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Abstract

This dissertation focuses on the development of a fully-implicit, high-order compressible flow

solver with phase change. The work is motivated by laser-induced phase change applications, par-

ticularly by the need to develop large-scale multi-physics simulations of the selective laser melting

(SLM) process in metal additive manufacturing (3D printing). Simulations of the SLM process

require precise tracking of multi-material solid-liquid-gas interfaces, due to laser-induced melt-

ing/solidification and evaporation/condensation of metal powder in an ambient gas. These rapid

density variations and phase change processes tightly couple the governing equations, requiring a

fully compressible framework to robustly capture the rapid density variations of the ambient gas

and the melting/evaporation of the metal powder. For non-isothermal phase change, the veloc-

ity is gradually suppressed through the mushy region by a variable viscosity and Darcy source

term model. The governing equations are discretized up to 4th-order accuracy with our recon-

structed Discontinuous Galerkin spatial discretization scheme and up to 5th-order accuracy with

L-stable fully implicit time discretization schemes (BDF2 and ESDIRK3-5). The resulting set of

non-linear equations is solved using a robust Newton-Krylov method, with the Jacobian-free version

of the GMRES solver for linear iterations. Due to the stiffnes associated with the acoustic waves

and thermal and viscous/material strength effects, preconditioning the GMRES solver is essential.

A robust and scalable approximate block factorization preconditioner was developed, which uti-

lizes the velocity-pressure (vP ) and velocity-temperature (vT ) Schur complement systems. This

multigrid block reduction preconditioning technique converges for high CFL/Fourier numbers and

exhibits excellent parallel and algorithmic scalability on classic benchmark problems in fluid dy-

namics (lid-driven cavity flow and natural convection heat transfer) as well as for laser-induced

phase change problems in 2D and 3D.
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CHAPTER 1

Introduction

This work is motivated by the need to develop large-scale multi-physics simulations of 3D metal

additive manufacturing processes, such as the selective laser melting (SLM) process. Simulating

the SLM process requires solving the low-Mach compressible Navier-Stokes equations with phase

change. This dissertation focuses on the development of a scalable and robust solver for numerical

simulations of laser-based additive manufacturing processes.

1.1. Motivation: Additive Manufacturing

Additive manufacturing (AM) is the process of constructing a pre-designed solid object by

adding material, as opposed to subtractive manufacturing in which material is removed to form the

final shape. In 3D printing, a three-dimensional part is additively manufactured, layer by layer,

using a computer aided design (CAD) model. 3D printing processes enable the production of com-

ponents that would otherwise be impossible to produce from traditional manufacturing methods.

In Figure 1.1 (right image), a complex manifold with a built in piping system was created with a

metal 3D printer.

Powder Bed Fusion (PBF) methods are a type of 3D printing that use a laser or electron beam

to sinter or melt material powder together. Common PBF processes include: Electron beam melt-

ing (EBM), Selective laser sintering (SLS), Direct metal laser sintering (DMLS), and Selective laser

melting (SLM). For manufacturing metal components, SLM is a powder bed process that creates a

part by using a high powered laser to selectively melt metallic powder together. As seen in Figure

1.2, the powdered metal is spread evenly on a substrate plate in the build chamber. An inert gas,

typically argon or nitrogen, occupies the rest of the chamber in order to reduce oxidation. Before

production, the powder bed is preheated in preparation for melting. During operation, the laser
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Figure 1.1. Left: Photo of the selective laser melting process [77]. Right: Complex
manifold produced with a 3D SLM printer [1].

rapidly scans a 2D cross section of the part on a powder layer. Along the path of the laser, the

powder rapidly melts and then solidifies. A piston then lowers the substrate and a new layer of

powder is rolled on top, repeating this process until the part is finished.

Metal AM is poised to substantially change the design and production of metal parts in the

aerospace, automotive, military, and medical industries [31, 38]. Comparable mechanical prop-

erties of additively manufactured metal parts to their cast or wrought counterparts, cannot be

achieved, however, until several scientific and technical challenges are addressed. Currently, metal

parts manufactured using powder-based methods have different micro-structural properties and

performances than those produced with traditional manufacturing techniques [25]. Physics-based

models, however, can elucidate the driving mechanisms in the SLM process. Coupled with Un-

certainty Quantification (UQ) techniques, computational simulations of the AM process will be an

indispensable tool for optimizing the design of metal parts [38].

1.2. Challenges

Developing physics-based computer simulations of the selective laser melting process for metal-

additive manufacturing, is a challenging task, however. Multiple physical processes are involved
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Figure 1.2. Top: Concept Laser M2 machine at LLNL [39]. Bottom: 2D cross-
section of the build chamber [60].

including laser radiation and absorption, rapid phase change (melting/solidification and evapo-

ration/condensation), heat transfer (conduction, convection, and radiation), fluid dynamics, and

complex interfacial physics at multi-material interfaces, such as surface tension, Marangoni con-

vection, and wetting [36, 45]. Furthermore, all of the physics occurs on a similar time-scale and
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cannot be de-coupled from one another.

Besides the difficulties in modeling all of the physical processes relevant to SLM, there are

several numerical modeling challenges. Simulations of the powder melting process require inter-

face tracking of multiple materials and phases, which have large variations in the thermo-physical

properties (density, thermal conductivity, viscosity, specific heat, internal energy, etc.) across sharp

solid-liquid-gas interfaces. These rapid density variations and phase change processes (laser-induced

melting/solidification and evaporation/condensation) tightly couple the governing equations, ren-

dering incompressible flow solvers, such as the SIMPLE/projection-family of algorithms, ineffective

for these applications. Therefore, an adequate model of the laser melt dynamics requires an all-

speed, fully-compressible formulation, since the fluid dynamics in the melt pool are at low-Mach

number. For non-isothermal phase change problems, the thermo-physical properties transition be-

tween the solid and liquid phases through the presence of a mushy region. The solid phase must

enforce a no velocity condition and there are various models in the literature for suppressing the

velocity in the solid phase, which introduce additional non-linearities in the governing equations

[19, 26, 84]. Lastly, the rapid heating due to the laser source introduces large and localized tem-

perature gradients, which further increases the non-linearity and coupling of the equations.

The low-Mach compressible flow regime constitutes a common regime in many engineering

processes. Applications include combustion processes [33, 34, 42, 62, 80], high temperature gases

in nuclear reactors [24, 47], and laser welding/melting processes [4, 37, 46, 69]. As outlined in

[9, 47, 64], simulating low-Mach compressible flow is challenging because the governing equations

change nature from hyperbolic to mixed hyperbolic-elliptic, as the flow transitions from compress-

ible to incompressible flow. As a result, two categories of solvers have been developed for simulating

flows in this transitional regime: density-based methods from high-speed compressible solvers and

pressure-based methods from incompressible solvers. For small density variations, incompressible

flow solvers utilizing the Boussinesq approximation are widely used in the literature [19, 26, 84]. For

large temperature gradients, which subsequently result in large density variations, the Boussinesq

approximation, however, is no longer valid [9, 48, 59] and a compressible formulation is required.
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Compressible flow solvers suffer from challenges of their own in the low-Mach regime. Due to the

disparity of the acoustic and velocity time scales, the eigenvalues of the system become highly ill-

conditioned and convergence stalls [15, 50, 64, 83]. Furthermore, the numerical solutions are known

to become inaccurate in the limit of low-Mach numbers due to lack of numerical dissipation [30, 50].

Since we are solving the compressible flow equations with melting and solidification, there are

several physical time scales associated with the governing equations: acoustic waves, viscous diffu-

sion, thermal diffusion, material advection, and melting front dynamics. In the low-Mach regime,

there is a huge discrepancy between the acoustic and advection timescales leading to a numerically

stiff system. Due to the stiffness and necessity of stepping over acoustic and advection timescales1,

numerical algorithms using explicit time integrators or operator-splitting algorithms, such as pro-

jection algorithms or SIMPLE, have severe time step restrictions due to stability requirements,

making large-scale simulations prohibitively expensive and requiring weeks to months of HPC time

on even the largest supercomputers [36, 46]. With a fully-implicit time discretization, large time

steps can be taken, chosen based on the adequate resolution of the dynamic time scales of the

problem, rather than by numerical stability restrictions dictated by the physical time-scales. Step-

ping over these time-scales, however, results in numerical systems that develop strong hyperbolic

and parabolic stiffnesses [13]. To effectively step over these time-scales, we employ L-stable time

integrators, like BDF2 or the pth-order Explicit, Singly-Diagonal Implicit Runge-Kutta schemes,

ESDIRKp, [10, 12, 68].

1.3. Background on Fully-Implicit Framework

The Discontinuous Galerkin (DG) methods, built upon fully-implicit Newton-Krylov-based

solvers, are a promising class of solution algorithms for high-fidelity simulations of the SLM pro-

cess on large-scale supercomputers. Popular within the high-speed aerodynamics community, a

DG-based framework retains attractive features from both the finite element and finite volume

methods and has excellent conservation and convergence properties. The DG framework allows

1Dynamic time scales of AM processes with melting/solidification are rather slow compared to CFL/Fourier number
based time scales. Cost-effective simulations necessitate stepping over advection timescales.
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for the development of higher-order methods that are well suited for handling hybrid hyper-

bolic/elliptic/parabolic equations within the finite element/volume framework for complex geome-

tries on unstructured meshes [68]. In addition, the methods are locally conservative allowing for

spatially compact stencils and non-conforming elements. As a result, DG methods are highly paral-

lelizable due to minimal communication requirements between elements. Furthermore, DG methods

have a high arithmetic intensity, allowing the methods to readily exploit the massive parallelism

from future computer architectures, such as the Graphics Processing Units (GPUs).

In order to solve the system of non-linear equations at each time step, a robust solution algo-

rithm is needed. The Newton-Krylov framework, which uses an outer Newton method combined

with an inner Krylov iterative method, provides such an approach [40]. The Newton-Krylov frame-

work has been successfully applied to the non-equilibrium radiation diffusion equations [63], the

shallow water equations [65], the incompressible Navier-Stokes equations [43, 70, 72], low-Mach

combustion [42], and more recently to the compressible Navier-Stokes equations [14, 68, 73]. The

framework has also been applied to Stefan problems for both pure-materials and alloys [41], as well

for solidifying flow applications involving 2D melt convection for incompressible flow [26, 44].

We use a globalized line search strategy, where the descent direction and step size is computed

with a Jacobian-Free Newton-Krylov (JFNK) framework. GMRES is chosen as the Krylov (linear)

solver because it is robust and guarantees a monotonically decreasing residual. Since the linear

system is the result of a discretization of the compressible Navier-Stokes equations with phase

change, it has a 1) mixed hyperbolic and parabolic nature, 2) non-symmetry due to upwinding

in the approximate Riemann solver, 3) non-diagonally dominant structure when large time-steps

are chosen. Furthermore, the governing equations are tightly-coupled within the stencil and the

resulting (global) linear system of discrete equations is highly ill-conditioned, with condition num-

bers exceeding a million [68]. Thus, preconditioning the GMRES-Newton solver is required for

convergence.
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There are two primary design requirements for the preconditioner. First, the preconditioner

must be able to converge the solution of highly ill-conditioned linear systems corresponding to large

CFL and Fourier numbers. Second, the preconditioning strategy must be scalable and computa-

tionally efficient in run time and memory storage so that large-scale multi-physics simulations are

cost-effective. Classic iterative methods such as Jacobi, Gauss-Seidel, Sucessive-Over-Relaxation

(SOR), and Algebraic Multigrid (AMG) are effective preconditioners when the matrix is diagonally

dominant [74]. Due to the lack of diagonal dominance in our systems, however, these techniques are

not guaranteed to converge (theoretically) and fail to converge in practice. On the other extreme,

the most robust preconditioner is an LU factorization of the original Jacobian matrix. Although

direct solvers are effective for small problems, they are not well-suited for massive computations as

their computational cost does not scale linearly with the size of the computational problem [74].

