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Abstract

Acoustic waveform modeling is a computationally intensive task and full three-dimensional
simulations are often impractical for some geophysical applications such as long-range wave
propagation and high-frequency sound simulation. In this study, we develop a two-dimensional
high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized
Euler equations by discretizing them with the sixth order accurate finite difference stencils
away from the boundary and the third order summation-by-parts (SBP) closure near the
boundary. Non-planar topographic boundary is resolved by formulating the governing equa-
tion in curvilinear coordinates following the interface. We verify the implementation of the
algorithm by numerical examples and demonstrate the capability of the proposed method
for practical acoustic wave propagation problems in the atmosphere.

1. Introduction

Natural and/or man-made explosions near the earth’s surface radiate significant energies
into the atmosphere in the form of acoustic waves. Accurate modeling of acoustic wave
propagation in the atmosphere is important in explosion forensics for event identification
[Walker et al., 2011; Park et al., 2014; Kim and Lees, 2014] and characterization such as
explosion yield and height of burst [Bonner et al., 2013; Ford et al., 2014; Kim and Rodgers,
2016]. LLNL developed the full three-dimensional elasto-acoustic simulation code, called
ElAc [Sjogreen and Petersson, 2016], providing accurate seismic and acoustic wave modeling
capabilities. ElAc uses finite-difference summation-by-parts algorithm to solve the linearized
Euler equations in the atmosphere and seismic wave equations in the solid earth and take
into account the coupling of seismic and acoustic waves near the earth’s surface, providing
a unique capability to simulate seismo-acoustic wavefields simultaneously [Petersson and
Sjogreen, 2016].

However, ElAc’s capability for acoustic wave modeling may be practically limited by
computational performance. The finite-difference spatial discretization in ElAc requires at



least 10 grid points per the shortest wavelength to resolve the wave modes and acquire the
desired accuracy. The speed of sound in the atmosphere generally varies with altitudes in 270
— 350m/s [NOAA, 1976]. For ~ 0.5Hz acoustic waves, which is expected to be observed at
~ 300km from an 8kt nuclear explosion [Gainville et al., 2009], a full 3-D ElAc simulation of
acoustic propagation out to 300km will require a large amount of computer memory to store
finite-difference grid cells more than ten billion. In addition, this requirement significantly
increases computation time and restricts the size of acoustic domain, and therefore ElAc
may not be practical for long-range and/or high-frequency acoustic wave propagation which
often arise in geophysical problems.

In this study, we develop a 2-D acoustic wave simulation code using the same finite-
difference summation-by-parts algorithm used in 3-D ElAc. Instead of using full 3-D equa-
tions, we solve the 2-D linearized Euler equations and which reduces computational workload
substantially compared to the 3-D case. Therefore, the 2-D solver can be used to compute
approximated acoustic solutions when full 3-D simulation is not practical.

This report is organized as follows. In Section 2 we explain the numerical method used
in the code. The 2-D governing equations and their discretized formulations are presented.
In order to resolve non-planar topographic boundary, the equations are formulated in a
curvilinear grid that follows the boundary. In Section 3 we verify the correctness of numerical
implementation by the method of manufactured solutions. And then numerical examples are
provided, which demonstrate the capability of the 2-D acoustic solver for sound propagation
simulation in a moving atmosphere.

2. Method

This section focuses on the finite-difference formulation for the governing equations. We
follows the same approach proposed by Petersson and Sjogreen [2016] and briefly review
them here for the completeness of this report. Readers interested in detailed development of
the approach are referred to Petersson and Sjogreen [2016].

2.1. Linearized Euler Equations

The 2-D linearized Euler equations for compressible fluid flow is used to model acoustic wave
propagation in a moving atmosphere, and the equations are symmetrized as follows:

q: + A0,q + Bd,q+ Eq = f, (1)

where partial differentiation with respect to Cartesian coordinates is denoted by 0, = 9/0zy,
and temporal differentiation is written by 0, = 9/0t. The dependent variables are q =
(s,u,v,7)T, where u = (u,v)” is perturbed particle velocities in x; and x5 directions. In
addition, ambient parameters for the pressure, density, and medium velocity will be denoted
by p, p, and @ = (4, 0)T, respectively. The variables s and r are defined by overpressure p



and density perturbation p as
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Here, ¢ = \/~p/p is the speed of sound in the medium and 7 > 1 is the ratio of specific
heats. A and B are the symmetric matrices that satisfy

