
LA-UR-17-24660
Approved for public release; distribution is unlimited.

Title: An MPI Tutorial: Data Types and Threading

Author(s): Garrett, Charles Kristopher

Intended for: Presentation for the 2017 LANL Parallel Computing summer school.

Issued: 2017-06-10

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

in Slide, you

logo/management

use one of the two

Los Alamos National Laboratory

An MPI Tutorial

Kris Garrett

June 2017

Data Types and Threading

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Los Alamos National Laboratory

| 2

Data Types

Los Alamos National Laboratory

| 3

Why Data Types?

• Basic messaging involves an array of a built-in type
• MPI_Send(const void *buf, int count, MPI_Datatype datatype, ...

• If cluster is heterogeneous, basic data types may differ
• Example: MPI_INT is little endian on node 0 and big endian on node 1
• Example: MPI_CHAR is 8 bytes on node 0 and 16 bytes on node 1

• MPI is guaranteed to handle this for you
• But this is usually not a problem
• Most clusters use the same architecture for every node

Los Alamos National Laboratory

| 4

Why Create Data Types?

• One reason to create a data type: handle striding in multi-D array
• Consider a 2D array held in memory row-wise

• First row data entries (contiguous): data[0], data[1], data[2], …
• First column data entries (strided): data[0], data[N], data[2N], ...

Contiguous data

Strided
Data

Los Alamos National Laboratory

| 5

Strided Data

• Options to send strided data
• Copy data into contiguous buffer

• data[0] -> buffer[0] data[N] -> buffer[1] data[2N] -> buffer[2]

• Create a subarray data type

• Depending on implementation: creating a new data type can involve
less memory movement
• Can be useful for both communications and IO

Los Alamos National Laboratory

| 6

int MPI_Type_create_subarray(int ndims,
const int array_of_sizes[],
const int array_of_subsizes[],
const int array_of_starts[],
int order,
MPI_Datatype oldtype,
MPI_Datatype *newtype)

ndims number of array dimensions
array_of_sizes num elements of oldtype in each dimension of the full array
array_of_subsizes num elements of type oldtype in each dimension of the subarray
array_of_starts starting coordinates of the subarray in each dimension
order array storage order flag
oldtype array element datatype
newtype new datatype

Subarray Data Type

Los Alamos National Laboratory

| 7

int MPI_Type_create_subarray(int ndims,
const int array_of_sizes[],
const int array_of_subsizes[],
const int array_of_starts[],
int order,
MPI_Datatype oldtype,
MPI_Datatype *newtype)

ndims 2
array_of_sizes {N, N}
array_of_subsizes {N, 1}
array_of_starts {0, 0}
order MPI_ORDER_C
oldtype MPI_DOUBLE
newtype leftColumnType

Subarray Data Type (Left Column)

Los Alamos National Laboratory

| 8

Using a Data Type

• Order of calls:
• Create new data type
• Call MPI_Type_commit
• Use new data type as many times as you want
• Call MPI_Type_free

Los Alamos National Laboratory

| 9

#include <stdio.h>
#include <mpi.h>

int main(int argc, char **argv)
{

int rank;
double array[9];

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

for (int i = 0; i < 9; i++) {
array[i] = rank;

}

Example: Subarray

Set all array values to rank

Los Alamos National Laboratory

| 10

int sizes[2] = {3,3};
int subsizes[2] = {3,1};
int starts[2] = {0,0};
MPI_Datatype leftColumnType;

MPI_Type_create_subarray(2, sizes, subsizes, starts, MPI_ORDER_C,
MPI_DOUBLE, &leftColumnType);

MPI_Type_commit(&leftColumnType);

if (rank == 0) {
MPI_Send(array, 1, leftColumnType, 1, 0, MPI_COMM_WORLD);

}

Example: Subarray

Create left column data type

Commit the data type

Send the left column if rank 0

Los Alamos National Laboratory

| 11

if (rank == 1) {
MPI_Recv(array, 1, leftColumnType, 0, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {

printf("%f ", array[i*3+j]);
}
printf("\n");

}
}

MPI_Type_free(&leftColumnType);
MPI_Finalize();
return 0;

}

Example: Subarray
Receive left column if rank 1

Print array for rank 1
Output
0 1 1
0 1 1
0 1 1

Free data type

Los Alamos National Laboratory

| 12

Creating Data Types

• You can create data types to mimic structures
• Useful for data types made of different basic types
• Example: Array of struct with struct made of an int and double

• MPI Calls (Specific to General)
• MPI_TYPE_CONTIGUOUS
• MPI_TYPE_VECTOR, MPI_TYPE_CREATE_HVECTOR
• MPI_TYPE_INDEXED, MPI_TYPE_CREATE_HINDEXED
• MPI_TYPE_CREATE_INDEXED_BLOCK, MPI_TYPE_CREATE_HINDEXED_BLOCK
• MPI_TYPE_CREATE_STRUCT

Los Alamos National Laboratory

| 13

MPI + Threads

Los Alamos National Laboratory

| 14

MPI + Threads

• Only different call
• MPI_Init_thread

• Replaces MPI_Initialize
• Extra parameters to determine threading support

• Thread specific calls
• MPI_Query_thread

• returns thread support level
• MPI_Is_thread_main

• returns true if calling thread is main thread

Los Alamos National Laboratory

| 15

MPI + Threads

• Four levels of threading support
• MPI_THREAD_SINGLE

• No threading support
• MPI_THREAD_FUNNELED

• Only master thread can call MPI functions
• MPI_THREAD_SERIALIZED

• Any thread can call MPI functions, but only one at a time
• MPI_THREAD_MULTIPLE

• Any thread can call MPI functions, even concurrently

• MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED < MPI_THREAD_SERIALIZED
< MPI_THREAD_MULTIPLE

Los Alamos National Laboratory

| 16

int MPI_Init_thread(int *argc, char ***argv, int required,
int *provided)

argc Pointer to the number of arguments (C/C++ only)
argv Argument vector (C/C++ only)
required Desired level of thread support
provided Available level of thread support

Anatomy of MPI_Init_thread

Los Alamos National Laboratory

| 17

Threading Correctness

• Certain functions are thread safe, regardless of library thread
compliance
• MPI_Initialized, MPI_Finalized, MPI_Query_thread,
MPI_Is_thread_main, MPI_Get_version, MPI_Get_library_version

• Threads are not separately addressable. Communication is process to
process only

• Two requirements for thread-compliant implementation
• All MPI calls are thread safe
• Blocking MPI calls block only the calling thread

• Example: Send from thread 0, Recv on thread 1 (same rank)

Los Alamos National Laboratory

| 18

The End