Domain decomposition methods, such as additive Schwarz variants, are natural for unstructured

meshes [82] and take a divide-and-conquer approach to parallelism [40, 74]. Additive Schwarz tech-

niques have been effective preconditioners for Newton-Krylov solvers in compressible flow [79],

reactive flow problems [76], and low-Mach compressible combustion [42]. A drawback of one-level

additive Schwarz methods is the locality assumption, since neighboring degrees of freedom to an

element are strongly coupled while long-range interactions are ignored. As a result, the perfor-

mance of additive Schwarz preconditioners generally degrades for elliptic problems as the number

of processor domains increase, due to the lack of global coupling [78, 81]. To address the lack

of global coupling in domain decomposition methods, a field-block approach segregates all of the

degrees of freedom of a particular field into separate blocks. These reduced scalar block (pres-

sure, temperature, or velocity) systems are more amenable for iterative methods to approximate

the action of their inverse. Variations of this physics-block preconditioning approach have been

successfully applied to the non-equilibrium radiation diffusion equations [63], the shallow water

equations [65], MHD [13, 18], solidifying flow applications [44], the incompressible Navier-Stokes

equations [26, 72], and more recently to the compressible Navier-Stokes equations [68, 70, 73].
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This work explores approximate block decomposition strategies on the segregated physics

blocks. Approximate physics-block factorizations have been explored as a preconditioner for the

incompressible Navier-Stokes equations and MHD using various approximations of the Schur com-

plement matrix [17, 18, 22, 23]. This work differs as we extend these techniques to the all-speed

compressible Navier-Stokes equations with phase change using a high-order reconstructed Discon-

tinuous Galerkin discretization in the limit of large CFL and Fourier numbers. These approximate

block factorizations are multigrid block reductions and algebraic multigrid (AMG) methods can be

effectively applied on these reduced systems, which are linearly scalable algorithms, O(n).

The framework is implemented and tested within LLNL’s ALE3D code [3, 29, 61]. ALE3D

is a multi-physics numerical simulation tool, focusing on modeling hydrodynamics and structural

mechanics in all-speed multi-material applications. Additional ALE3D features include heat trans-

fer, chemical kinetics and species transport, incompressible flow, a wide range of material models,

chemistry models, multi-phase flow, and magneto-hydrodynamics for long- (implicit) and short-

(explicit) time-scale applications.

1.4. Overview of the Dissertation

The rest of this dissertation is organized as follows. The physical and mathematical models

required for simulating laser-induced melt convection problems are discussed in Chapter 2. In

Chapter 3, a brief introduction is given on the reconstructed Discontinuous Galerkin (rDG) spa-

tial discretization scheme and its advantages for the underlying linear algebra are highlighted. The

fully-implicit time discretization schemes are outlined along with the Jacobian-Free Newton-Krylov

(JFNK) solver. The preconditioning (Jacobian) matrices for the rDG schemes are also explained.

In Chapter 4, verification of the different rDG discretization schemes is demonstrated with the

Method of Manufactured Solutions (MMS) to verify that the schemes converge to the design order

of accuracy for the compressible Navier-Stokes equations. To illustrate the benefit of a 4th-order

over a 2nd-order rDG spatial discretization scheme, a qualitative comparison of the flow features is
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conducted for a laser-induced phase change problem. Various combinations of the velocity suppres-

sion models for a solid-liquid phase change problem are analyzed in Chapter 5. A variable viscosity

method combined with a drag force model is found to be the most robust and computationally

efficient model for suppressing the velocity in the solid and mushy phases. In Chapter 6, sensitivity

studies are performed for the non-dimensional numbers (Rayleigh, Prandtl, and Stefan Numbers)

and different melting and solidification configurations are tested, demonstrating this algorithm’s

ability to robustly handle both melting and solidification problems. In Chapter 7, 2D and 3D

moving laser-induced melt convection problems are tested using the developed velocity suppression

and laser beam models. Chapter 8 compares different preconditioning strategies and finds that the

most robust and efficient preconditioner is an approximate physics-block factorization technique

(multigrid block reduction), utilizing the velocity-pressure (vP ) and velocity-temperature (vT )

Schur complement systems. Lastly, Chapter 9 concludes the dissertation and provides an outline of

future directions. Future work involves moving to larger block systems due to higher-order (greater

than 2nd-order) schemes and binary alloy systems, incorporating additional physics, such as surface

tension, Marangoni convection, radiation and evaporation, and coupling to solid-thermal mechanics

solvers. The larger block (4× 4, 5× 5, N ×N) systems will need to be preconditioned in a scalable

and efficient manner. I plan to extend my preconditioning techniques to these larger block systems

using an N ×N multigrid block reduction technique.

The work was primarily conducted at the Lawrence Livermore National Laboratory in Liver-

more, California and occasionally at the University of California, Davis. This dissertation summa-

rizes the work performed by the author during the time period of June, 2014 to June, 2017. It

resulted in 11 conference presentations, 2 peer-reviewed papers, and 2 additional papers currently

in preparation.
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CHAPTER 2

Mathematical Model

2.1. Governing Equations

2.1.1. Conservation Laws. In this work, we consider the time-dependent compressible Navier-

Stokes equations with solid-liquid phase change. The governing conservation equations in vector

form are given by

∂ρ

∂t
+∇ · (ρv) = 0(2.1)

∂(ρv)

∂t
+∇ · (ρv × vT) = −∇P +∇ · ¯̄σ + ρg − fD(2.2)

∂(ρe)

∂t
+∇ · (ρve) = ∇ · (k∇T )− P∇ · v +∇ · (v · ¯̄σ) + qv,(2.3)

where v = (vx, vy, vz) is the material velocity vector in Cartesian coordinates, P is the pressure, ρ is

the density, g is gravity, ¯̄σ is the viscous stress tensor defined in 2.1.2, e = u + v2

2 is the specific total

energy, u is the specific internal energy1, k is the thermal conductivity, and T is the temperature.

The drag force due to solidification is represented by fD = −Kv, where K increases from zero to

a very large number as the local solid fraction varies from zero to one, suppressing the motion in

the solid phase. Laser heating is modeled as a volumetric source term, qv, in the energy equation,

which is defined in Section 2.3. In this work, we neglect energy dissipation due to viscous stresses

and pressure forces, since we are studying compressible flows in the low-Mach limit. Radiation,

evaporation, and free-surface dynamics are also neglected and will be considered in future work.

The same governing equations can also be written in following flux vector form

∂U

∂t
+∇ · (F−D) = S,(2.4)

1We choose to discretize the energy equation in the internal energy form, as opposed to the enthalpy or total energy
form. Mathematically, all energy formulations are equivalent, but when considering our rDG numerical discretization,
we find that the internal energy formulation is easier to implement.
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where U is the solution vector of conservative variables, defined as

U =
[
ρ, ρv, ρe

]T

,(2.5)

while F, D, and S are the vectors of hyperbolic fluxes, diffusion fluxes, and sources, respectively,

defined as

F =


ρv

ρv × vT + pI

ρve+ pv

 , D =


0

¯̄σ

−k∇T + v · ¯̄σ

 , S =


0

fb

qv

 .(2.6)

We also introduce a vector of “primitive” variables, W, which is generally different from U, and

chosen based on the “better system conditioning” considerations as defined in Section 3.4.

2.1.2. Constitutive Equations. In this work we consider Newtonian fluids. As defined in

[5, 8, 86], the viscous stress tensor is

σ = 2µε+ λ(∇ · v)I,(2.7)

where µ is the dynamic viscosity and λ is the second viscosity coefficient. Following Stokes hypoth-

esis, the second viscosity is taken as λ = −2
3µ [5]. The strain rate tensor, ε, is defined as

ε =
1

2

(
∇v + (∇v)T

)
.(2.8)

The final constitutive relationship is due to the equation of state (EOS). This dissertation uses the

simple 2-parameter (ρ0, c) EOS to directly control the sound speed

P (ρ) = ρ0c2

(
ρ

ρ0
− 1

)
,(2.9)

since we are interested in the low Mach regime, Ma = |v|
c < 10−2, where ρ0 and c are the

given reference density and sound speed, respectively. With direct control of the sound speed

in our EOS, we can artificially reduce the sound speed and thus Mach numbers to tractable values

(10−5 ≤Ma ≤ 10−2), which is favorable for the underlying linear algebra. We numerically verified

that the numerical solution is independent of the Mach number in this range and this approach is
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similar to artificial compressibility methods used in incompressible flow solvers [16]2.

2.2. Modeling of Melting and Solidification

2.2.1. Phase Transition. Phase change is modeled with an energy-based (homogenous ther-

mal equilibrium) approach. Phase transitions are implicitly tracked with our thermal model u(T )

as follows.

I. Solid. (T < TS , u < uS), where TS and uS are the solid melt temperature and specific

internal energy, respectively.

II. Liquid. (T > TL, u > uL), where TL and uL are the liquid melt temperature and specific

internal energy, respectively.

III. Two-Phase. (TS < T < TL, uS < u < uL).

The three material zones are shown in Figure 2.1. We introduce a transitional two-phase

region, between the solid and liquid phases to avoid a non-singular mapping between u and T . The

thickness of the two-phase mushy region is defined by ε = TL − TS . The jump in internal energy

between the solid and liquid phases is stored in the latent heat term, defined as

uf = uL − uS .(2.10)

To suppress the velocity in the mushy and solid phases, we use a velocity suppression model

as outlined in Section 2.2.2. More details are described in our paper, [68], explaining how the

thermodynamic properties transition between the phases, such as viscosity, thermal conductivity,

internal energy, and specific heat.

2In this work, we do not intend to account for realistic sound speeds in metal, which would drive the Mach number
to restrictively small values, since the sound speeds are on the order of km/s. In future work, we will implement the
AUSM+-up Riemann solver, which correctly mimics the pressure fluctuations of an incompressible flow solver in the
asymptoptic limit of small Mach number [49, 50, 51].
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Figure 2.1. Thermal model, u(T ), for equilibrium phase change.

2.2.2. Velocity Suppression Models. In this Section, we briefly review two of the well

known velocity suppression models used in phase change problems to extinguish the velocity in the

solid and mushy phases. Based on these two models, we develop a combined velocity suppression

model. A more extensive review of velocity suppression techniques can be found in [58].

2.2.2.1. Darcy Source Term Model. To suppress the velocity in the solid and mushy phases,

many authors [26, 32, 84] use a drag force/momentum sink term, inspired from Darcy’s Law for

porous media flow

v = −κ
µ
∇P,(2.11)
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where κ is the permeability coefficient of the medium. In this work, we approximate the permeability

to be a function of the porosity, where the porosity is defined as

λ = 1− φs = x,(2.12)

where x is the thermodynamic quality and φs is the local solid faction. φs varies linearly as a

function of temperature from 0 (in a liquid state) to 1 (in a solid state). As the local solid fraction

approaches 1, the velocities in the material tend to 0. To numerically mimic the Darcy’s law, a

source term in the momentum equation can be introduced

fD = −Kv,(2.13)

where K is a number that increases from zero to a very large number, as the local solid fraction

varies from 0 to 1, effectively suppressing the motion in the solid phase. Inspired by the Carman-

Kozeny equation in [11], K is typically modeled as

K = −C (1− λ)2

λ3 + ε
,(2.14)

where C is some constant that depends on the permeability of the porous medium and ε is typically

set to a small value ∼ 10−3, to avoid division by zero [84]. For simplicity, the drag force model

used in this work has a linear dependence on the porosity

K = C(1− λ),(2.15)

which is also used in [26, 28]. More complex permeability models based on the Darcy’s law have

been developed in [21], which we will consider in future work for solidification and re-melting prob-

lems.

2.2.2.2. Variable Viscosity Model. Another common velocity suppression model is known as

the enhanced viscosity method or variable viscosity method [19, 20, 58]. In this model, material

strength is a linear function of the strain tensor where the dynamic viscosity is a smooth function

of temperature between the solid and liquid phases
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µ (T ) =


µL if T ≥ TL
µLfµ (T ) if TS < T < TL

µS if T ≤ TS

.(2.16)

fµ(T ) is the viscosity factor, a function that smoothly varies from 1 to a large number, µs
µl

. As

seen in Figure 2.2, this model progressively increases the viscosity of the material from the mushy

region to the solid region, inhibiting material deformation.

1.2 1.3 1.4 1.5

T/T

100

101
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103

V
isc

os
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, f
µ

So
lid

us

Liquidus

Mushy zone

Creeping solid

Figure 2.2. An example viscosity factor, as a function of temperature.