~ 1 ~ 1
@ 5= 0 0 o0 0
a0 [t 0 o 0 0
A= |V R ’ B=1.1 A 14| (4)
0 0 4 0 5 00 =c
0 /Z=¢ 0 4 0 0 /Z=é¢ @
ol 2l
The matrix F is given by
V-a—2.Vét1a-Vp ﬁfﬁ(Vﬁ)T—%(Vé)T 0
E = ~5Ve Vi = (EVD - Ve)
VY =1V i+ Aa- Ve 7(27_1)(%)7“ YWV-a— i Vet - Vp

(5)
To obtain an energy estimate, the symmetrized linearized Euler equations (1) are in turn
written on split form scaled by density

1 1 . .
a: + 5[A0q + Boxq] + 2—[)[51 (pAq) + 0a2(pBa)] + Hq =f. (6)
Here, the matrix of the zeroth order term H satisfies
1 . .
H=E- 2—/)((91(/)14) + 0:(pB)). (7)

If topographic interfaces are presented in the domain, we imposed the rigid boundary con-
dition on the boundary

u-n=0, (8)

u-n=0, (9)

where n is the normal vector to the boundary. That is, the acoustic particle velocity and
background flow vanish in the direction normal to the interface.

We discretize the equation (6) in space using sixth order finite-difference stencils away
from the boundary and third order SBP operators [Strand, 1994] near the boundary. Readers
are referred to Petersson and Sjogreen [2016] for the derivation of the energy estimates and
SBP operators for the equation (6).



2.2. Transformation to curvilinear coordinates

In the previous subsection, the governing equation (6) is presented in Cartesian coordinates.
For atmospheric sound propagation, it is well known that topographic boundary has signif-
icant influences on the sound propagation [Lacanna et al., 2014; Kim and Lees, 2015]. In
Cartesian coordinates non-planar boundaries can only be represented by staircase approxi-
mation. Each stairstep acts as a point scatterer producing high-frequency waves that may
not be resolved by the finite-difference scheme. Very fine grids are required to remove the
spurious scattering. In this section, we transform the equation (6) to the curvilinear coor-
dinate that follows the topographic boundary [Appelo and Petersson, 2009; Petersson and
Sjogreen, 2015, 2016]. This way complex, non-planar interfaces are readily modeled without
the staircase approximation.

We start by developing a curvilinear formulation for the governing equation (6) following
the approach in Petersson and Sjogreen [2016]. Assume that there is a one-to-one forward
mapping,

x(r) = (21(r), 22(x)" 1 = (r1,72)", (10)

in the acoustic domain. By the chain rule we have the relations
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where partial differentiation with respect to the curvilinear coordinates is denoted by O =
0/0,,. The derivatives of the forward and inverse mapping functions define the covariant
and contravariant base vectors [Thompson et al., 1985],

= Ox,/0r ory,/0x
o i— Dox ( 1/ k) . a"i=Vr, = <8T:§8x;> . k=1,2. (12)

By using the relations (11) and (12), the linearized Euler equations (6) can be transformed
to curvilinear coordinates

@+ = [flélq —- B’ézq] +

2 Oi(pAa) + Da(pBa)| + Ha = . (13)
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Here, the transformed matrix A and B can be expressed in terms of the contravariant base

vectors a* = (af, o),

A
B

J(aj A+ ayB), (14)
J(afA+ a3B). (15)

The Jacobian of the forward mapping function is obtained by

J = det(a; ay). (16)



The rigid boundary condition is imposed along r, = 0 satisfying the conditions (8) and (9).
The unit normal is represented by the contravariant base vectors along r, = 0

1 [a?

Note that the boundary r, = 0 is alway flat in the parameter domain as the coordinate
mapping functions (10) are determined to follow topographic interfaces.

The semi-discrete problem (13) is integrated in time by the classical 4th order explicit
Runge-Kutta method, and the computational domain is truncated using the super-grid far-
field technique [Appelo and Colonius, 2009].

3. Numerical examples

In this section we prove the accuracy and the correctness of the developed code by using the
method of manufactured solution, and demonstrate its capabilities to solve practical acoustic
problems that often arise in atmospheric acoustics.

