
1 
 

Biospheric feedback effects in a synchronously coupled model of Earth and human systems 1 

Authors:  Peter E. Thornton*, Katherine Calvin, Andrew D. Jones, Alan V. Di Vittorio, Ben Bond-Lamberty, Louise 2 

Chini, Xiaoying Shi, Jiafu Mao, William D. Collins, Jae Edmonds, Allison Thomson, John Truesdale, Anthony 3 

Craig, Marcia L. Branstetter, George Hurtt † 4 

Fossil fuel combustion and land-use change are the two largest contributors to industrial-5 

era increases in atmospheric CO2 concentration1. Projections of these are thus fundamental 6 

inputs for coupled Earth system models (ESMs) used to estimate the physical and 7 

biological consequences of future climate system forcing2,3.  While historical datasets are 8 

available to inform past and current climate analyses4,5, assessments of future climate 9 

change have relied on projections of energy and land use from energy economic models, 10 

constrained by assumptions about future policy, land-use patterns, and socio-economic 11 

development trajectories6.  Here we show that the climatic impacts on land ecosystems 12 

drives significant feedbacks in energy, agriculture, land-use, and carbon cycle projections 13 

for the 21st century.  We find that exposure of human appropriated land ecosystem 14 

productivity to biospheric change results in reductions of land area used for crops; 15 

increases in managed forest area and carbon stocks; decreases in global crop prices; and 16 

reduction in fossil fuel emissions for a low-mid range forcing scenario7. The feedbacks 17 

between climate-induced biospheric change and human system forcings to the climate 18 

system – demonstrated here – are handled inconsistently, or excluded altogether, in the 19 

one-way asynchronous coupling of energy economic models to ESMs used to date1, 8-9.  20 
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Current projections of future climate are based on ESMs that include sophisticated 21 

representations of biotic and abiotic processes in the Earth system, but which represent human 22 

systems through static, unidirectional, asynchronous coupling10 (black arrows in Figure 1a). We 23 

explore here the difference between asynchronous coupling, in which human system models are 24 

executed in advance to generate complete time series outputs later passed to an ESM, and 25 

synchronous coupling, in which the human system model and ESM are executed simultaneously, 26 

with opportunity for interaction between these two components that can change the simulation 27 

trajectory of both.  In the traditional asynchronous approach, human system information required 28 

as forcing for climate prediction is generated in advance by economic integrated assessment 29 

models (IAMs) that include both energy and agricultural sectors. As summarized in the Fifth 30 

Assessment Report of the Intergovernmental Panel on Climate Change (AR5), several IAMs 31 

have been used to generate standard climate forcing inputs to ESMs covering a range of policy 32 

assumptions from aggressive mitigation to business-as-usual1,11. These inputs include 33 

harmonized forcings sharing a common historical baseline and a common set of definitions and 34 

analyses for 21st century long-lived12 and short-lived13 greenhouse gas (GHG) emissions and 35 

land-use change5. 36 

IAM projections of future GHG and air pollutant emissions and land-use and land-cover change 37 

(LULCC) are constrained by assumptions regarding human demography, economic development 38 

trajectories, and policy. Estimates of ecosystem productivity and crop yields (including biomass 39 

energy crops for some scenarios) are based on historical data. These estimates change over time, 40 

following assumptions about the influence of technological change on yield and endogenous 41 

estimates of crop location and area (Figure 1a). IAMs do not typically consider the influence of 42 

future biospheric change, defined here as the integrated effects of climatic, ecological, and 43 
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biogeochemical processes, although recent work has evaluated the economic and carbon stock 44 

impacts of changing temperature, precipitation, and atmospheric carbon dioxide concentration 45 

(CO2,atm) in crop and land-use models14,15.   46 

The use of asynchronous coupling in climate projections for AR5 excludes the influence of 47 

multiple biospheric factors known to influence managed ecosystems,  including short-term 48 

weather variation16, long-term climate trends17, changes in CO2,atm
18,19, changes in atmospheric 49 

deposition of reactive nitrogen on land20, and the complex interactions among these factors21,22. 50 