2.2.2.3. Combined Velocity Suppression Model. In this work, we use a combination of the

Darcy source term and variable viscosity models to extinguish the velocity in the mushy and solid

phases. Recall that in the Darcy model we introduce a source term in the momentum equation,

fD = −C(1−λ)v, which introduces an additional model parameter, the drag coefficient, C. In the

viscosity model, we introduce a variable coefficient parabolic operator in the momentum equation
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∇µ(T )∇v, which also has one model parameter, the solid-liquid viscosity ratio, µs
µl

. The combined

velocity suppression model is analyzed in Section 5.2.

2.2.2.4. Non-Linearity Associated with Velocity Suppression Models. Both of the velocity sup-

pression models introduce non-linearities to the governing equations. The Darcy strength model

enforces a source-term coupling between the momentum and energy equations. The variable viscos-

ity model, however, introduces a very strong coupling between the momentum and energy equations

through the parabolic (viscous) operator, which presents challenges for solvability of the underlying

systems. More details on the non-linearity of the velocity suppression models are given in Section

5.23.

2.3. Laser Beam Model

To simulate laser-induced melt convection, we implement a laser source heating term in our

non-dimensional energy equation. The effects of different laser beam modes on melt pools was

studied in [32]. In this work, we only consider source heating terms with a cylindrical, Gaussian

profile. We define r = (r, z), which is a function of the radius, r, in 2D and a function of both the

radius and depth, z, in 3D.

In 2D, the source heating term is modeled with a Gaussian profile. Relating the power of the

laser, Q, to the max volumetric flux, qmaxv ,

Q = qmaxv

∫ 2π

0

∫ r0

0
e−ar

2
r dr dθ,(2.17)

where a ≡ 1
2r2

0
, r0 is the radius of the laser’s spot size, r2 = x2 + y2. After integration, we solve for

qmaxv

qmaxv =
Qa

∆zπ(1− ear2
0)
,(2.18)

3Future work will seek to replace the velocity suppression model in the solid phase with realistic material strength. In
alloy systems, a velocity suppression models will, however, still be used to model the dynamics in the mushy region.
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where we set ∆z ≡ 10r0. The flux can now be evaluated anywhere in the domain

qv = qmax
v f(r) = qmaxv e−ar

2
,(2.19)

where in 2D, f(r) = e−ar
2
.

In 3D, we model the vertical (exponential) attenuation of the laser with a quadratic function

in the z dimension. The relation between power and max volumetric flux becomes

Q = qmaxv

∫ h

z0

∫ 2π

0

∫ r0

0
e−ar

2 (z − z0)2

(h− z0)2
r dr dθ dz,(2.20)

where h and z0 are the maximum and minimum heights of energy deposition (user defined), re-

spectively. Solving for qmaxv

qmaxv =
3Qa

(h− z0)π(1− ear2
0)
.(2.21)

Again, the volumetric flux can be evaluated anywhere in the domain

qv = qmax
v f(r) = qmaxv e−ar

2 (z − z0)2

(h− z0)2
,(2.22)

where in 3D, f(r) = e−ar
2 (z−z0)2

(h−z0)2 .

2.4. Non-Dimensionalization

To non-dimensionalize the system of Eq.’s (2.1-2.3), we define four scaling parameters: length,

velocity, temperature, and density:

ρ̄, L̄, v̄,∆T .(2.23)

For natural convection flows, the velocity scale is defined from the buoyancy term in the momentum

equation, known as Grashof scaling

v̄ =

√
ḡβ̄L̄∆T ,(2.24)
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where β̄ is the volumetric thermal expansion coefficient. Given the base scaling parameters,

ρ̄, L̄, v̄,∆T (Appendix A.3), we can define the remaining scaling parameters

t̄ =
L̄

v̄
P̄ = ρ̄v̄2 µ̄ = ρ̄v̄L̄(2.25)

k̄ = µ̄C̄v ∆T = TH − TC Ē = C̄v∆T(2.26)

q̄v =
ρ̄Ē

t̄
K̄ =

ρ̄

t̄
.(2.27)

The dimensionless variables that appear in the governing equations are defined as

T̂ =
T − T0

∆T
t̂ =

t

t̄
v̂ =

v

v̄
(2.28)

ρ̂ =
ρ

ρ̄
k̂ =

k

k̄
=

1

PrRe
µ̂ =

µ

µ̄
=

1

Re
(2.29)

ê =
e

ē
P̂ =

P

P̄
r̂ =

r

L̄
(2.30)

Ĉv =
Cv
C̄v

q̂v =
qv
q̄v

=
qmax
v f(r̂)

q̄v
K̂ =

K

K̄
=
Kt̄

ρ̄
.(2.31)

The latent heat of fusion associated with solid-liquid phase change, is related to the Stefan number

Ste =
Cv∆T

uf
,(2.32)

which is defined as the ratio of sensible heat to latent heat. Appearing in both the momentum and

energy equations are the Grashof and Prandtl numbers

Gr =
ḡβ̄∆T L̄3

ν̄2
=

v̄2L̄2

ν̄2
= Re2(2.33)

Pr =
ν̄

ᾱ
.(2.34)

Defining the external Rayleigh number for buoyancy driven flows

Rae =
ḡβ̄∆T L̄3

ν̄ᾱ
= GrPr = Re2Pr(2.35)

and defining the internal Rayleigh number for laser-source heating

RaI =
ḡβ̄qmax

v L̄4

ν̄ᾱk̄
.(2.36)
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We note that the Mach number is defined as

Ma =
|v̄|
c
,(2.37)

which arises from the equation of state. With these scaling parameters, the non-dimensional com-

pressible Navier-Stokes equations are

∂ρ̂

∂t̂
+ ∇̂ · (ρ̂v̂) = 0(2.38)

∂(ρ̂v̂)

∂t̂
+ ∇̂ · (ρ̂v̂ × v̂T ) = −∇̂P̂ +

1

Re
∇̂ · (µ̂∇̂v̂) +

Rae
PrRe2

ρ̂ĝβ̂T̂ − K̂v̂(2.39)

∂(ρ̂ê)

∂t̂
+ ∇̂ · (ρ̂v̂ê) =

1

RePr
∇̂ · (k̂∇̂T̂ ) +

RaI
RaePrRe

f(r̂),(2.40)

where we use an approximate buoyancy term in the momentum equation. Using Re =
√

Ra
Pr ,

∂ρ̂

∂t̂
+ ∇̂ · (ρ̂v̂) = 0(2.41)

∂(ρ̂v̂)

∂t̂
+ ∇̂ · (ρ̂v̂ × v̂T ) = −∇̂P̂ +

√
Pr√
Ra
∇̂ · (µ̂∇̂v̂) + ρ̂ĝβ̂T̂ − K̂v̂(2.42)

∂(ρ̂ê)

∂t̂
+ ∇̂ · (ρ̂v̂ê) =

1√
RaPr

∇̂ · (k̂∇̂T̂ ) +
RaI

√
PrRa

3
2
e

f(r̂).(2.43)
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CHAPTER 3

Numerical Methods

To solve the non-dimensionalized equations in Section 2.4, we use the fully-implicit, Newton-

Krylov framework with the rDG spatial discretization scheme, developed in [68]. In this Chapter,

we describe our numerical approach and highlight its major advantages for the solvability of the

underlying linear algebra.

Recently, the Discontinuous Galerkin (DG) method has become increasingly popular in compu-

tational fluid dynamics, owing to its flexibility of handling complex geometry, its compact stencil

for arbitrarily higher-order solutions, and its amenability to parallelization and hp-adaptation. In

contrast to more traditional finite volume (FV) methods in CFD, high-order accuracy is achieved

by simply adding additional degrees of freedom (DoFs) per element, per variable. As a result, the

DG(Pp) of any order p has the same stencil (i.e., only face-neighbors are involved in discretization),

which is a very attractive feature in terms of parallelization and code design. On the other hand, the

size of the solution vector grows significantly, as more DoFs must be solved for. Such an increase in

the size of the solution vector is unfavorable in the context of implicit solvers, imposing significant

memory requirements (for storage of the matrices) and adversely affecting solution scalability, as

a majority of linear solvers do not scale linearly [74]. In order to reduce high costs associated with

DG, the reconstructed DG (rDG) methods have been developed [56, 57, 89].

We capitalize on the recent work of extending the rDG discretization to a Newton-Krylov

framework for solving highly ill-conditioned multi-physics problems [68]. We use the orthogonal

modal Legendre-based tensor-product basis functions. These basis functions are hierarchical, which

naturally facilitates p-refinement, and can be easy implemented on hybrid meshes with AMR. The

0th-order degrees of freedom are cell-averaged quantities, while the higher order degrees of freedom

correspond to derivatives of the cell-averaged quantities (slopes, quadratics, cubics, etc). In the
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rDG PNPM schemes, we solve for a PN scheme of polynomial order N and reconstruct to a PM

scheme of polynomial order M , which is a (M + 1) order-accurate method in space.

In this work, we study the performance of the P0P1, P1P3, and P2P3 (2nd-order and 4th-order)

accurate discretization schemes. The benefits of reconstructed DG vs. unreconstructed DG with

regards to solution vector size can be seen in Table 3.1. The DG P3 scheme in 2D has a total of 10

DoFs per equation per element: 1 cell-averaged value + 2 slopes + 3 quadratics + 4 cubics, while

in 3D it has a total of 20 DoFs per equation per element: 1 cell-averaged value + 3 slopes + 6

quadratics + 10 cubics. The rDG P2P3 scheme operates on the same polynomial space and has the

same total number of DoFs and order of accuracy as the DG P3 scheme, but with a significantly

smaller solution vector size. This is because only the cell-averaged value, slopes, and curvatures

are solved for, while the cubic DoFs are reconstructed. It can be easily observed that the

benefit of reconstructed DG vs. unreconstructed DG increases as the dimension increases. Thus

the required number of degrees of freedom to be solved for per equation per element for each

discretization scheme is listed in Table 3.2. Since the base 0th-order degrees of freedom are cell-

averaged quantities, this DG method can be viewed as a generalized extension of the finite-volume

(FV) algorithm to high-order (greater than 2nd-order) on unstructured hybrid meshes, without the

need to extend the stencil. The stencil for our rDG scheme includes neighbors of neighbors, a total

12 neighboring elements in 2D, and 24 neighboring elements in 3D. This stencil is in fact identical

to 2nd-order finite-volume methods, common in most commercial CFD solvers.

Dim. DG P3 rDG P2P3

1D 4 DoFs 3 DoFs
2D 10 DoFs 6 DoFs
3D 20 DoFs 10 DoFs

Table 3.1. Solution vector size per equation per element for unreconstructed vs.
reconstructed 4th-order DG.

The beauty of rDG methods is that they provide a unified formulation for both FV and DG,

and contain both classical FV and standard DG as two special cases of the rDG formulation. In

[68], we developed the rDG method which is specifically designed for solving stiff multiphysics

problems using fully-implicit formulation. Two major innovations are 1) the combination of the
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Scheme 2D 3D
rDG P0P1 1 DoF 1 DoF
rDG P1P3 3 DoF 4 DoF
rDG P2P3 6 DoF 10 DoF

Table 3.2. Solution vector size per equation per element for rDG schemes consid-
ered here.

in-cell and inter-cell reconstructions using orthogonal basis/test functions on unstructured meshes,

and 2) an ability to solve for primitive variables, chosen on the requirement of solvability (better

conditioning) of the underlying physics. Both developments are aimed at better conditioning of

linear steps during the Newton-based non-linear iterative procedure in fully-implicit solver. In the

contrast to early rDG efforts [52, 53, 54, 55, 56, 57, 87, 88, 89], which used conservation variables as

a solution vector, the new method is designed for all-speed flow capabilities, with phase change

(melting/solidification). In these cases, the set of conservation variables (i.e., mass, momentum

and total energy) is poorly conditioned and restrictive in terms of feasible flow regimes (Mach

number limitations). Thus, we use the sets of primitive variables, which boost solvability, such as

pressure, velocity and either specific internal energy, enthalpy or temperature, as an energy trans-

port variable. Note that residuals are always formed for mass, momentum and energy, to ensure

conservation upon convergence of the non-linear solver, within the framework of the Newton-Krylov

algorithm.