3.1. Method of manufactured solution

The method of manufactured solution is a powerful technique to verify the correctness of the
implementation of numerical algorithms. We start by defining the manufactured solution in
a domain of T,ae = Ymae = 1 as

= sin(6.2(z — 1.3t)) sin(6.2y), (18)
u = cos(6.2(z — 1.2t)) sin(6.2y), (19)
v = cos(6.2(x — 1.1¢)) sin(6.2y), (20)
= cos(6.2(z — t)) sin(6.2y). (21)
The parameters for the background condition are defined to be
ﬁ =14 0.2 cos(wmx + ¢, sin(wy), (22)
= 340 — 30 sin(w,x + ¢m) cos(Wmy + dm), (23)
= 10 sin(w,,z) cos(wyy), (24)
= 5sin(wme + @) cos(wmy), (25)

where w,, = 0.021 and ¢,, = 0.17. And then the force term f in the equation (6) is
determined such that the manufactured solution and background parameters satisfy the
governing equation (6). On the boundaries at z = 0,2 = 1,y = 0, and y = 1, homogeneous
Dirichlet boundary conditions are imposed, which satisfy the manufactured solution.

Figure la) illustrates the initial condition of the manufactured overpressure at ¢ = 0s.
The numerical solutions are computed up to the time ¢ = 0.5s and shown in Figure 1b).
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Figure 1: a) The manufactured solution for overpressure p at time ¢t = 0s. b) The numerical
overpressure computed at t = 0.5s.

h 1E]]o 1E]]2 Poo pa
0.02 1.54 x 104 1.63x10 4 : :
0.01 9.10 x 106 8.56 x 106 4.08 4.2
0.005 6.64 x 107 4.87 x 1077 3.7 4.1
0.0025 4.17 x 1078 3.00 x 108 3.9 4.02

Table 1: Maximum norm (|| E||s) and L? norm (|| E||2) errors for overpressure solution under
grid refinement (h). The convergence rate is calculated as log, || E||an/||E||n-

Table 1 displays the convergence rate of overepressue solution under grid refinement. The
convergence rates in maximum norm (p.,) and L? norm (p;) at the final time shows forth
order convergence, which is expected from the combination of sixth order accuracy in the
interior domain and third order truncation errors in the SBP boundary closures.

3.2.  Wave propagation in a uniformly moving medium

When a medium is homogeneous and moving in a uniform velocity, the linearized Euler
equation can be reduced for overpressure p and particle velocity u following the approach in
Ostashev et al. [2005] as

Jp

a+ﬁ~Vp+ﬁéQV-u:ﬁ62F, (26)
ou Vp

- . = 2
BN +u-Vu+ 5 0, (27)



where F' is the source term. We define the source to be a harmonic function
21A
F=""e "™§(z)d(y). 28
e @)iy) (28)
Assuming |u| < ¢ and kr > 1 where k is the wavenumber vector and r is the source-receiver
distance, the asymptotic solution for overpressure can be obtained by following Ostashev

et al. [2005]

M 2ain? ) ~ M 2ain? ) :
p(r, a0, M) = A(/(1 — M?sin®a) — M cos a) exp i(v/(1 — M?sin a)2 M cos a)kr Lo
V2rkr(1 — M2)(1 — M?2sin® o)(3/4) 1-M 4

(29)

Here, M = |a|/¢ is the Mach number and « is the angle between the downwind direction
and the source-receiver direction.

Now we will compare the finite-difference modeling results with the analytic solution
in the equation (29). The Dirac distribution in (28) is discretized to 6th order accuracy
satisfying the six moment and six smoothness conditions [Petersson et al., 2016]. In order to
produce monochromatic harmonic wavefields, a finite-duration harmonic source time function
tapered by a cosine function [Ostashev et al., 2005] is used.

(1/2)[1 — cos(rt/Ty)], 0<t<T,
1, T <t<T-T15,
g(t) = cos@Grft+ ) X 3 (/)1 —cos(x(t—T)/T)], T-To<t<T, OV
0, T < t,

where f is the source frequency and ¢ is the phase. 77 and T, are the durations of the
initiation taper and the termination taper, respectively. The cosine tapering is required to
remove high frequency modes that can be generated by an abrupt change of the source time
function in the beginning and the end. T is the total duration of source signal.