One IAM used in AR5, the IMAGE model, does have the capability to examine the dynamic 51 

influence of climate change factors on ecosystem productivity using its own internal, reduced-52 

form climate model23, but its scenarios for use by ESMs are still based on one-way coupling and 53 

result in inconsistent representation of biospheric change between the IAM and ESM. Two-way 54 

coupling of IMAGE to a general circulation model (GCM) was used to examine changes in land 55 

use24, but the feedback in that case was limited by passing only 30-year mean monthly 56 

temperature and precipitation changes from the GCM to IMAGE. In that study, simulation of 57 

carbon cycle and ecosystem processes was performed within IMAGE, a simple and highly 58 

parameterized land model which ignores the tight integration of biophysical and biogeochemical 59 

processes, driven by sub-daily variations in temperature, precipitation, humidity, and short and 60 

long-wave radiation. Mechanistic coupling of biological and physical processes at the land 61 

surface-atmosphere interface is a defining feature of the current generation of ESMs1. 62 

Here we investigate the influence of biospheric change on human systems and associated 63 

feedbacks to the biosphere as introduced in a synchronous two-way coupling approach. We 64 

accomplish two-way coupling by passing biospheric change information from an ESM to the 65 

ecosystem productivity and crop yield components of an IAM at five-year intervals, as 66 
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radiatively-forced climate change unfolds over the course of a 90-year simulation (2005-2094). 67 

We examine the consequences of realistic two-way feedback between the human and Earth 68 

system components for crop price, fossil fuel emissions, LULCC, and transfers of carbon 69 

between land, ocean, and atmosphere (Figure 1b). The IAM component used here is the Global 70 

Change Assessment Model (GCAM 3.0)25 and the ESM is the Community Earth System Model 71 

(CESM 1.1)26. We refer to the two-way coupled system as the integrated Earth system model 72 

(iESM)27. Our investigation uses the same demographic and policy assumptions as the 4.5 W m-2 73 

radiative forcing reference concentration pathway (RCP4.5) scenario of AR57, which was 74 

originally generated by GCAM. The passing of LULCC signals from IAM to ESM is based on 75 

the land-use harmonization approach used in AR55, with modifications to improve signal 76 

integrity8
. To help assess the generality of our results, we also performed a pair of simulation 77 

experiments based on the AR5 RCP 8.5 scenario. 78 

[insert Figure 1 here] 79 

Coupling from ESM to IAM is accomplished by passing an integrated biospheric change signal 80 

to each of the IAM spatial units and land types at five-year intervals. This signal is based on 81 

departures from a present-day baseline (average over period 2000-2004) of net primary 82 

production and heterotrophic respiration generated by the ESM land model component, which 83 

includes a fully prognostic treatment of energy, water, carbon, and nitrogen cycles for multiple 84 

vegetation types in each ESM land grid cell. This signal captures the desired change factors with 85 

minimal bias and a linear response, while minimizing signal interference from LULCC28.  86 

The global average of the productivity and yield component of this signal is similar in magnitude 87 

and time course among the major vegetated land types, increasing by about 10% by 2094 (Figure 88 
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2), with regional variation reflecting patterns of changed ecosystem productivity in the ESM 89 

(Supplemental Figure 2). In CESM, land productivity tends to increase under climate change 90 

scenarios, driven primarily by increasing atmospheric CO2 concentration and anthropogenic 91 

nitrogen deposition associated with fossil fuel combustion, overlain with spatially and temporally 92 

varying effects due to increasing temperature and changing precipitation patterns. Even though 93 

CESM, with its inclusion of carbon-nitrogen cycle coupling, generates one of the lowest CO2 94 

fertilization effects in the CMIP5 collection of ESMs, the CO2 fertilization effect still dominates 95 

the varying climate feedbacks to produce global-scale patterns of increasing land productivity 96 

under all tested scenarios1. Nothing we have added to the iESM system alters these ESM-centric 97 

aspects of the ecosystem-climate feedbacks, and the increasing productivity obtained in our 98 

iESM experiments is qualitatively and quantitatively consistent with the well-characterized 99 

behavior of CESM in this regard. The unique aspect of our study is that this increased 100 

productivity is communicated synchronously to the human system component to influence 101 

LULCC (and other energy economic factors such as crop price and fossil fuel emissions). Our 102 

estimate of 10% increase in ecosystem productivity and crop yield over present-day is consistent 103 

with estimates from free-air CO2 enrichment (FACE) studies for crop yield18. CO2,atm prognosed 104 

in the ESM rises to approximately 590 parts per million by volume by 2094 in the two-way 105 

coupled simulation (Supplemental Figure 3), similar to the enriched levels typical of FACE 106 

experiments, although a direct comparison of model and experimental results in this case suffers 107 

from differences in the time scale of changed forcing and the integration in our simulations of 108 

additional factors such as changing climate and changing rates of nutrient inputs and 109 

mineralization. Our finding of increased productivity under future climate change contrasts with 110 

recent results reported for a comparison of agricultural models, but that study excluded the 111 
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possibility of CO2 fertilization14. Other recent work has stressed the importance of modeled 112 

nutrient dynamics in estimating CO2 fertilization for global cropland22, a factor included in our 113 