3.1. Spatial Discretization

The computational domain Ω is subdivided into a collection of non-overlapping linear QUAD4

(4-node) and HEX8 (8-node) elements, Ωe . The solution is represented in the broken Sobolev space

Vp

h
, consisting of discontinuous vector-values polynomial functions of degree p

V
p

h
=
{
υ
h
∈ [L2 (Ω)]

m

: υ
h
|
Ωe
∈
[
Vm
p

]
∀Ωe ∈ Ω

}
,(3.1)

where m is the dimension of the unknown vector and Vp is the space of all polynomials of degree ≤ p.
The governing equations (2.1), (2.2) and (2.3) are represented in the following weak formulation,

which is obtained by multiplying by a test function W
h
, integrating over an element Ωe , and then
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performing an integration by parts

R
h

(U
h
) = ∂

∂t

∫
Ωe

U
h
W

h
dΩ +

∫
Γe

(
Fj (U

h
)−Dj (U

h
)
)
njWh

dΓ−

−
∫

Ωe

[(
Fj (U

h
)−Dj (U

h
)
) ∂W

h
∂xj

+ S (U
h
)W

h

]
dΩ, ∀W

h
∈ Vp

h
,

(3.2)

where U
h

and W
h

are represented by piecewise-polynomial functions of degrees p, which are dis-

continuous between the cell interfaces, and n = nj denotes the unit outward normal vector to

the element face Γe (i.e., the boundary of Ωe). The local residual function R
h

(U
h
) is an inner

product between the solution residue representation (with a chosen set of basis functions) and the

test functions, W
h
. In our fully-implicit solution procedure, we are minimizing this inner product.

The hyperbolic flux function Fj (U
h
)nj appearing in the face integral term of eq.(3.2) is replaced

by a numerical Riemann flux function, Hj

(
U

L

h
,U

R

h

)
nj , which is computed by some (approximate)

Riemann solver (see [68] for details). Here, U
L

h
and U

R

h
are the conservative state vectors at the

left and right side of the element boundary.

Numerical polynomial solutions U
h

in each element are expressed using a chosen set of basis

functions B
(k)

(x), as

U
h

(x, t) =

K−1∑
k=0

U
(k)e

(t)B
(k)

(x) ,(3.3)

where U
(k)e

denotes degrees of freedom (DoF) in an element e. Here, we use tensor-product

Legendre-polynomial-based basis functions, described in [68]. It is instructive to note that, with

these basis functions, the first degree of freedom is the cell-averaged quantity, which naturally

connects this method to finite-volume methods. In addition, these basis functions are modal and

hierarchical.

3.2. Temporal Discretization

To prevent severe time step restrictions due to either explicit [36] or semi-implicit [46] time

discretizations, we use fully-implicit methods, employing L-stable time integrators, like BDF2 or
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the pth-order Explicit, Singly-Diagonal Implicit Runge-Kutta schemes, ESDIRKp, [10, 12, 68] 1.

With these, our time stepping is dictated by accuracy requirements, rather than by numerical

stability, which can be prohibitively expensive in explicit or operator-splitting algorithms [36]. For

low-Mach flows, there is a large discrepancy between the acoustic and material velocities, leading

to a numerically stiff system. Furthermore, for melting and solidification phase change problems,

there is a strong nonlinearity in the momentum equation, since the viscosity operator is now a

variable coefficient diffusion operator that is a strong function of space and temperature. We are

thus required to tightly couple all three conservation equations (mass, momentum, and energy)

and cannot employ operator splitting strategies. By tightly coupling all of the physics, we can pick

time steps significantly exceeding the material CFL number (without loss of accuracy), which is

the major time-stepping limit in operator-splitting based algorithms [46].

3.3. Jacobian-Free Newton-Krylov (JFNK) Solver

In this Section, we briefly review the Jacobian-free Newton-Krylov (JFNK) framework. Once

the equations are discretized in space and time, we seek to minimize the residual equation using a

globalized line search method2. Newton’s method is used to compute the step direction by solving

the non-linear system of equations

F(x) = 0,(3.4)

where F is the nonlinear residual function and x is the solution vector, representing all of the

degrees of freedom. Using Newton’s method, we iteratively find better roots to Eq. (3.4) by solving

a sequence of linear problems

Jkδxk = −F(xk),(3.5)

where the Jacobian matrix is defined as J ≡ ∂F
∂x . Once the update vector, δxk, is solved for, it is

added to the previous non-linear solution vector

xk+1 = xk + δxk,(3.6)

1Most of the calculations in this work were done with the 2nd-order L-stable BDF2 time integrator.
2In this work, we use either the backtracking or critical point line search strategies in PETSc [7].
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until the Newton convergence criterion is satisfied

||F(xk)||2 < tolN ||F(x0)||2.(3.7)

In this study, we choose a relative Newton tolerance of tolN = 10−5. For the linear solver, we use

the Arnoldi-based Generalized Minimal Residual method (GMRES) [75]. Since GMRES does not

require individual elements of the Jacobian matrix, only the action of matrix-vector products are

required and an explicit Jacobian matrix does not need to be formed. The action of the Jacobian

matrix-vector products is approximated by Fréchet derivatives

J~κ ≈ F (x + ε~κ)− F (x)

ε
,(3.8)

where ε is a small but finite number and ~κ is a Krylov vector. Eq. (3.8) is a first-order Taylor series

expansion of the Jacobian times a vector, ~κ. An inexact Newton method is used to ensure that the

linear system is tightly solved only when the accuracy matters – i.e. at the end of the nonlinear

iterations. With this approach, the convergence criteria of the linear residual is proportional to the

non-linear residual

||Jkδxk + F(xk)||2 < tolL||F(xk)||2,(3.9)

where tolL is a constant3. Our (inexact) JFNK solver is implemented within PETSc, a high-

performance suite of non-linear and linear solvers developed at the Argonne National Laboratory

[7].

Because GMRES stores all of the previous vectors that form the Krylov basis, it is necessary to

keep the number of iterations relatively small, to prevent the storage and CPU time from becoming

prohibitive. This is accomplished by preconditioning the linear system. A mathematically good

preconditioner should efficiently cluster the eigenvalues of the iteration matrix [40, 74]. Finding an

efficient preconditioner is often a combination of art, science, and intuition.

3In the present study, we use tolL = 10−8.
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3.4. Preconditioning

Although the governing equations are discretized in conservative form (mass, momentum, total

energy), we choose to solve for the primitive set of variables, [PvT ] (pressure, velocity, tempera-

ture), since it is a better conditioned set of variables for low-speed flow [15, 64]. Introducing the

transformation

δU =
∂U

∂W
δW,(3.10)

where U = (ρ, ρv, E) is the vector of conservative variables and W = (P,v, T ) is the vector of

primitive variables. The linear system in Eq. (3.5) can now be transformed to

∂F(x)

∂U

∂U

∂W
δW = −F(x).(3.11)

It is important to emphasize that the change of variables does not affect conservation, since the

residual function is still written to satisfy the underlying conservation laws. The equations are thus

conserved to the non-linear tolerance level. One of the great strengths of the non-linear Newton-

Krylov algorithm is that it is not required to solve for conservative variables. Instead, one can solve

for another (mathematically equivalent) set of unknowns, which will render a better conditioned

system.

The right-preconditioned form of the system is

JM−1Mδx = −F(x),(3.12)

where M is the preconditioning matrix4. Taking M as the approximate (finite-differenced) Jacobian

matrix, the degrees of freedom can be ordered by physics fields in a 3× 3 block matrix
Mvv MvP MvT

MPv MPP MPT

MTV MTP MTT




xv

xP

xT

 =


bv

bP

bT

 ,(3.13)

4Although no matrix needs to be explicitly formed for the Jacobian-free Newton-Krylov (JFNK) method, we choose
to explicitly form the matrix, M, for preconditioning purposes.
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where b is an incoming Krylov vector and x is the outgoing Krylov (solution) vector. Each block in

Eq. (3.13) is a block matrix of size nelems×neqns×nDoFs/elem. The blocks corresponding to degrees

of freedom associated with velocity, for example, have two equations in 2D and three equations in

3D (vx, vy, vz).

3.4.1. High-Order rDG. Since the P0P1 scheme only solves for cell-averaged quantities, the

sub-blocks in Eq. (3.13) represent scalar (sparse) matrices for degrees of freedom corresponding

to that physics field. The higher-order schemes such as, P1P3 or P2P3, however, have additional

degrees of freedom per equation per element (as listed in Table 3.2). In the higher-order schemes,

each block in Eq. (3.13) is now a block matrix itself, e.g. each physics block for the rDG P2P3

scheme in 2D is a 6×6 block system corresponding to a cell-averaged value + 2 slopes + 3 curvatures

MPP =



MP0P0 MP0Px MP0Py MP0Pxx MP0Pyy MP0Pxy

MPxP0 MPxPx MPxPy MPxPxx MPxPyy MPxPxy

MPyP0 MPyPx MPyPy MPyPxx MPyPyy MPyPxy

MPxxP0 MPxxPx MPxxPy MPxxPxx MPxxPyy MPxxPxy

MPyyP0 MPyyPx MPyyPy MPyyPxx MPyyPyy MPyyPxy

MPxyP0 MPxyPx MPxyPy MPxyPxx MPxyPyy MPxyPxy


(3.14)

Mvv =



Mvv0vv0 Mvv0vvx Mvv0vvy Mvv0vvxx Mvv0vvyy Mvv0vvxy

Mvvxvv0 Mvvxvvx Mvvxvvy Mvvxvvxx Mvvxvvyy Mvvxvvxy

Mvvyvv0 Mvvyvvx Mvvyvvy Mvvyvvxx Mvvyvvyy Mvvyvvxy

Mvvxxvv0 Mvvxxvvx Mvvxxvvy Mvvxxvvxx Mvvxxvvyy Mvvxxvvxy

Mvvyyvv0 Mvvyyvvx Mvvyyvvy Mvvyyvvxx Mvvyyvvyy Mvvyyvvxy

Mvvxyvv0 Mvvxyvvx Mvvxyvvy Mvvxyvvxx Mvvxyvvyy Mvvxyvvxy


(3.15)
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MTT =



MT0T0 MT0Tx MT0Ty MT0Txx MT0Tyy MT0Txy

MTxT0 MTxTx MTxTy MTxTxx MTxTyy MTxTxy

MTyT0 MTyTx MTyTy MTyTxx MTyTyy MTyTxy

MTxxT0 MTxxTx MTxxTy MTxxTxx MTxxTyy MTxxTxy

MTyyT0 MTyyTx MTyyTy MTyyTxx MTyyTyy MTyyTxy

MTxyT0 MTxyTx MTxyTy MTxyTxx MTxyTyy MTxyTxy


.(3.16)

In 3D, these matrices would be 10× 10 block-matrices, instead of 6× 6 block systems.
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CHAPTER 4

Code Verification and Mesh Convergence

Since finding analytical solutions to the Navier-Stokes equations is difficult, the Method of

Manufactured Solutions (MMS) provides a technique to measure the numerical errors associated

with the discrete equations. This allows for the determination of the numerical scheme’s order

of accuracy, without using an analytical solution. In Section 4.1, we use the MMS to verify the

convergence rates in the L2 norm for different rDG spatial discretization schemes. In Section 4.2,

we compare the computational efficiency between a high-order and a low-order rDG scheme by

conducting a qualitative convergence study.

4.1. Method of Manufactured Solutions for the Compressible Navier-Stokes

Equations

To test convergence in space and time for the problem with both hyperbolic and diffusion

operators, the following solution is manufactured in 2D

T (x, y) = T̄ +AT cos (2π (x+ v0t)) sin (2π (y + v1t))

P (x, y) = P̄ +AP sin (2π (x+ v0t)) cos (2π (y + v1t))

v0 (x, y) = Av cos (2π (x+ v0t)) sin (2π (y + v1t))

v1 (x, y) = Av sin (2π (x+ v0t)) cos (2π (y + v1t)) ,

(4.1)

where

AT = δT0 + aT sin (2πt)

AP = δP0 + aP sin (2πt)

Av = δV0 + av sin (2πt) ,

(4.2)

and T̄ , P̄ , δT0 , δP0 , δV0 , aT , aP , av , v0 , v1 are given constants.
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Figure 4.1. On domain and mesh setup for 2D manufactured solution test problem.
α = β = 10o.

