.
° ch?sAlamos

NATIONAL LABORATORY
————— (37.194) ~

LA-UR-17-24660

Approved for public release; distribution is unlimited.

Title:
Author(s):

Intended for:

Issued:

An MPI Tutorial: Data Types and Threading
Garrett, Charles Kristopher

Presentation for the 2017 LANL Parallel Computing summer school.

2017-06-10




Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for

the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



Los Alamos National Laboratory

An MPI Tutorial

Data Types and Threading

Kris Garrett

June 2017

S
: A\ A O
T™ - A ~4
: 3 ’ National Nuclear Security Administration
b K - Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA



Los Alamos National Laboratory

Data Types

2



Los Alamos National Laboratory

B 1sTD HNSEC

Why Data Types?

« Basic messaging involves an array of a built-in type
« MPI_Send(const void *buf, int count, MPI_Datatype datatype, ...

 If cluster is heterogeneous, basic data types may differ
« Example: MPI_INT is little endian on node 0 and big endian on node 1
« Example: MPI_CHAR is 8 bytes on node 0 and 16 bytes on node 1

* MPI is guaranteed to handle this for you

« But this is usually not a problem
* Most clusters use the same architecture for every node



Los Alamos National Laboratory

B 1sTD HNSEC

Why Create Data Types?

* One reason to create a data type: handle striding in multi-D array
« Consider a 2D array held in memory row-wise

« First row data entries (contiguous): data[0], data[1], data[2], ...

» First column data entries (strided): data[0], data[N], data[2N], ...

Contiguous data
I

Strided
Data




Los Alamos National Laboratory

B 1sTD HNSEC

Strided Data

* Options to send strided data

« Copy data into contiguous buffer
« datal[@] —> buffer[@0] data[N] —> buffer[1l] datal[2N] —> buffer[2]

« Create a subarray data type

* Depending on implementation: creating a new data type can involve
less memory movement

e Can be useful for both communications and 10




Los Alamos National Laboratory

B 1sTD HNSEC

Subarray Data Type

int MPI_Type_create_subarray(int ndims,

ndims
array_of_sizes
array_of_subsizes
array_of_starts
order

oldtype

newtype

const int array_of_sizesl[],
const int array_of_subsizes|[],
const int array_of_startsl[],
int order,

MPI_Datatype oldtype,
MPI_Datatype *newtype)

number of array dimensions

num elements of oldtype in each dimension of the full array
num elements of type oldtype in each dimension of the subarray
starting coordinates of the subarray in each dimension

array storage order flag

array element datatype

new datatype



Los Alamos National Laboratory
EW 1STD SNSEC

Subarray Data Type (Left Column)

int MPI_Type_create_subarray(int ndims,
const int array_of_sizesl[],
const int array_of_subsizes|[],
const int array_of_startsl[],
int order,
MPI_Datatype oldtype,
MPI_Datatype *newtype)

ndims 2
array_of_sizes {N, N}
array_of_subsizes {N, 1}
array_of_starts {0, 0}

order MPI_ORDER_C
oldtype MPI_DOUBLE
newtype leftColumnType



Los Alamos National Laboratory

B 1sTD HNSEC

Using a Data Type

* Order of calls:
« Create new data type
 CallMPI_Type_commit
« Use new data type as many times as you want
« CallMPI_Type_free




Los Alamos National Laboratory

B 1sTD HNSEC

Example: Subarray

#include <stdio.h>
#include <mpi.h>

int main(int argc, char sxxargv)
{

int rank;

double array[9];

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

for (int i = 0; i < 9; i++) {
array[i]l = rank;

Set all array values to rank




Los Alamos National Laboratory

B 1sTD HNSEC

Example: Subarray

int
int
int

MPI_

MPI_

MPI_Type_commit(&leftColumnType);

sizes[2] = {3,3};
subsizes[2] = {3,1};
starts[2] = {0,0};
Datatype leftColumnType; Create left column data type
Type_create_subarray(2, sizes, subsizes, starts, MPI_ORDER_C,

MPI_DOUBLE, &leftColumnType);

Commit the data type

if (rank == 0) {

¥

MPI_Send(array, 1, leftColumnType, 1, 0, MPI_COMM_WORLD);

Send the left column if rank O




Los Alamos National Laboratory
EW 1STD SNSEC

Receive left column if rank 1

Example: Subarray

if (rank == 1) {
MPI_Recv(array, 1, leftColumnType, 0, 0, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);

for (int 1 = 0; i < 3; i++) { C)UtpLﬂ
for (int j = 0; j < 3; j++) o Print array forrank 1 |0 1 1

printf("sf ", arrayl[ix3+j]1); 011
¥
printf("\n"); 011
¥
}
MPI_Type_free(&leftColumnType); Free data type
MPI_Finalize();
return 0;




Los Alamos National Laboratory

B 1sTD HNSEC

Creating Data Types

* You can create data types to mimic structures
« Useful for data types made of different basic types
« Example: Array of struct with struct made of an int and double

« MPI Calls (Specific to General)
« MPI_TYPE_CONTIGUOUS
- MPI_TYPE_VECTOR, MPI_TYPE_CREATE_HVECTOR
« MPI_TYPE_INDEXED, MPI_TYPE_CREATE_HINDEXED
- MPI_TYPE_CREATE_INDEXED BLOCK, MPI_TYPE_CREATE_HINDEXED BLOCK
« MPI_TYPE_CREATE_STRUCT




Los Alamos National Laboratory

MPI + Threads

13



Los Alamos National Laboratory

B 1sTD HNSEC

MPI + Threads

* Only different call
« MPI_Init_thread
 ReplacesMPI_Initialize
« Extra parameters to determine threading support

» Thread specific calls
« MPI_Query_thread
» returns thread support level
« MPI _Is _thread_main
 returns true if calling thread is main thread




Los Alamos National Laboratory

B 1sTD HNSEC

MPI + Threads

* Four levels of threading support
« MPI_THREAD_SINGLE
* No threading support
« MPI_THREAD_FUNNELED
« Only master thread can call MPI functions
« MPI_THREAD_SERIALIZED

« Any thread can call MPI functions, but only one at a time
« MPI_THREAD_MULTIPLE

« Any thread can call MPI functions, even concurrently

 MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED < MPI_THREAD_SERIALIZED
< MPI_THREAD_MULTIPLE




Los Alamos National Laboratory
EW 1STD SNSEC

Anatomy of MPI_Init_thread

int MPI_Init_thread(int *argc, char sxxxargv, int required,
int *xprovided)

argc Pointer to the number of arguments (C/C++ only)
argv Argument vector (C/C++ only)
required Desired level of thread support

provided Available level of thread support




Los Alamos National Laboratory

B 1sTD HNSEC

Threading Correctness

« Certain functions are thread safe, regardless of library thread
compliance

« MPI_Initialized, MPI_Finalized, MPI_Query_thread,
MPI_Is_thread_main, MPI_Get_version, MPI_Get_library_version

 Threads are not separately addressable. Communication is process to
process only

« Two requirements for thread-compliant implementation
« All MPI calls are thread safe
» Blocking MPI calls block only the calling thread
« Example: Send from thread 0, Recv on thread 1 (same rank)




Los Alamos National Laboratory

The End

18