ESM.  114 

[insert Figure 2 here] 115 

We quantify the influence of coupling approaches by differencing two simulations, one with 116 

two-way synchronous coupling and the other with traditional one-way asynchronous coupling. A 117 

common trajectory for fossil fuel emissions is used in both simulations (discussed below). Global 118 

crop prices increase through 2080 for both coupling approaches under RCP4.5, driven by a 119 

mitigation policy that applies a cost to carbon emissions25 (Supplemental Figure 4), but the 120 

increase in price is 12-25% smaller in the synchronously coupled system (Figure 3a), with 121 

similar magnitude and trajectory for major crop types. The decline in prices under the 122 

experimental simulation is due to higher productivity (Supplemental Figure 5) that reduces 123 

cropland requirements and lessens competition for land. Higher productivity with biospheric 124 

feedback drives a 10% decrease in total global crop area, as the same amount of food and feed 125 

can be produced on smaller amounts of land. The decrease in total global crop area is 126 

accompanied by an increase in area of noncommercial forest (Figure 3b).  127 

[insert Figure 3 here] 128 

These changes drive carbon cycle responses in the land model component of the ESM, resulting 129 

in altered CO2,atm. Atmospheric change drives additional response in the ocean carbon cycle 130 

through physical and biological feedbacks with CO2,atm  (Figure 1b, pathways labeled 3, 4, and 131 

5).  Specifically, land ecosystems accumulate 5-10 Pg of additional carbon with two-way 132 

coupling, driving a decrease in CO2,atm that in turn reduces the amount of carbon transferred from 133 
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the atmosphere to the ocean by ~3 Pg C (Figure 4).  Variability in this feedback flux on 134 

interannual to decadal timescales is suggested by the two ensemble members, superimposed on a 135 

coupling signal with peak increase in land carbon storage around 2060. This peak and 136 

subsequent decline corresponds in time with a reduced rate of increase in non-commercial forest 137 

area (Figure 3b). An important caveat for our study is that the ESM component of our coupled 138 

system does not include a detailed crop model, and treats crops as grassland types. 139 

[insert Figure 4 here] 140 

Increases in ecosystem productivity and crop yield, combined with decreases in the global land 141 

area required for food, feed, and fiber crops drive increases in bioenergy potential and 142 

corresponding decreases in the price of bioenergy. The decline in bioenergy cost results in an 143 

increase in demand, an increase in land area dedicated to biomass energy production (Figure 3b), 144 

and a decline in the demand of other energy carriers (e.g., gas and coal). The decrease in carbon-145 

intensive energy production leads to a 17% reduction in projected fossil fuel emissions by the 146 

end of the 21st century (Supplemental Figure 6). The changes in global carbon stocks shown in 147 

Figure 4 do not reflect the lower fossil fuel emissions generated by the biospheric feedback, as 148 

we held these emissions constant for the two simulations to provide the least complicated 149 

feedback demonstration. We expect that a more complete coupling, in which the updated fossil 150 

fuel emissions are passed to the ESM, would result in lower atmospheric concentrations, less 151 

land carbon storage via CO2 fertilization in the ESM land model, and a decreased rate of ocean 152 

carbon uptake.  153 

We obtain qualitatively similar results when comparing asynchronous one-way coupling and 154 

synchronous two-way coupling under a higher radiative forcing scenario (RCP 8.5). Biospheric 155 
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change caused increases in crop yield of 15-22% for RCP 8.5, compared to 11-17% increase for 156 

RCP 4.5 (Supplemental Figure 7). Two-way coupling causes a decrease in crop prices of 6-17% 157 

for RCP 8.5, compared to 12-25% decrease for RCP 4.5. Changes in yield and price drive shifts 158 

in LULCC that are somewhat larger for RCP 8.5 than for RCP 4.5, while acting through similar 159 

mechanisms. The land ecosystem accumulates an additional 5-10 PgC due to two-way coupling 160 

by the final decades of RCP 8.5, comparable to the additional accumulation for RCP 4.5. 161 