Solution Eq. (4.1) corresponds to translating (with velocity w = (v0 , v1)) and oscillating (with

amplitudes aT , aP and av) waves. In the following simulations, we set

w =
(

1
10 ,

1
10

)
P̄ = 1.0

T̄ = 1.0

δP0 = 0.1

δT0 = 0.1

δV0 = 10−4

aP = 0.05

av = 0.01

aT = 0.05.
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t=0.0 

t=0.2 t=0.3 

t=0.4 t=0.5 

t=0.6 t=0.7 

t=0.1 

Figure 4.2. Dynamics of the pressure field for manufactured problem, using
rDGP2P3

, ESDIRK5 , ∆t = 0.1, 32,762 elements.
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t=0.0 

t=0.2 t=0.3 

t=0.4 t=0.5 

t=0.6 t=0.7 

t=0.1 

Figure 4.3. Dynamics of the velocity field for manufactured problem, using
rDGP2P3

, ESDIRK5 , ∆t = 0.1, 32,762 elements.
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t=0.1


t=0.3


t=0.7


Figure 4.4. Dynamics of the temperature field for manufactured problem, using
rDGP2P3

, ESDIRK5 , ∆t = 0.1, 32,762 elements.
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Figure 4.5. On convergence of the pressure (left) and velocity (right) fields, with
mesh refinement and different space discretization schemes.

The γ-gas equation of state with γ = 1.4 was used. Both thermal conductivity and dynamic

viscosity are set to be constant, κ = 0.1 and µ = 0.1. Source terms generating this manufactured

solution are computed using symbolic manipulation in Mathematica. Once the source terms are

generated, the governing equations are solved on multiple grids with different mesh resolutions

using the generated source terms.

The domain and mesh are shown in Figure 4.1. Using high-fidelity space and time resolution,

the dynamics of pressure and velocity magnitude, and temperature fields are shown in Figures

4.2-4.4.

First, we measure space convergence rates, by using the 5th-order-accurate time discretization

ESDIRK5 and setting time step to 2×∆t = 0.001. This ensures that time discretization errors are

smaller than space discretization errors. The results are shown in Figure 4.5. As one can see, all

three of the rDG schemes converge consistently – i.e., with second order for rDGP0P1
, with third

order for rDGP1P2
, and with fourth-order for rDGP2P3

.

In the simulations, we used rDGP2P3
on the mesh with 32,762 elements, to ensure small spatial

discretization errors. This space resolution is sufficient to measure nearly asymptotic convergence
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rates for time discretization schemes up to the 3rd order accurate. The fourth- and the fifth-order

accurate ESDIRK4,5 schemes exhibit nearly 4th order convergence rate, when time steps are large.

The convergence is flatten for smaller time steps, when space discretization errors become dominant.

4.2. Mesh Convergence of the P0P1 and P2P3 rDG schemes

In this Section, we compare the computational efficiency between the high-order, rDGP2P3
, and

the low-order, rDGP0P1
, schemes for an internally heated, laser-induced melt convection problem.

Recall that the laser model is defined in Section 2.3. The figure of merit is to qualitatively resolve

all four unstable eddies/vortices at a non-dimensional time of t̂ = 35.

In Figure 4.6, the material is initially solid steel at a non-dimensional temperature of T̂ = 0 on

the same non-uniform mesh in Section 6.3. The laser spot of radius 0.1 is centered at (0,0), inter-

nally heating the material, inducing unsteady melt convection. The bottom wall has a Dirichlet

boundary condition with temperature fixed at T̂ = 0, while all other walls have Neumann boundary

conditions for temperature with zero heat flux. All four walls enforce a no-slip boundary condition

on velocity. The melt temperatures are Tsolidus = 0.95 and Tliquidus = 1.05, corresponding to a

mushy region thickness of ε = 0.1. The Rayleigh, Prandtl, and Stefan numbers are: Ra = 105,

Pr = 0.13, and Ste = 8. In all runs, we used a time step, ∆t = 0.1.

We refine the mesh, successively, until both the low-order and high-order schemes visually

resolve all four eddies with streamlines, as seen in Figure 4.6. On the left column, we observe that

the fourth eddie, V4, is finally captured with the 2nd order accurate, rDGP0P1
scheme, on a fine,

320× 160 mesh. On the right column, however, the 4th-order accurate, rDGP2P3
scheme, captured

the fourth eddie with a very coarse, 48 × 24, mesh. For both schemes, we further refine the mesh

in order to verify that the solution has indeed converged.

In Figure 4.7, we compare both of the fully resolved cases, side by side. Comparing the two
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meshes, the rDGP0P1
scheme required 45 times more elements than the rDGP2P3

scheme. To com-

pare the number of degrees of freedom used, we note that in 2D, the 4th-order scheme has 6 degrees

of freedom per equation per element, while the 2nd-order scheme has 1 degree of freedom per equa-

tion per element. Since the fourth order scheme has 6 times more degrees of freedom per element,

45 times less elements translates to a factor of 7.5 times less total degrees of freedom. The 4th-order

scheme, however, only converged in half of the CPU runtime compared to the 2nd-order scheme,

because high-order methods are more computationally expensive per degree of freedom. We also

note that since the high-order method required only a coarse mesh, the CFL and Fourier num-

bers, defined in Appendix A.2, were much lower: CFLaco = 378, CFLmat = 0.87 and Foν = 162,

Foα = 1.2, as compared to much higher CFL and Fourier numbers with the low-order method:

CFLaco = 2500, CFLmat = 6 and Foν = 7000, Foα = 55. Since the low-order case had significantly

higher CFL and Fourier numbers, the underlying linear systems are more ill-conditioned/stiff, se-

verely hindering scalability.

When we lowered the Rayleigh number, Ra ≤ 103, for the same test problem, the convergence

study showed that the low order rDG-based scheme on a coarse mesh was sufficient to capture the

dynamics. This convergence study demonstrates that for Rayleigh numbers above Ra ≥ 105 or when

the flow has several unstable vortices, the high-order rDG-based scheme is more computationally

efficient than the low-order rDG-based scheme, for the same qualitative solution.
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Figure 4.6. Qualitative convergence study of the low-order rDG scheme, left col-
umn, and the high-order rDG scheme, right column, for an internally heated melt-
convection problem. The figures show velocity magnitude with streamlines in red
at a non-dimensional time: t̂ = 35. All four vortices, V1-V4, indicate convergence.
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CFLaco= 378
CFLmat= 0.87
Fo⌫= 162
Fo= 1.2
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CFLmat= 6
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Fo= 55
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V1	
V3	

V4	

Figure 4.7. Side by side comparison showing the number of elements, number of
degrees of freedom, and CFL/Fourier numbers for both the low-order (top figure)
and high-order (bottom figure) rDG schemes.
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CHAPTER 5

Solidification Model Results

In this Chapter, we analyze different combinations of the velocity suppression models, as de-

scribed in Section 2.2.2. Since we are primarily interested in modeling melt convection, we only

require a simple strength model that enforces the solid phase to be static. Therefore, to discriminate

between the velocity suppression models, the primary figure of merit is the magnitude of velocity

in the solid. Since the drag force model is a function of the drag coefficient, C, and the enhanced

viscosity model is a function of the viscosity ratio, µs
µl

, we test different combinations of the two

parameters that inhibit the motion of the solid and mushy regions.

5.1. Problem Formulation

For a laser-induced melt convection problem, as seen in Figure 5.1, we discriminate between

the various velocity suppression models by measuring the velocity magnitude as a function of po-

sition in the solid and mushy phases for each of the tested models. We use the material values

defined in Appendix A.3. The laser has a power of 200W and moves at 2000 mm/s. For this

problem, we choose to use a large mushy region to measure the velocity drop-off across many grid

cells, Tsolidus = 945K and Tliquidus = 2355K. The test problem is run on a 64× 64 mesh using the

2nd-order accurate, rDGP0P1
spatial discretization scheme. The measurements were made after 15

time steps using a ∆t = 2.7µs and using a 2nd-order, BDF2 time discretization scheme.

5.2. Analysis of Velocity Suppression Models

The results for all of the velocity suppression models are shown in Figure 5.2. For the top

four cases, we show results for varying drag coefficients across the four plots and varying viscosity

ratio’s within each plot. For the bottom four cases, we show results for varying viscosity ratio’s
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across the four plots and varying drag coefficients within each plot. For the lower two drag co-

efficient cases, C = 0 and C = 10, 000, we observe that the models with a higher viscosity ratio

correspond to smaller velocity magnitude values in the solid, as we would expect. For the higher

drag coefficient cases, C = 100, 000 and C = 500, 000, we observe that the higher viscosity ratio’s,

however, correspond to larger velocity magnitudes in the solid. This trend is expected because

as both parameters become very large, the viscous term begins to compete with the drag term,

reducing the efficacy of the drag model. Note that velocity magnitudes below 10−13 are in the

range of floating point roundoff and are negligible.

With the exception of the pure viscosity models, all of the tested velocity suppression models

have sufficient levels of velocity suppression in the solid. Thus we further discriminate between the

models by considering the computational efficiency (CPU wall-time) of the various models, which

is ultimately dependent on the underlying non-linear/linear solvers and choice of preconditioner.

Recall that the enhanced viscosity models introduce strong nonlinearities in the parabolic (viscous)

operator while the drag force models introduce strong nonlinearities in the source term operator.

As a result, we select a phase change model based on the choice of preconditioner, which is selected

based on the stiffness of the particular problem (large or small CFL numbers). For the externally

induced phase change problems (melting/freezing from the wall) with thick mushy regions, we use

a viscosity ratio of µs
µl

= 10, 000 and C = 500, 000. For the laser-induced melt convection problems

with thin mushy regions, we use a pure drag model
(
µs
µl

= 1
)

with C = 500, 000, in order to avoid

large viscosity jumps across the thin interface.
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Figure 5.1. Laser-induced melt pool showing temperature and streamlines at non-
dimensional time, t̂ = 1.5 × 10−3. The velocity magnitude is measured on the the
vertical (red) line and used in Figure 5.2.
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Figure 5.2. Plots of velocity magnitude vs. vertical height. The top four figures
vary the drag coefficients across the plots and vary the viscosity ratio’s within each
plot. The bottom four figures vary the viscosity ratio’s across the plots and vary
the drag coefficients within each plot.
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CHAPTER 6

Parametric Studies

In this Chapter, we demonstrate that our numerical framework can robustly handle a wide range

of melt convection problems. To accomplish this, we independently scale each dimensionless num-

ber, analyzing the sensitivity of the melt convection dynamics to the non-dimensional parameters.

Different melting and solidification configurations are tested, verifying the ability to simulate both

melting and solidification problems. As described in Section 2.4, our non-dimensionalized equations

for melt convection problems depend on three dimensionless numbers: the Rayleigh number, Ra,

the Prandtl number, Pr, and the Stefan number, Ste.

In each of the following Sections, we vary one of the non-dimensional numbers while holding

the other two constant. When held constant, the dimensionless numbers are: Ste = 5, Pr = 0.1,

and Ra = 106.

6.1. Prandtl Number Effects

In this Section, we vary the Prandtl number for three cases: Pr = 0.01 (mercury), 0.1 (steel),

7 (water), while holding the Rayleigh number, Ra = 106, and Stefan number, Ste = 5, constant.

In all of the cases, the material is initially held at a non-dimensional temperature of T̂ = 2. The

temperature boundary condition at the left and right walls have Dirichlet boundary conditions, set

to a temperature of T̂ = 2. The temperature boundary condition on the top and bottom walls

have a Neumann boundary condition with zero heat flux. All four walls enforce a no-slip boundary

condition on velocity. The melt temperatures are Tsolidus = 1.45 and Tliquidus = 1.55, correspond-

ing to a mushy region thickness of ε = 0.1. At t̂ = 0, the left wall temperature drops to T̂ = 1.6,

inducing natural convection. Once steady-state circulation is developed at t̂ = 1000, the left wall
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temperature drops further to T̂ = 1, forming a solid crust that advances from the left wall.

