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Data Types
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Why Data Types?

• Basic messaging involves an array of a built-in type
• MPI_Send(const void *buf, int count, MPI_Datatype datatype, ...

• If cluster is heterogeneous, basic data types may differ
• Example: MPI_INT is little endian on node 0 and big endian on node 1
• Example: MPI_CHAR is 8 bytes on node 0 and 16 bytes on node 1

• MPI is guaranteed to handle this for you
• But this is usually not a problem
• Most clusters use the same architecture for every node
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Why Create Data Types?

• One reason to create a data type: handle striding in multi-D array
• Consider a 2D array held in memory row-wise

• First row data entries (contiguous): data[0], data[1], data[2], …
• First column data entries (strided): data[0], data[N], data[2N], ...

Contiguous data

Strided
Data
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Strided Data

• Options to send strided data
• Copy data into contiguous buffer

• data[0] -> buffer[0]   data[N] -> buffer[1]   data[2N] -> buffer[2]

• Create a subarray data type

• Depending on implementation: creating a new data type can involve 
less memory movement
• Can be useful for both communications and IO
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int MPI_Type_create_subarray(int ndims, 
const int array_of_sizes[],
const int array_of_subsizes[], 
const int array_of_starts[],
int order, 
MPI_Datatype oldtype, 
MPI_Datatype *newtype)

ndims number of array dimensions 
array_of_sizes num elements of oldtype in each dimension of the full array 
array_of_subsizes num elements of type oldtype in each dimension of the subarray 
array_of_starts starting coordinates of the subarray in each dimension
order array storage order flag
oldtype array element datatype
newtype new datatype

Subarray Data Type
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int MPI_Type_create_subarray(int ndims, 
const int array_of_sizes[],
const int array_of_subsizes[], 
const int array_of_starts[],
int order, 
MPI_Datatype oldtype, 
MPI_Datatype *newtype)

ndims 2
array_of_sizes {N, N}
array_of_subsizes {N, 1}
array_of_starts {0, 0}
order MPI_ORDER_C
oldtype MPI_DOUBLE
newtype leftColumnType

Subarray Data Type (Left Column)
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Using a Data Type

• Order of calls:
• Create new data type
• Call MPI_Type_commit
• Use new data type as many times as you want
• Call MPI_Type_free



Los Alamos National Laboratory

|   9

#include <stdio.h>
#include <mpi.h>

int main(int argc, char **argv)
{

int rank;
double array[9];

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

for (int i = 0; i < 9; i++) {
array[i] = rank;

}

Example: Subarray

Set all array values to rank
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int sizes[2] = {3,3};
int subsizes[2] = {3,1};
int starts[2] = {0,0};
MPI_Datatype leftColumnType;

MPI_Type_create_subarray(2, sizes, subsizes, starts, MPI_ORDER_C,
MPI_DOUBLE, &leftColumnType);

MPI_Type_commit(&leftColumnType);

if (rank == 0) {
MPI_Send(array, 1, leftColumnType, 1, 0, MPI_COMM_WORLD);

}

Example: Subarray

Create left column data type

Commit the data type

Send the left column if rank 0
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if (rank == 1) {
MPI_Recv(array, 1, leftColumnType, 0, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {

printf("%f ", array[i*3+j]);
}
printf("\n");

}
}

MPI_Type_free(&leftColumnType);
MPI_Finalize();
return 0;

}

Example: Subarray
Receive left column if rank 1

Print array for rank 1
Output
0 1 1
0 1 1
0 1 1

Free data type
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Creating Data Types

• You can create data types to mimic structures
• Useful for data types made of different basic types
• Example: Array of struct with struct made of an int and double

• MPI Calls (Specific to General)
• MPI_TYPE_CONTIGUOUS
• MPI_TYPE_VECTOR, MPI_TYPE_CREATE_HVECTOR
• MPI_TYPE_INDEXED, MPI_TYPE_CREATE_HINDEXED
• MPI_TYPE_CREATE_INDEXED_BLOCK, MPI_TYPE_CREATE_HINDEXED_BLOCK
• MPI_TYPE_CREATE_STRUCT
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MPI + Threads
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MPI + Threads

• Only different call
• MPI_Init_thread

• Replaces MPI_Initialize
• Extra parameters to determine threading support

• Thread specific calls
• MPI_Query_thread

• returns thread support level
• MPI_Is_thread_main

• returns true if calling thread is main thread
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MPI + Threads

• Four levels of threading support
• MPI_THREAD_SINGLE

• No threading support
• MPI_THREAD_FUNNELED

• Only master thread can call MPI functions
• MPI_THREAD_SERIALIZED

• Any thread can call MPI functions, but only one at a time
• MPI_THREAD_MULTIPLE

• Any thread can call MPI functions, even concurrently

• MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED < MPI_THREAD_SERIALIZED 
< MPI_THREAD_MULTIPLE
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int MPI_Init_thread(int *argc, char ***argv, int required, 
int *provided)

argc Pointer to the number of arguments (C/C++ only)
argv Argument vector (C/C++ only) 
required Desired level of thread support
provided Available level of thread support

Anatomy of MPI_Init_thread
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Threading Correctness

• Certain functions are thread safe, regardless of library thread 
compliance
• MPI_Initialized, MPI_Finalized, MPI_Query_thread, 
MPI_Is_thread_main, MPI_Get_version, MPI_Get_library_version

• Threads are not separately addressable. Communication is process to 
process only

• Two requirements for thread-compliant implementation
• All MPI calls are thread safe
• Blocking MPI calls block only the calling thread

• Example: Send from thread 0, Recv on thread 1 (same rank)
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The End