We conclude that biospheric feedbacks to human systems can significantly alter primary 162 

anthropogenic climate forcing by driving changes in land use and energy activities which 163 

propagate to changes in land, atmosphere, and ocean carbon stocks as well as changes in fossil 164 

fuel emissions trajectories: truly comprehensive climate change assessment efforts must 165 

therefore consider these feedbacks. The approach demonstrated here removes a major 166 

inconsistency in the practice of coupled Earth system modeling as identified in AR51, thereby 167 

improving the policy relevance of climate and Earth system model projections29,30. Our study 168 

does not seek to provide a comprehensive assessment of uncertainty associated with a particular 169 

scenario. Indeed, a synchronously coupled system that includes an ESM component can never 170 

replace the traditional use of stand-alone IAMs as tools for deep exploration of uncertainty. 171 

Instead, we argue that the synchronously coupled system is a new tool that allows us to explore a 172 

previously dark region of the uncertainty space: each time an ESM is run without synchronous 173 

coupling we miss an opportunity to better understand and quantify this uncertainty.  174 

  175 
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Figure Legends 284 

Figure 1. Interactions between human and Earth systems using one-way (black) and two-way 285 

(black + red) coupling. a) Technological change factors for crop yield are included in the 286 

generation of IAMs used for AR5, but biospheric change factors are not. Demographic 287 

constraints and policy assumptions are necessary IAM inputs, with important influence on 288 

projected crop price, GHG emissions, and LULCC. Ecosystem productivity, including crop 289 

yield, has been considered as a static input to IAMs in AR5. Red arrows indicate the new 290 

feedback connections in our study, passing biospheric change information from the ESM back to 291 

the IAM through its influence on ecosystem productivity and crop yield. b) For AR5, 292 

connections across the dotted line are asynchronous and one-way (from IAM to ESM). 293 

Synchronous two-way coupling described here is accomplished by passing biospheric 294 

information, as filtered by the ESM land model component, to the IAM on a 5-year time step 295 

(red arrows, pathway labeled 1). This new information drives LULCC changes that are passed 296 

back to the land system (pathway labeled 2), resulting in a coupled feedback (green arrow).  T, P, 297 

q, and rad indicate temperature, precipitation, humidity, and radiation components of physical 298 

climate.  299 
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Figure 2. Integrated biospheric change for the 21st century, as communicated from ESM to IAM. 300 

The scalar used to inform ecosystem productivity and crop yield changes in the IAM includes a 301 

vegetation component (shown here) based on change in net primary production relative to 302 

conditions in 1990 and a below ground component based on changes in net primary production 303 

and heterotrophic respiration (Supplemental Figure 1). Category “Other” includes urban, lake, 304 

land ice, and bare ground. The signal communicated to the IAM is specific to each agro-305 

ecological zone and vegetation type within zone, with the plot showing an area-weighted global 306 

mean signal. For each aggregated land type the solid colored line shows the mean of two 307 

ensemble simulations, while the shaded region of matching color shows the range of values from 308 

the two ensemble members. 309 

Figure 3. Changes in crop price and land-use area resulting from biospheric feedback. a) 310 

Percentage change in global average crop price, relative to the asynchronous one-way coupling 311 

(control) simulation, for each major crop type. b) Global total change in land cover summarized 312 

by major land-use/land-cover types, relative to the asynchronous one-way coupling simulation. 313 

For each aggregated crop type or land cover type the solid colored line shows the mean of two 314 

ensemble simulations, while the shaded region of matching color shows the range of values from 315 

the two ensemble members. 316 

Figure 4. Change in global carbon stocks caused by biospheric feedback to human systems. 317 

Difference in total carbon stocks on land (Lnd), in the atmosphere (Atm), and in the oceans 318 

(Ocn), between two-way and one-way coupling simulations, as predicted within the ESM 319 

component of the coupled system.  Solid colored line shows the mean of two ensemble members, 320 

while the shaded region of matching color shows range of values from the two ensemble 321 

members.  322 
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Online-Only Methods 323 

Technical description of the two-way coupled system 324 

A complete technical description for our two-way coupling framework (iESM) is published27, 325 

including the model formulation, requirements, implementation, testing, and functionality.  326 