The simulations are run on a 64 × 64 mesh using a 4th-order accurate rDGP2P3
spatial dis-

cretization scheme. We simulate t̂ = 2000 units of dimensionless time using a 2nd-order, BDF2 time

discretization scheme. Since our simulations are fully-implicit and we want to step over acoustic

and material timescales (dynamics evolve slowly), we pick a time step, ∆̂t = 2.0, corresponding to

large CFL and Fourier numbers: CFLaco = 3,200, CFLmat = 30, Foα = 200, Foν = 200.

In Figure 6.1, the plots on the left column show the temperature and velocity vectors of natural

convection at steady-state for increasing Prandtl numbers (from top to bottom), while the plots on

the right column show velocity magnitudes of the corresponding cases at the same time. For the

top case, Pr = 0.01 (mercury), we observe that the natural convection pattern has a ring-shaped,

annular structure, as deduced from the velocity magnitude and velocity vectors. This low Prandtl

number case corresponds to a thin viscous boundary layer, allowing for easier flow penetration and

enhanced natural convection heat transfer near the vicinity of the wall. Our results are in agree-

ment with [66], which show a similar trend of increased heat transfer at the wall for decreasing

fluid Prandtl numbers. For the higher Prandtl number case, Pr = 7 (water), we observe that the

flow velocity begins to diminish near the top and bottom walls, which is due to a thicker viscous

boundary layer inhibiting flow penetration. As expected, the intermediate case, Pr = 0.1 (steel),

resembles a flow structure between the two extreme cases.

After natural convection at steady-state is developed, we drop the left wall temperature from

T̂ = 1.6 to T̂ = 1, which is below the freezing temperature. As the liquid freezes, the solid

crust slowly advances to the right, until steady-state is reached again, as seen in Figure 6.2. As

expected, the natural convection patterns developed in Figure 6.1 are displaced to the right from

the advancing solid crust from the left wall. The solid-liquid interface is denoted by the two thin

black contour lines, where the left contour corresponds to the solidus temperature and the right

contour corresponds to the liquidus temperature, and the mushy region exists in-between. In the
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top case, Pr = 0.01, the solid-liquid interface is curved around the circular convection pattern,

while in the bottom case, Pr = 7, the solid-liquid interface is less curved and more straight.
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Figure 6.1. Natural convection without phase change at steady-state. Left column
shows temperature with velocity vectors and right column shows velocity magnitude.
The Prandtl number increases from the top row to the bottom row: Pr = 0.01, 0.1, 7.
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Figure 6.2. Natural convection with phase change at steady-state. Left column
shows temperature with velocity vectors and right column shows velocity magnitude.
The Prandtl number increases from the top row to the bottom row: Pr = 0.01, 0.1, 7.
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6.2. Stefan Number Effects

In this Section, we vary the Stefan number for two cases: Ste = 5.0 and Ste = 0.5, while

holding the Prandtl number, Pr = 0.1, and Rayleigh number, Ra = 106, constant and using the

same problem setup as in the last Section 6.1.

In Figure 6.3, we show the temperature and streamlines for both the low and high Stefan

numbers cases, on the top and bottom rows, respectively. The plots on the left column correspond

to a snapshot in time when the solid crust just begins to appear and advance to the right. Com-

paring both Stefan number cases, we observe that the solid-liquid interface for the higher Stefan

number case has advanced further to the right, for the same snapshot in time. This behavior is

expected if one recalls that the Stefan number, as defined in Eq. (2.32), is the ratio of sensible

heat to latent heat. Larger Stefan numbers correspond to relatively smaller latent heats, which

means less energy is required for a change of phase. Thus in problems with larger Stefan numbers,

for a given temperature gradient, the solid-liquid interface will propagate faster, as verified in the

left column of Figure 6.3. The plots on the right column correspond to a snapshot at steady-state.

Comparing the two cases, we observe only minor differences in the final position of the solid-liquid

interface. These differences are expected since natural convection occurs simultaneously as the

interface is propagating, thus changing the final position of the solid-liquid interface. Since the

velocity magnitudes are quite small, |v̂| < 1, there are only minor differences in the final interface

position. If the velocity magnitudes were very large, however, we would expect larger differences

in the final position of the solid-liquid interface due to the non-linear coupling of the governing

equations. In contrast, for a pure heat conduction (Stefan) problem, all Stefan number cases would

have the same final solid-liquid interface position.
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Figure 6.3. Temperature and streamlines are shown for two snapshots in time
and two different Stefan numbers (Ste = 0.5 on the top row and Ste = 5.0 on the
bottom row). The left column shows snapshots at t̂ = 275, when the solid crust
just appears, while the right column shows snapshots at t̂ = 2000, corresponding to
steady-state.
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6.3. Rayleigh Number Effects

In this Section, we vary the Rayleigh number for three cases: Ra = 104, 106, 108, while holding

the Prandtl number, Pr = 0.1, and Stefan number, Ste = 5, constant. In this study, we use a more

challenging non-uniform, wedge-shaped domain.

In all three cases in Figure 6.4, the material is initially solid steel with a non-dimensional tem-

perature of T̂ = 1 on the non-uniform mesh. The top and bottom walls have Dirichlet boundary

conditions for temperature and both are initially set to a temperature of T̂ = 1. The bottom

wall is quickly ramped to a higher temperature of T̂ = 2.0, inducing melt convection from the

bottom. The left and right walls have Neumann boundary conditions for temperature with a zero

heat flux. All four walls enforce a no-slip boundary condition on velocity. The melt temperatures

are Tsolidus = 1.4 and Tliquidus = 1.6, corresponding to a mushy region thickness of ε = 0.2. The

simulations are run on a 40 × 80 mesh using a 4th-order accurate rDGP2P3
spatial discretization

scheme. We simulate t̂ = 1000 units of dimensionless time using a 2nd-order, BDF2 time discretiza-

tion scheme. We can again afford to pick a large time step, ∆̂t = 0.5, corresponding to large

CFL/Fourier numbers: CFLaco = 10,000, CFLmat = 15, Foα = 6, and Foν = 624.

As seen in Figure 6.4, we increase the Rayleigh number by two orders of magnitude in each case.

For all cases, we observe that heating from the bottom produces the well known Rayleigh-Benard

thermal instability, due to thermal buoyancy. For the low Rayleigh number case, 104, steady-state

develops at t̂ = 1000 with only two convection cells. As we increase the Rayleigh number to 106,

more convection cells grow, and steady-state never develops since the eddies become unsteady with

time, known as “soft turbulence”. In the high Rayleigh number case, Ra = 108, the onset of “hard

turbulence” begins and the simulation is completely unsteady with multiple large and small eddies.

In Figure 6.5, a time sequence is shown for this high Rayleigh number case, where we see the

formation and subsequent break-up of eddies with time.
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Figure 6.4. Temperature plots with streamlines at time, t̂ = 870, for increasing
Rayleigh number.
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Figure 6.5. Temperature plots with streamlines for several time snapshots for the
high Rayleigh number case, Ra = 108.
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6.4. Melting/Solidification Configuration Effects

In this Section, we qualitatively verify that our numerical framework correctly produces the

expected results in melt convection problems for different melting and solidification configurations.

We accomplish this by analyzing the sensitivity of melting and freezing on four different configura-

tions. In all cases, we use the same geometry and parametric values in Section 6.3.

For each of the four different configurations in Figures 6.6 and 6.7, we have two oppositely

faced Dirichlet boundary conditions for temperature and two oppositely faced Neumann boundary

conditions for temperature. All four walls have no-slip boundary conditions for velocity. In the

top left case of Figure 8.10, the top wall is set to T̂ = 1 while the bottom wall is set to a higher

temperature of T̂ = 2, inducing melt convection from the bottom. In the other configurations, the

high temperature wall is set the top, left, and right walls, respectively.

As seen in the top left case of Figure 6.6, heating from the bottom produces the well known

Rayleigh-Benard instability, while heating from the top produces a stable configuration as seen in

the top right case. Heating from the left and right produce steady natural circulation cells for the

given Rayleigh number.

In Figure 6.7, we use the same four configurations except we reverse the boundary conditions

and instead cool from the bottom, top, right, and left, respectively. We observe similar flow

dynamics as in the melting cases, but an asymmetry exists due to the different initial conditions.

For the melting case, we start with an initial (solid) block of steel, where as in the freezing case,

we start with an initial (liquid) melt pool. The melting case is computationally very challenging,

especially for incompressible flow solvers, since ∇ · v = 0 must be enforced at the beginning of the

melting process [46]. Since we use an artificial compressibility approach, as described in Section

2.1.2, we do not observe any such difficulty.
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Figure 6.6. Temperature plots with velocity vectors for four heating configura-
tions. Heating from the bottom, top, left, and right walls.

-54-



Figure 6.7. Temperature plots with velocity vectors for four cooling configurations.
Cooling from the bottom, top, left, and right walls.
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CHAPTER 7

Laser Processing Results: Moving Laser-Induced Melt Convection

Since we are interested in developing numerical simulations of laser-based additive manufactur-

ing processes, such as SLM, we want to verify that our numerical framework can converge moving

laser-induced melt convection. We show converged results for 2D single-track simulations in Section

7.1 and 3D single-track simulations in Section 7.2. The necessity of 3D simulations is demonstrated

in Section 7.3, since 2D simulations have artificially elongated melt pools, an unphysical phenom-

enon.

7.1. 2D Single-Track Simulations

In this numerical example, we simulate a moving two-dimensional laser-induced melt convec-

tion problem. As seen in Figures 7.1 and 7.2, the single-track domain is 1 mm × 0.3 mm. Using

the same material parameters defined in Appendix A.3 and the beam model described in Section

2.3, we scan a 200W laser at 2000 mm/s laser across the 1 mm track (centered at the top of the

domain). The max penetration depth of the laser is 0.05 mm.

The material is initially an idealized metal with properties similar to those of stainless steel

at room temperature, T0 = 300 K, with an energy absorption coefficient of 0.3. The bottom wall

has a Dirichlet boundary condition for temperature, fixed at T = 300 K, while the other walls have

Neumann temperature boundary conditions with zero heat flux. The top wall has a slip-boundary

condition while the remaining walls enforce a no-slip boundary condition on velocity. The simu-

lation has 40,000 elements in the melt pool (50,000 elements total) using the 2nd-order accurate,

rDGP0P1
, spatial discretization scheme. Since we want to resolve the time scale associated with

the laser’s velocity, we pick a time step, ∆t = 0.275µs, which is below the dynamic time scale of

the laser. These time steps correspond to CFLaco = 1 and CFLmat = 10−5, and Foα = 1.6 and

Foν = 0.2. Using a 2nd-order, BDF2 time discretization scheme, we simulate a total of 500µs,
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which is the time it takes for the laser to scan across the domain.

As the laser moves across the domain and heats the steel beyond its melt temperature, melt

pools are formed and subsequently solidified. The temperature field is shown in Figure 7.1 while the

velocity field and streamlines are shown in Figure 7.2. Both figures show plots for four snapshots

of the simulation in time. Peak temperatures of the steel are observed to be upwards of 5, 800 K.

Similar laser parameters were used in a single-track simulation in [36], but the peak temperatures

were found to be 3, 100 K, corresponding to the boiling temperature of steel. As mentioned in

Section 2.1, since the simulations do not account for the latent heat of vaporization of steel, which

is on the order of megajoules per kilogram, radiative effects, or Marangoni convection, the significant

over-prediction in temperature is expected. We note that since the Rayleigh number is very low,

Ra ∼ 102, and there are only two stable vortices, the low-order, rDGP0P1
, scheme is sufficient to

capture the dynamics in the melt pool.

7.2. 3D Single-Track Simulations

In our final numerical example, we consider a 3D laser-induced melt convection problem on a

single-track. The domain is 1 mm × 0.1 mm × 0.1 mm as shown in Figure 7.3. We use the same

parameters as in the 2D laser-induced melt convection problem in Section 7.1.