Figure 2 and 3 show the acoustic wavefields excited by the harmonic source located at
x = 60m and y = 60m. We used the source parameters of f = 100Hz, ¢ =0, T} =T> =8/ f,
and T = 20/f for the equation (30). Note that the spectral properties of the source time
function depend on the tapered cosine function that has a finite duration in the frequency
domain [Harris et al., 1978]. Given the above parameters, the Fourier transform of the source
time function shows the peak amplitude at 100Hz. The amplitudes in the frequency domain
decrease rapidly away from the peak frequency and fall below 5% of the peak amplitude at
113Hz which can be the highest effective frequency of the source time function. The speed
of sound and ambient density of the medium is 340m/s and 1.22kg/m?, respectively. The
moving speed of the medium is different for Figure 2 and 3: the Mach number M = 0.3
for Figure 2 and M = 0.6 for Figure 3. The medium flows in the positive x direction,
and the wavefields are recorded at t = 0.24s. Both wavefields show directional propagation
characteristics of faster travel in the downwind direction (positive x) and high overpressure
amplitudes in the upwind direction (negative x).

Figure 4 illustrates azimuth-dependent peak overpressure propagation with respect to
different mesh sizes and medium Mach numbers. Ostashev et al. [2005] reported that the
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Figure 2: Acoustic wavefields excited by a finite-duration cosine function with a frequency
of 100Hz. The acoustic waves propagate through the medium uniformly moving from the

negative x direction to the positive x at the speed of the Mach number M = 0.3. The grid
size is h = 0.1m.
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Figure 3: Acoustic wave propagation is simulated with the same parameters used in Figure 2

except for the medium speed of M = 0.6. With the high Mach number, wavefront steepening
in the upwind direction (-x) and broadening in the downwind direction (4x) are pronounced.
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Figure 4: Azimuthal dependency of peak overpressure propagating in the moving medium.
The theoretical solution (black line) of |p(r, o, M) /p(r,90°, M)| is calculated by the equation
(29) for M = 0.3 and M = 0.6. Finite-difference simulations are performed with two different
grid sizes h. The blue circles indicate the finite-difference calculations using A = 0.2m and
the red dashed line indicates h = 0.1 m. The fine-grid numerical calculation shows good
agreement with the analytic solution, but the coarse-grid finite-difference does not resolve
sound propagations in the upward direction (o = 180°). See the text for details.



asymptotic solution showed good agreement with numerical solutions when kr > 10. We
recorded finite-difference peak overpressures and calculated |p(r, o, M) /p(r,90°, M)| at r =
25m and 0° < a < 180° for M = 0.3 and 0.6, where kr ~ 46 and a = 0 corresponds to the
downwind direction (4+x). In Figure 4, the blue circles are the finite-difference calculation
for the grid interval of A = 0.2m, and the red dashed line results from h = 0.1m. For the
low Mach number M = 0.3 both grid sizes modeled the acoustic waves well showing good
agreement with the analytic solution. However, for the high Mach number M = 0.6 the
coarse grid case could not resolve the wave propagation especially in the upwind direction
(—x). This result may be explained by apparent sound speed. When sound waves travel
through a moving medium, their propagation speed, called the effective speed of sound (é.sy),
is affected by the moving velocity of the medium [Godin, 2002] as

éeff:é—l—ﬁ-r, (31)

where r is a unit vector in the direction of sound propagation. The effective sound speed
in the upwind direction for M = 0.6 in Figure 4 is 136 m/s, and in this case, the effective
wavelength for 113 Hz is ~ 1.2m. The grid size h = 0.2m corresponds to only ~ 6 points
per the shortest wavelength, which does not meet the minimum requirement of grid points.
Therefore, the upwind waves in M = 0.6 is not well resolved by the given grid interval.
However, the fine grid interval h = 0.1m corresponds to ~ 12 grid points per the wavelength
and provide a numerical solution with good accuracy.

3.3. Acoustic point source

A “point” source in the 2-D domain does not excite spherical waves, rather it creates cylin-
drical waves radiating from an infinite line that is normal to the 2-D plane. Amplitudes
of the cylindrical waves decay inversely proportional to the square root of normal distance
to the line source, instead of the inverse distance of the spherical spreading. Modeling ca-
pability of a point source and spherical propagation of acoustic waves is often required to
solve geophysical problems as many natural and/or man-made explosions are modeled as a
point source. In addition, the spherical spreading of wavefields must be taken into account
to obtain accurate transmission energy loss of sound waves in the atmosphere.