Data availability 327 

The complete iESM source code used to generate results for this study is available online at 328 

https://github.com/ACME-Climate. All model input data used in the simulations for this study, 329 

and all model output data used to generate the results reported here are available by request from 330 

the corresponding author.  331 

Experimental design 332 

Our simulation experiments are initiated with radiative forcing conditions estimated circa 1850 333 

AD. The 1850 initial conditions for the ESM component (land, atmosphere, ocean, and sea ice 334 

state variables) are drawn from a long preindustrial control simulation (PC), in which the carbon 335 

cycle on land and in the atmosphere and oceans is fully prognostic. This PC simulation is over 336 

1000 years long, with predicted atmospheric CO2 concentration varying between 281 and 287 337 

ppm.  Experimental simulations used in this study were performed for two time segments: a 338 

historical transient (HT) segment covering the period 1850-2004, and a future scenario (FS) 339 

segment covering the period 2005 to 2094.  340 

During HT segments only the ESM (in our case the Community Earth System Model, CESM) is 341 

active. Model inputs during HT segments, including fossil fuel emissions and land use and land 342 

https://github.com/ACME-Climate


15 
 

cover change (LULCC)5 are identical to those used for historical simulations in the Climate 343 

Model Intercomparison Project (CMIP5).  344 

Both ESM and IAM components are active for FS segments. We performed two types of 345 

simulation in FS segments, differing only in the coupling method between ESM and IAM. One 346 

method used asynchronous 1-way coupling (A1), in which the IAM is run in stand-alone mode 347 

for the entire segment, followed by a stand-alone run of the ESM that receives LULCC and 348 

emissions information saved from the IAM simulation. This is the traditional coupling approach 349 

used for all CMIP5 future scenario simulations, and represented by the black arrows in Figure 1 350 

(main text). The second method used synchronous 2-way coupling (S2) between the IAM and 351 

ESM, corresponding to the black and red arrows in Figure 1 (main text). The S2 coupling 352 

method is implemented exactly as described in the iESM technical description27, except that our 353 

study used a 5-year coupling time step between IAM and ESM instead of the 15-year timestep 354 

described previously.   355 

To ensure that the S2 coupling influence is restricted only to the passing of climate change 356 

information into the crop yield and carbon stock calculations of the IAM, we use identical 357 

anthropogenic fossil fuel and industrial emissions and other externally imposed radiative forcing 358 

agents as input to all FS segments. The inputs used were those generated by the GCAM model 359 

for the Reference Concentration Pathway (RCP) 4.5 as used in CMIP56. To further constrain the 360 

two-way coupled experiment, we used the GCAM carbon price pathway generated in stand-361 

alone mode (A1 type coupling) as a specified carbon price pathway for all FS segments. This 362 

allows us to interpret any differences between S2 and A1 coupling methods as arising from the 363 

direct influence of climate change on crop yields and carbon stocks in GCAM and the 364 
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subsequent influence of those changes on land-use and land-cover change predictions, without 365 

needing to consider potential interactions with changing carbon price paths. 366 

Our general approach to quantifying the influence of S2 vs. A1 coupling is to examine the 367 

difference between two FS simulation segments, one generated using the A1 approach (FS_A1) 368 

and another generated using the S2 approach (FS_S2). We refer to the difference between two 369 

such FS segments as our experimental result (ER = FS_S2 – FS_A1).  370 

Each ER includes spatio-temporal variation generated by the difference in coupling methods and 371 

additional spatio-temporal variation generated by different realizations of the internal variability 372 

in the ESM. By generating multiple ensemble members of ER, we can evaluate the relative 373 

contributions of forced variation (the signal of interest in our analysis) and internal variation.  374 

For this study we generated two ER ensemble members by initiating two separate HT segments 375 

from different time points, ten years apart, in the PC simulation (HTa and HTb). We then 376 

generated two FS segments starting from the endpoint of HTa, one using A1 coupling (FSa_A1) 377 

and the other using S2 coupling (FSa_S2). We generated a third FS segment from the endpoint 378 

of HTb, using S2 coupling (FSb_S2). The two ER ensemble members were then generated as 379 

ER1 = FSa_S2 – FSa_A1, and ER2 = FSb_S2 – FSa_A1. 380 

Crop yields and bioenergy production in our coupled system are calculated in the IAM 381 

component. Crop yields in GCAM are calibrated against global crop data for years 1990 and 382 

200531, 32.  As the S2 segments progress these yields are modified by climate change information 383 

passed back from the ESM. Evaluation of predicted yield by region and crop for years outside 384 

the calibration period shows reasonable model performance for present-day conditions 385 