As in the last example, the material is initially solid steel at room temperature, T0 = 300 K,

with an energy absorption coefficient of 0.3. The bottom wall has a Dirichlet boundary condition

for temperature, fixed at T = 300 K, while the other walls have Neumann temperature boundary

conditions with zero heat flux. Both the top wall and the closest facing wall (at Z = 0.1 mm)

have slip-boundary conditions for velocity, while the remaining walls enforce a no-slip boundary

condition. For computational efficiency, we only simulate half the domain since the problem is

symmetrical across the Z-axis.

We simulated the 3D laser melting problem for two different cases: one with a coarse mesh with

a total of 150,000 elements and the other with a fine mesh, with a total of 700,000 elements. The
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Figure 7.1. Temperature plots with temperature contours of a 2D single-track for
different time snapshots (in microseconds). Black contour line corresponds to the
solid-liquid interface.
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Figure 7.2. Velocity magnitude plots with streamlines of a 2D single-track for
different time snapshots (in microseconds). Black contour line corresponds to the
solid-liquid interface.
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coarse mesh case had 100,000 elements in the melt pool and required 6.5 hours on 120 processors

using a combined phase change model, µs
µl

= 10, 000 and C = 500, 000, with a ∆t = 2.75µs, corre-

sponding to: CFLaco = 3 and CFLmat = 10−6, and Foα = 1.43 and Foν = 34. The fine mesh case,

as seen in Figure 7.3, had 450,000 elements in the melt pool and required 60 hours to complete

on 320 processors using a pure drag force phase change model, C = 500, 000, with a ∆t = 0.25µs,

corresponding to a CFLaco = 0.5 and CFLmat = 10−7, and Foα = 0.4 and Foν = 0.05. In both

cases, the simulation are run using the rDGP0P1
spatial discretization scheme and the BDF2 time

discretization scheme with time steps that resolve the dynamic time scale of the laser.

Similar to the 2D single-track example, both of the 3D cases significantly over predict the

peak temperature, as expected. Simulations of the multi-material SLM process will require over a

million elements to capture high-resolution dynamics in the melt pool. Scaling up to simulations

with more than a million elements, however, requires a more computationally efficient solver and

preconditioner, such as developed in Chapter 8.

7.3. Single-Track Length: 2D vs. 3D

To verify the necessity of 3D laser melting simulations (instead of 2D approximations), we

compare the size of the melt pool from the 2D and 3D simulations on the (X-Y ) plane at t = 500µs.

As seen in Figure 7.4, the melt pool in the 2D simulation is roughly twice as long as the melt pool

in the 3D simulation. This difference is expected, since in 3D there is an additional dimension for

energy to be transported, while in the 2D case, the energy is confined to the 2D plane, artificially

elongating the melt pool. The extra dimension also explains why the peak temperature in the

2D case is slightly higher than the 3D case. Thus, single-track laser melting experiments are

an inherently 3D process and require 3D simulations. The melt pool track length shown here

qualitatively compares to the simulation results in [37].
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Figure 7.3. 3D single-track showing half the domain on a 700,000 element mesh.
Temperature is shown on the top and the velocity magnitude with vectors is shown
on the bottom, at t = 325µs. The black contour lines represent the solidus and
liquidus temperatures, respectively.
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Figure 7.4. Length and height of the melt pool on the (X-Y ) plane for the 2D
and 3D single-track domains using a rDGP0P1

scheme.
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CHAPTER 8

Exploring Preconditioning Strategies

In this Chapter, we review and compare common preconditioning strategies in the literature.

Numerical results (strong and weak scaling studies) are shown for three problems of increasing

complexity: low-Mach lid-driven cavity flow, low-Mach melt convection on a non-uniform mesh,

and 3D laser-induced melt convection on single and multiple melt tracks. The lid-driven cavity

flow problem exhibits the numerical challenges associated with stepping over acoustic time-scales

in the low-Mach regime. In the melting brick problem, the acoustic time-scale as well as the viscous

time-scale associated with solid-liquid phase change are stepped over. Finally, the 3D laser melting

problems incorporate the previous challenges with an additional nonlinearity associated with rapid

heating due to a moving laser source. We find that the most robust and efficient preconditioner

is a multigrid block reduction technique, developed in Section 8.2.4, which uses the the velocity-

pressure (vP ) and velocity-temperature (vT ) Schur complement systems.

8.1. Need for a Scalable and Efficient Preconditioner

The results up until now have been using an LU factorization as a preconditioner for the outer

JFNK solver, which is an unscalable approach since the largest problem that can be fit into memory

is 700,000 elements in 3D, as seen in Figure 7.3. To simulate larger problems, a scalable and com-

putationally efficient preconditioner needs to be developed with the ability to converge solutions

resulting from highly-ill conditioned systems at high CFL/Fourier numbers.

Performance of all preconditioners are compared by analyzing outer GMRES iteration counts

and CPU-times. All calculations requiring over 500 processors were run on the Jade supercomputer

at the Lawrence Livermore National Laboratory. The machine has 1,302 compute nodes (36 pro-

cessors per node) with 2.1 GHz Intel Xeon E5-2695 processors and 128 GB of memory per node. All
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other runs were performed on the RZMerl supercomputer with 154 compute nodes (16 processors

per node) using 2.6 GHz Sandy Bridge processors with 32 GB of memory per node.

8.2. Survey of Preconditioning Techniques

In this section, we survey common preconditioning techniques in the literature for JFNK solvers.

An extensive survey of JFNK methods and preconditioners can be found in [40].

8.2.1. One-Level Additive Schwarz Preconditioner. We consider an element-block ad-

ditive Schwarz method as a preconditioner for the outer JFNK solver. In this study, the degrees

of freedom in each element-block consist of all three cell-averaged fields: pressure, velocity, and

temperature. In this one-level approach, we couple all degrees of freedom within an element block

to all degrees of freedom within neighboring elements in the stencil, using an element-block Schur

complement matrix. To form the Schur complement matrix, the element block matrix (a 4 × 4

system in 2D) is exactly inverted and a diagonal approximation is used for the overlapping degrees

of freedom.

8.2.2. Monolithic Algebraic Multigrid Preconditioner. We apply Algebraic Multigrid

(AMG ) on the fully-coupled monolithic system as a preconditioner to the outer GMRES-Newton

solver. We use HYPRE’s BoomerAMG, a parallel implementation of AMG developed at the

Lawrence Livermore National Laboratory [27]. In this study, we use the default settings for Boomer-

AMG, which utilizes a symmetric SOR smoother on a single V-Cycle with Falgout coarsening.

8.2.3. Physics-Block Gauss-Seidel. This preconditioner uses the lower triangular portion

of the approximate Jacobian matrix, ordered by physics blocks,
MPP 0 0

MvP Mvv 0

MTP MTv MTT




xP

xv

xT

 =


bP

bv

bT

 .(8.1)
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The outgoing vector is then solved for with one iteration of a block Gauss-Seidel method,

xP = M−1
PPbP(8.2)

xV = M−1
vv(bv −MvPxP )(8.3)

xT = M−1
TT (bT −MTPxP −MTvxv).(8.4)

To approximate the action of the inverse for the three block solves in Eq.’s (8.2-8.4), we use

BoomerAMG as a preconditioner to FGMRES. A similar physics-block Gauss-Seidel strategy was

developed and implemented in [65, 70].

8.2.4. Physics-Block Schur Complement (vP -vT ). Since our 2-parameter EOS has no

pressure-temperature dependance, the pressure and temperature coupling is weak. Therefore, the

MPT and MTP blocks can be neglected without a loss in robustness. Thus, the 3× 3 block system

reduces to 
Mvv MvP MvT

MPv MPP 0

MTV 0 MTT




xv

xP

xT

 =


bv

bP

bT

 .(8.5)

The block LU decomposition of this 3× 3 system is


Mvv MvP MvT

MPv MPP 0

MTV 0 MTT

 =


I 0 0

MPvM−1
vv I 0

MTvM−1
vv −MTvM−1

vvMvPS−1
vP I




Mvv MvP MvT

0 SvP −MPvM−1
vvMvT

0 0 Z

 .
(8.6)

where SvP is the velocity-pressure Schur complement

SvP = MPP −MPV M−1
vvMvP ,(8.7)

and Z is a nested Schur complement matrix, coupling velocity, pressure, and temperature

Z = MTT −MTvM−1
vv(I + MvPS−1

vPMPvM−1
vv)MvT .(8.8)
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As noted in [18], solving the fully-coupled 3 × 3 nested Schur complement system is formidable.

Instead, we reduce the 3 × 3 system to a sequence of reduced 2 × 2 block systems, the velocity-

pressure (vP ) and velocity-temperature (vT ) systems. The block LU decomposition of the 2 × 2

vP system is given by Mvv MvP

MPv MPP

 =

Mvv 0

MPv SvP

I M−1
vvMvP

0 I

 .(8.9)

Similarly, the block LU decomposition of the 2× 2 vT system is given by,Mvv MvT

MTv MTT

 =

Mvv 0

MTv SvT

I M−1
vvMvT

0 I

 ,(8.10)

where the vP and vT Schur complement matrices are defined as

SvP = MPP −MPV M−1
vvMvP(8.11)

SvT = MTT −MTV M−1
vvMvT .(8.12)

Using these physics-block factorizations, the vP -vT Schur complement preconditioning matrix is

MvP−vT =


Mvv MvP MvT

MPv MPP MPvM−1
vvMvT

MTv MTvM−1
vvMvP MTT

 =


Mvv 0 0

MPv SvP 0

MTv 0 SvT




I M−1
vvMvP M−1

vvMvT

0 I 0

0 0 I

 .
(8.13)

With the above preconditioning matrix, the solution procedure proceeds in two steps. First, the

intermediate velocity, pressure, and temperature solutions are solved using forward substitution

x∗v = M−1
vvbvv(8.14)

xP = S−1
vP (bP −MPvx∗v)(8.15)

xT = S−1
vT (bT −MTvx∗v).(8.16)
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Finally, the velocity solution is corrected using backward substitution

xv = M−1
vv(bv −MvPxP −MvTxT ).(8.17)

Note that this procedure is analogous to Chorin’s projection algorithm and operator-splitting meth-

ods, such as SIMPLE, in incompressible flow solvers [16, 71].

Eq.’s (8.15) and (8.16) require approximating the action of the inverse of a Schur complement

system. Explicitly forming the exact Schur complement matrices is prohibitively expensive, since

the inverse of Mvv would be required. We implement three different strategies for solving the Schur

complement system.

(1) Form an approximate Schur complement matrix by using a diagonal approximation, Dvv =

diag(Mvv). In this case, SvP and SvT are now replaced by S̃vP and S̃vT , respectively

S̃vP = MPP −MPvD−1
vvMvP(8.18)

S̃vT = MTT −MTvD−1
vvMvT .(8.19)

Dvv is a good approximation of Mvv when the off-diagonal contributions are small relative

to the diagonal, such as the case for small time steps or small viscosity ratio’s between the

solid and liquid phase.

(2) Solve the exact Schur complement systems in a matrix-free fashion, without explicitly

forming the Schur complement matrices. In this strategy, M−1
VV is approximated with a

single V-cycle.

(3) (Most robust case) Solve the exact matrix-free, SvP and SvT Schur complement systems,

but now preconditioned with the explicitly formed Schur complement matrices, S̃vP and

S̃vT , as defined in Eq.’s (8.18) and (8.19).
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These three strategies are compared in Section 8.4.2. To approximate the action of the inverse

of the block solves in Eq.’s (8.14-8.17), we use AMG preconditioned GMRES to solve each block

system to a relative linear tolerance of 10−1. Various combinations of preconditioners and solvers

(SOR, AMG, GMRES), as well as linear tolerances are explored in Section 8.3.4.