In this subsection, we investigate the conversion of 2D acoustic signals into 3D signals.
The 3D solution approximation by 2D solutions have been explored by many authors in
seismology [Helmberger and Vidale, 1988; Miksat et al., 2008; Xiong et al., 2013; Li et al.,
2014]. Assuming homogeneous whole space, 3D acoustic signals psp from a point source [Li
et al., 2014] can be written in terms of 2D acoustic signals pyp from a line source

1 /Jad |1l
D _ — — — — 2
pdD(wayaoat) - 20 dt |:\/Z *pZD(xayat)] ) (3 )

where oo = x/(2¢) is the geometric ray parameter.

We create a 2-D overpressure signal using an impulsive source time function shown in
Figure 5. Figure 6 shows the resultant cylindrical wavefields propagating in a non-moving
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Figure 5: An impulsive source time function used to create 2-D cylindrical waves.
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Figure 6: Cylindrical acoustic waves excited by the source time function in Figure 5.
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Figure 7: The 2-D acoustic overpressure measured at 20 km from the source. Due to the
contribution from the infinite line source, the cylindrical waves have a long tail following the
first pulse.

homogeneous whole space with the speed of sound ¢ = 340m/s. An overpressure signal
measured at 20 km away from the source is shown in Figure 7. As each part of the infi-
nite line source contributes the resultant waveform at different time, 2-D cylindrical waves
typically have a long negative tail following the initial positive pressure. We apply the
conversion equation (29) to the 2-D overpressure signals. The convolution operation is per-
formed numerically. As the accuracy of the numerical convolution strongly depends on the
time resolution of the 2-D signals, we integrate the equation (6) in time with a fine time step
of dt = 0.1s that corresponds to the Courant number of 0.1 (note that Courant number of
1.0 typically ensures the stability, which corresponds to dt = 1.0 s in this case.)

Figure 8 and 9 shows the converted 3-D acoustic overpressures at 20 km and 30 km
from the source. Theoretical 3-D solutions at the same positions are calculated using the
source time function in Figure 7. The converted 3-D acoustic signals fit the pure 3-D signals
reasonably well. This waveform agreement also suggests that our numerical 2-D solutions
are accurate indicating the correctness of the line source implementation. There are small
misfits between them, which is probably caused by the error of numerical convolution. Finer
temporal resolution for the 2-D signal can improve the accuracy of the 3-D conversion. In
addition, now the amplitudes of the converted 3-D signals decay following the inverse distance
law, which allows for the computation of sound transmission loss in spherical spreading using
2-D modeling.
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Figure 8: The converted 3-D acoustic overpressure (red line) and theoretical 3-D solution
(black line) at 20 km from the source. Two signals show reasonably good agreement. The
converted 3-D signal slightly underestimates the peak amplitudes, which may be caused by
the error of numerical convolution for the equation (29).
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Figure 9: The converted (red) and theoretical (black) 3-D acoustic signals are compared at
a distance of 30 km. They show the similar results to Figure 8, which indicate the converted
signals follow the inverse distance spreading law.
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We briefly explored the applicability of 2-D modeling to approximate 3-D point-source
solution in a simple case. For a general 2-D media, a similar conversion to 3-D signals
are possible but requires the integration of wave travelling speed along the entire ray path
[Cerveny, 2005], which is beyond the scope of this report.

4. Summary

We developed a 2-D acoustic solver using finite-difference operators that satisfy the summation-
by-parts principle. The 2-D algorithm substantially reduces computational workload for the
finite-difference calculation, and hence can be used to simulate long-range sound propaga-
tion in the atmosphere and to study high-frequency sound waves, where full 3-D waveform
simulation may be too onerous. We verified the accuracy and correctness of numerical imple-
mentation using the method of manufactured solutions and several numerical experiments.
In addition, approximation of 3-D solution by 2-D modelings was discussed for a simple case.
For a homogeneous whole space, 2-to-3D conversion of signal showed promising results to
predict overpressure amplitudes of spherical spreading waves using 2-D simulation. However,
further study will be required to extend the conversion technique for more general case.
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