[Supplemental Figure 8].   386 
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The influences of spatially and temporally evolving climate change factors on crop yields and 387 

bioenergy production are estimated within the ESM component of our coupled system and 388 

passed as scalars (multipliers) applied to yields in the IAM component. This coupling 389 

arrangement is outlined in Figure 1 (main text) and described in detail in the iESM technical 390 

documentation27.  The ESM serves as an integrator of multiple climate change factors, but it is 391 

also of interest to isolate and assess contributions from individual factors. Given the uncertain 392 

magnitude of CO2 fertilization effects on crop yields18, it is of special interest to examine this 393 

factor in isolation and compare to experimental estimates as possible. 394 

Our study concludes that synchronous two-way coupling generates significant changes in crop 395 

yields which propagate to influence crop prices, land use patterns, energy production, and fossil 396 

fuel emissions. Since these diagnosed changes are due to overall increases in crop yield and 397 

bioenergy production, it is possible that an overestimation of the CO2 fertilization effect in crops 398 

by the ESM could lead to an overstatement of the significance of two-way coupling effects. As 399 

pointed out in the main text, our ESM component is one of a small number of such models that 400 

includes the limiting influence of mineral nutrient availability on land ecosystem processes.  401 

Coupling between the model representations of carbon and nutrient (nitrogen) cycles is directly 402 

responsible for a significant reduction in the CO2 fertilization effect predicted at a given CO2 403 

concentration when compared to the same model with nutrient limitation switched off33, and 404 

when compared to other models that lack nutrient limitation10.  We can assert on this basis that of 405 

all the existing ESMs that might be evaluated in a two-way coupling context, CESM is among 406 

the two or three least likely to generate this type of overstatement of coupling effects due to high 407 

bias in CO2 fertilization.  408 



18 
 

Even though CESM has a CO2 fertilization effect 2.5 times smaller than the mean of the non-409 

nutrient limited models10, it is still possible that it overestimates the influence of CO2 fertilization 410 

on crop yield compared to free-air concentration enrichment (FACE) experiments as summarized 411 

for example by Long et al.18  To help further quantify this analysis, we refer to previously 412 

published results from a series of single factor experiments28 which included the influence of 413 

historical changes in CO2 concentration as one of the isolated factors. These results are based on 414 

simulations with CESM in which the land component is forced with a multi-year repeating cycle 415 

of surface weather data, while other factors such as CO2 concentration, nitrogen deposition, or 416 

land use are allowed to vary (one at a time) according to their observed historical trajectories 417 

over the years 1850-2010.   418 

In those simulations a gradual rise in CO2 concentration of 110 ppmv (from 280 ppmv in year 419 

1850 to 390 ppmv in year 2010) produced a ~7% increase in gross primary production 420 

(photosynthesis) and in net primary production (NPP, or vegetation growth).  That simulation 421 

result is not directly comparable to the FACE experimental regime, since the model result is 422 

based on a gradual increase in CO2 while the FACE experiments involve a step-change. Also, the 423 

FACE experiments started from modern CO2 concentrations and increased concentration by 424 

about 200 ppmv, arriving at values around 550 ppmv.  Chamber studies suggest that crop yield 425 

responses to CO2 concentrations between 380 and 600 ppmv are approximately linear, and our 426 

offline model results are linear over the range 280 to 390 ppmv.  It is reasonable to estimate, 427 

based on simple linear scaling, that the ~7% increase in NPP for the increase in atmospheric CO2 428 

from 280 to 390 ppmv would correspond to an increase in NPP of 12% for an increase in CO2 429 

similar to the FACE experiments. We are not able to quantify the potential influence of gradual 430 

vs. step change in CO2 concentration from the available results.  431 
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Since NPP from CESM is passed to the IAM in our synchronously coupled system as a scalar 432 

(multiplier) on crop yields, a useful comparison with FACE results is from a synthesis for CO2 433 

enrichment effects on crop yields18, which summarized the FACE results for rice, wheat and 434 

soybean yields as 12%, 13%, and 14% increase, respectively. The major difference between our 435 

model results and the FACE crop synthesis18 is for C4 crops. CESM includes a C4 grass type, and 436 

although the underlying physiology model does not predict a significant response to CO2 437 

fertilization in this type through an influence on leaf-scale photosynthetic rate, effects of CO2 438 

concentration on stomatal conductance are included for C4 types, and NPP increases for C4 types 439 

in the single-factor experiment are similar to increases for C3 types due to indirect effects on soil 440 

water status. This is in contrast to the FACE synthesis, which found no effect of enriched CO2 441 

concentration on C4 crop yield (based on one year of data from one study). 442 

In follow-on work, we are improving the representation of multiple crop types directly within the 443 

