
5 048 0.66 0.75 0.81 0.80
6 048 0.66 0.72 0.81 0.80
7 048 0.66 0.71 0.75 0.80

shape of the diffusion tensor components use an 11 by 44 mesh
and project the diffusion coeflicients onto constant elemental
shape functions. This is necessary because of limitations in the
visualization procedure failing to correctly handle discontinu-
ous shape functions with orders greater than zero. It is noted
that the diffusion coefficients in both regions stay between
values of 0 and 1; it is observed that the values of the lA)x,x
component are slightly larger than the lA)y,y component. Note
that x is aligned with the horizontal stripes while y is orthogo-
nal to it. A curious behavior is observed at the bottom and top
boundary where the magnitude of the diffusion coefficients is
larger than in the interior. This is caused by the optically thin
channels being adjacent to the reflective boundary. In the limit
of T — oo you can show that in slab geometry the value of
the diffusion coefficients in the optically thick region becomes
0, while it approaches %Ax where Ax is the thickness of the
single stripe in the thin region. In the described geometry,
we apply reflective boundary conditions at the outer boundary
adjacent to an optically thin stripe making it essentially twice
as large.

The behavior near the boundary prompted us to change
the auxiliary transport system’s boundary conditions to vac-
uum boundary conditions consistent with the boundary con-
ditions used for the main transport solve. The corresponding
spectral radii are listed in Table III. It is observed that the limit
of the spectral radii as 7 — oo is different than for the case
with reflective boundary conditions; in particular the spectral
radii are smaller rendering the NDA method more effective. It
remains to be studied which boundary conditions result in the
best convergence properties of the NDA method for general
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Fig. 2. Plot of the non-local diffusion coefficients ﬁx,x and
Dy,y for 7 = 1.2 and reflective boundary conditions (left) and
centerline plot of the diffusion coefficients (right).
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Fig. 3. Plot of the non-local diffusion coefficients D, , and
D,, for = 1000.0 and reflective boundary conditions (left)
and centerline plot of the diffusion coefficients (right).

problems. In Figs. 4 and 5 the components D, , and lA)y,y of
Morel’s diffusion tensor are plotted for 7 = 1.2 and 7 = 1000,
respectivly. It is observed that the magnitude of the compo-
nents is smaller than for the case with reflective boundary
conditions. For small 7 we see the characteristic drop near the
vacuum boundary, while for large T an asymptotic constant
value is asymptotically approached.

In infinite, homogeneous media, the spectral radius of
NDA converges to the theoretical value of 0.2247 obtained
for Diffusion Synthetic Acceleration applied to the continuous
transport equations when reducing the element optical thick-
ness [7]. The thin cell limit of the spectral radii obtained with
standard and non-local diffusion coefficent flavors of NDA are
listed in Table IV; for creating a homogeneous medium 7 is
set to unity and the scattering ratio is ¢ = 0.9999. Note that
vacuum boundary conditions are applied such that the limit
of the spectral radius is smaller than the limit in the infinite
medium even for the standard diffusion coefficient. Compar-
ing the standard and non-local methods, the limits to which
the spectral radii converge with reducing the element optical
thickness are distinctly different: 0.16 (non-local) compared

—

TABLE III. Spectral radii of the NDA method obtained for
the PHI problem using the non-local diffusion coefficients,
where the auxiliary problem is solved using vacuum boundary
conditions.

Scattering Ratio

logio(r) 09 099 0.9999 0.999999 1
0 023 026 0.26 0.26 0.26
1 036 049 0.51 0.51 0.51
2 037 0.58 0.70 0.70 0.70
3 038 045 0.70 0.74 0.74
4 0.38 043 059 0.73 0.74
5 0.38 043 049 0.70 0.74
6 038 043 043 0.59 0.74
7 038 043 045 0.49 0.74
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Fig. 4. Plot of the non-local diffusion coefficients ﬁx,x and
D,, for r = 1.2 and vacuum boundary conditions (left) and
centerline plot of the diffusion coefficients (right).

with 0.19 (standard). Note that this test is not an infinite ho-
mogeneous medium test due to the finite domain measuring 11
mean free paths across; in an infinite homogeneous medium
the non-local diffusion tensor is identical to the standard diffu-
sion coeflicient and the two approaches would yield the same
spectral radius equal to 0.2247.

CONCLUSIONS

In this paper we studied the convergence properties of a
modification of the NDA algorithm described in [4]. Instead
of using a flux weighted inverse of the transport cross sections
as the diffusion coefficient, Morel’s non-local tensor diffusion
coeflicient is utilized. The diffusion coefficient is essentially
a free parameter of the NDA method that does not affect con-
sistency as it cancels out at convergence. The goal of this
modification is to improve the NDA’s spectral properties in
near void regions. In this work it is demonstrated that the
careful choice of the diffusion coefficient is imperative for
achieving good convergence properties under the said condi-
tions. The flux-weighted scalar diffusion coefficient becomes
unbounded as the optical thickness approaches zero, while
Morel’s non-local diffusion coefficient remains finite. Using
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Fig. 5. Plot of the non-local diffusion coefficients D, , and
Dy,y for 7 = 1000.0 and vacuum boundary conditions (left)
and centerline plot of the diffusion coefficients (right).

TABLE IV. Spectral radii of the NDA method using local and
non-local (using vacuum boundary conditions in the auxiliary
problem) diffusion coefficients for a homogeneous medium
(t = 1) with ¢ = 0.9999 and varying optical cell thicknesses.

Diffusion coefficient

Element optical thickness Non-local = Local
1 0.264 0.301

0.5 0.192 0.221

0.25 0.162 0.199

0.125 0.159 0.195

0.0625 0.159 0.194

the periodical horizontal interface problem as test case, it is
demonstrated that the new NDA algorithm features signifi-
cantly better spectral properties than the NDA algorithm with
standard scalar diffusion coefficients. In particular, as the het-
erogeneity parameter 7 is increased, the spectral radius of the
original NDA method approaches the scattering ratio, while
for the case with non-local diffusion coefficients it approaches
a smaller limit.
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