ESM component, so that information can be passed with less aggregation between the ESM and 444 

IAM components in future coupling simulations. 445 

We include a single pair of simulation experiments for the RCP 8.5 scenario, as a preliminary 446 

test of the generality of our RCP 4.5 results. The RCP 8.5 simulations start from the same HT 447 

endpoint as described above for RCP 4.5, and follow a common simulation protocol. Only one 448 

A1 and one S2 simulation was performed for RCP 8.5, so the results described in the main text 449 

and illustrated in Supplemental Figure 8 reflect only a single ensemble member.  450 

Additional References for Online-Only Methods 451 

31 FAOSTAT. Food and Agriculture Organization of the United Nations. Rome, Italy. 452 

(faostat3.fao.org) (2014) 453 
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32 Kyle, P. et al. GCAM 3.0 Agriculture and Land Use: Data Sources and Methods. 454 
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33 Thornton, P. E., J.-F. Lamarque, N. A. Rosenbloom and N. M. Mahowald. Influence of 456 
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Figure 1b 463 
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Figure 2 466 
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Figure 3a 469 
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Figure 3b 472 
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Figure 4 475 
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Biospheric feedback effects in a synchronously coupled model of Earth and human systems 478 

Supplementary Information 479 

Supplementary Information for this study consists of eight figures and their captions. 480 

 481 

 482 

Supplemental Figure 1. Soil component of the integrated biospheric change signal passed from 483 

ESM to IAM, based on changes in belowground net primary production and heterotrophic 484 

respiration in the ESM relative to conditions in 1990. Signal communicated to IAM is specific to 485 

each agro-ecological zone and vegetation type within zone, with the plot showing an area-486 

weighted global mean signal. For each aggregated land type the solid colored line shows the 487 

mean of two ensemble simulations, while the shaded region of matching color shows the range 488 

of values from the two ensemble members. 489 

  490 
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 491 

Supplemental Figure 2. Regional means for the aboveground component of integrated 492 

biospheric change signal in simulation year 2094.  493 

  494 
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 495 

Supplemental Figure 3. Global mean near-surface atmospheric CO2 from the historical transient 496 

simulation (1850-2004) and a two-way synchronous coupling experiment (2005-2094). 497 

  498 
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 499 

Supplemental Figure 4. Crop prices (in 2005$/kg) for two-way coupled (shaded regions) and 500 

one-way coupled (solid lines) simulations for several major crop types.  For each crop type the 501 

shaded region shows the range of values from the two ensemble members. 502 

  503 
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 504 

Supplemental Figure 5. Change in price for major crop types shown as a function of change in 505 

yield for each crop type. Each point represents a single five-year time period (2005-2094) from 506 

one ensemble simulation for a single crop, with changes shown as percent difference between 507 

two-way synchronous coupled and one-way asynchronous coupled simulations. The plot 508 

includes points from both ensemble simulations. 509 

 510 
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 511 

Supplemental Figure 6.  Difference in fossil fuel CO2 emissions as a result of biospheric change 512 

feedback, shown as a percentage change between the two-way synchronous coupling and one-513 

way asynchronous coupling simulations. 514 

  515 



33 
 

 516 

Supplemental Figure 7. Percent change in global mean yield for multiple crop types in the 517 
synchronous two-way coupling experiment compared to the asynchronous one-way coupling 518 
experiment, showing results for RCP 4.5 (left) and RCP 8.5 (right). Although RCP 8.5 has 519 
significantly higher CO2,atm at the end of century than RCP 4.5, crop yields are only modestly 520 
higher due to the offsetting influence of more extreme radiatively-forced climate changes under 521 
RCP 8.5.  522 
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 523 

Supplemental Figure 8. Model-predicted vs. observed yield for five crops over multiple 524 
regions, for two calibration years (1990 and 2005), and two additional years (2010 and 2014). 525 
Model results for 2014 are interpolated from the actual model outputs in 2010 and 2015, to allow 526 
comparison with the most recent year for which FAO crop yield observations are available. 527 

 528 