8.3. Low-Mach Lid-Driven Cavity Flow Results

The velocity magnitude with streamlines and temperature fields for the 2D lid-driven cavity

flow problem is shown in Figures 8.1 and 8.2, respectively. For performance analysis, the initial

temperature of the entire domain is set to a constant temperature T = 1 and all four walls have

isothermal boundary conditions for temperature at T = 1. The top wall is moving to the right

with a prescribed velocity, vx = 1, and all other walls enforce a no-velocity condition. For all of

the studies, we started at t ≈ 2 and counted the number of outer FGMRES iterations and CPU

time per time step, averaged over 50 time steps. A square domain with a 512×512 mesh resolution

was used, except for the strong and weak scaling results. The Mach number varied in the range of

10−2 to 10−5. The rDGP0P1
scheme and the BDF2 integrator were used for performance analysis

of different preconditioning techniques.
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Figure 8.1. Dynamics of the velocity magnitude and streamlines for rDGP2P3
,

mesh resolution 128× 128, ESDIRK5 , ∆t = 1, Re = 104.
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Figure 8.2. Dynamics of the temperature field for rDGP2P3
, mesh resolution 128×

128, ESDIRK5 , ∆t = 1, Re = 104. Left and right walls are initially held at
temperatures of T = 1 and T = 2, respectively, with a linear temperature gradient
across the domain.

-70-



8.3.1. Eigenvalues for a Lid-Driven Cavity Flow Matrix. To illustrate the complexity

of solving the Jacobian system in Eq. (3.5), the eigenvalues of an unpreconditioned Jacobian matrix

is plotted for the lid-driven cavity flow problem in Figure 8.3. In this system, the condition number

is on the order of 10 million, corresponding to an acoustic CFL number of 10,000 and an advection

CFL number of 30. An effective preconditioner that clusters the eigenvalues is thus necessary for

rapid convergence.

CFLaco=10,000
CFLmat= 30
Focond=5
Fovisc=0.5

Figure 8.3. Eigenvalues of an unpreconditioned Jacobian matrix for the low-Mach
lid-driven cavity flow problem. The condition number is large, κ = 107.

8.3.2. Weak Scaling Study. In Figure 8.4, we conduct a (fixed CFL number) weak scaling

study to analyze the algorithmic scalability of the different preconditioners for the low-Mach lid-

driven cavity flow problem. In all of the cases, the number of degrees of freedom per processor is

fixed, to ensure a constant workload. The mesh varied from 362 × 362 up to 2048 × 2048, while

the number of processors varied from 16 to 512. The acoustic CFL number was fixed at 15 and all

other time-scales were resolved. We note that as the number of degrees of freedom (DoF) increases

in each case, the mesh width decreases, which increases the Fourier number.

As seen in Figure 8.4, all of the preconditioners scale well in the weak sense. The one-level
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additive Schwarz preconditioner converges with the most iterations and CPU time for the given

CFL number. The physics-block Gauss-Seidel preconditioner fares better, but the LU factorization

and the vP -vT Schur complement preconditioners converge in the least number of iterations1. The

LU factorization is competitive up to 105 DoFs, but performance significantly degrades above 106.

Furthermore, the LU factorization preconditioner cannot load problems larger than 106 DoFs in

memory. As a result, the vP -vT Schur complement preconditioner had the best performance and

is algorithmically scalable.

Figure 8.4. Weak scaling (fixed CFL) study for the low-Mach lid-driven cavity
flow problem.

8.3.3. Acoustic CFL Number Study. Next, in Figure 8.5, we study the effect of the acous-

tic CFL number on the performance of the different preconditioners. In each case, we increase the

sound speed by a factor of 10, which proportionally increases the acoustic CFL number from 1 to

1, 280. Since the Mach number is a function of the sound speed, it decreases from 10−2 to 10−5.

All other time-scales were resolved.

1Linear iterations are measured over the full time step, which may include several Newton steps. Additionally, since
the Jacobian matrix is only approximate, an LU factorization preconditioner will still require more than one GMRES
iteration.
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AMG on the fully-coupled system and the one level-additive Schwarz preconditioners were un-

able to converge for the problems above acoustic CFL numbers of 1 and 10, respectively. This result

is not surprising as the high CFL numbers create a strong global stiffness, leading to non-diagonal

dominance [13]. The physics-block Gauss-Seidel preconditioner was more effective in capturing the

global coupling and as a result was very efficient when the acoustic CFL number was less than

10. For larger CFL numbers, the physics-block Gauss-Seidel preconditioner became ineffective and

failed to converge above CFL numbers of 100. The only preconditioners that were moderately

independent of the acoustic CFL number were the LU factorization and the vP -vT Schur com-

plement preconditioners. Both methods had a constant number of outer FGMRES iterations per

time step, due to the robust coupling of the velocity-pressure system. We observe that the vP -vT

Schur complement preconditioner had the best performance as it converged with the least amount

of CPU time.

Figure 8.5. Acoustic CFL number study for the low-Mach driven cavity flow problem.

8.3.4. vP -vT Schur Complement Preconditioner: Block Solver/Tolerance Study.

In Figures 8.6 and 8.7, we compare the performance of different relative block-tolerances and var-

ious combinations of solvers and preconditioners, respectively, as a function of time step for the

vP -vT Schur complement preconditioner. As the time step increases in each case for both studies,

all of the CFL and Fourier numbers increase, as seen in Table 8.1. In both studies, we observe that
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as the time step increases, the average number of iterations and CPU time per time step increases

for all cases, which is expected since the condition number of the underlying systems is a function

of the CFL/Fourier numbers.

For the relative block tolerance study in Figure 8.6, each block is solved with AMG precondi-

tioned FGMRES (AMG-FGMRES). We observe that all three cases require a similar number of

outer GMRES iterations. A relative block tolerance of 10−1, however, converges with the shortest

CPU-time. To maximize computational efficiency, the block-solves should have a loose relative

tolerance in the preconditioner.

For the solver/preconditioner study in Figure 8.7, a fixed relative block tolerance of 10−1 is

used. GMRES as a standalone block-solver was the least robust and failed to converge above an

acoustic CFL number of 300. AMG as a standalone block-solver and SOR-FGMRES were more

robust solvers, but failed to converge past an acoustic CFL number of 3000. An LU factorization

and AMG-FGMRES were the most robust block-solvers and were able to converge the most ill-

conditioned case, corresponding to an acoustic CFL number greater than 30,000 and an advection

CFL number of 100.

Time Step CFLc CFLmat Foα Foν
2× 10−4 38 0.1 0.17 0.017
2× 10−3 380 1 1.7 0.17
2× 10−2 3800 10 17 1.7
2× 10−1 30800 100 170 17

Table 8.1. Time step correspondence to CFL and Fourier numbers.

8.3.5. vP -vT Schur Complement Preconditioner: Strong Scaling. To demonstrate

parallel scalability, we perform a strong scaling study, shown in Figure 8.8. In this study, we

counted the total CPU-time over 50 time steps, starting from t = 0. A square domain with a very

fine, 4047 × 4047, mesh resolution was used. The number of processors varied from 144 to 9216.

Since the problem size was fixed, the number of elements per processor varied from 113,737 to
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Figure 8.6. Relative block tolerance study for the vP -vT Schur complement pre-
conditioner as a function of time step.

Figure 8.7. Preconditioner/solver study for the vP -vT Schur complement precon-
ditioner as a function of time step.

1,777. The acoustic CFL number was 120 and all other time-scales were resolved.
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For parallel domain decomposition, we use the ParMETIS library [35]. The processor domain

decomposition is visualized in Figure 8.9 for the case with 9216 processors. In Figure 8.8, we

observe ideal scaling from 113,737 elements per processor down to 1,777 elements per processor.

At 1,777 elements per processor, the ratio of ghost zones to the total number of zones is 20% and

thus we see that the scaling flattens out, as expected, since the communication between processor

zones begins to dominate.

Figure 8.8. Strong scaling study for 2D lid-driven cavity flow problem with 64
million degrees of freedom. For the given mesh resolution, the preconditioner/solver
exhibits ideal scaling up to 9216 processor cores, demonstrating excellent parallel
scalability for the given mesh resolution.
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Figure 8.9. Processor domain decomposition across 9,216 processor cores for the
2D lid-driven cavity flow problem. Each colored island represents a particular pro-
cessor’s domain.
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8.4. Low-Mach Melt Convection of a Steel Brick Results

In this numerical example, shown in Figure 8.10, the material is initially solid steel with a

temperature of T = 1 on a wedged-shape, non-uniform mesh. The top and bottom walls have

Dirichlet boundary conditions for temperature and are both initially set to a temperature of T = 1.

The bottom wall is quickly ramped to a higher temperature of T = 2, inducing melt convection

from the bottom. The left and right walls have adiabatic (zero heat flux) temperature boundary

conditions. All four walls enforce a no-slip boundary condition on velocity. The melt temperatures

are TS = 1.4 and TL = 1.6, corresponding to a mushy region thickness of ε = 0.2. For all of the

studies, we staredt at t ≈ 2 and counted the number of outer FGMRES iterations and CPU time

per time step, averaged over 50 time steps.

Figure 8.10. Snapshot of temperature and streamlines for melting of a steel brick
on a non-uniform mesh. Black contour lines represent the solid-liquid interface.

8.4.1. Eigenvalues for a Solidification Phase Change Problem. The eigenvalues of an

unpreconditioned Jacobian matrix is plotted for a phase change problem in Figure 8.11. In the

phase change case, the condition number is on the order of a billion and the eigenvalues have

now spread across the imaginary axis, presenting significant challenges for the solvability of the

underlying linear system.
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CFLaco=10,000
CFLmat=0.1
Focond=5
Fovisc=10,000

Figure 8.11. Eigenvalues of an unpreconditioned Jacobian matrix for a solidifica-
tion phase change problem. For comparison, the eigenvalues from Figure 8.3 are
shown in red. For phase change, the condition number is very large, κ = 109.

8.4.2. vP Schur Complement Preconditioner for Varying Viscosity Ratios. To illus-

trate the numerical challenges associated with the viscosity-strength model in melting and solidifica-

tion problems, we compare the performance between three variations of the vP Schur complement

preconditioner, outlined in Section 8.2.4, for increasing viscosity ratios, as shown in Figure 8.12. A

800× 1600 mesh resolution was used for this study.

We observe that for large viscosity ratios
(
µs
µl
> 1000

)
, the case which solves the approximate

Schur complement system, S̃vP , performs poorly compared to solving the full (matrix-free) Schur

complement system. This result is not surprising since Mvv becomes less diagonally dominant as

the viscosity ratio increases, making Dvv a poor approximation. The two cases that iteratively

solve the exact Schur complement system, however, have excellent performance and converge with

a similar number of outer GMRES iterations. Performance in run-time is further improved in the

final case where the full Schur complement system is preconditioned with the approximate S̃vP

Schur complement matrix as a preconditioner to the full Schur complement system.
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Figure 8.12. Viscosity ratio study of the vP Schur complement preconditioner.

8.4.3. vP Schur Complement Preconditioner Block Tolerance Study. In Figure 8.13,

we compare the performance of different relative block-tolerances on a 400×800 mesh. As the time

step increases in each case, all of the CFL and Fourier numbers increase. We generally observe

that as the time step increases, the average number of iterations and CPU time per time step

increase, which is expected since the condition number of the underlying systems is a function of

the CFL/Fourier numbers.

For the relative block tolerance study in Figure 8.13, each block is solved with AMG pre-

conditioned FGMRES. We observe that the loosest relative block tolerance of 10−1 requires the

most outer GMRES iterations to converge, followed by the 10−3 case. The CPU-time shown in

the the right graph of Figure 8.13, shows the opposite trend, which indicates a tradeoff between

the relative block tolerance and the number of outer GMRES iterations. Therefore, a relative

block tolerance of 10−1 requires the most outer GMRES iterations but is the most computationally

efficient case (in CPU-time).

8.4.4. Weak Scaling for vP − vT Schur Complement Preconditioner: High-Order

rDG. In Figure 8.14, we compare the performance of three rDG schemes by conducting a weak

scaling study (fixed CFL). Since the higher-order schemes have more degrees of freedom per el-

ement, the total number of degrees of freedom is kept constant between the schemes, instead of

the number of elements. Table 8.2 shows the range of mesh sizes, range of Fourier numbers, and
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Figure 8.13. Relative block tolerance study for the vP -vT Schur complement
preconditioner on the 2D melting brick problem.

acoustic CFL number for three different rDG schemes. The total number of degrees of freedom for

each scheme ranges from 288,000 to 2.3 million DoFs. For this study, we start at t ≈ 10 and count

the number of outer FGMRES iterations and CPU time per time step, averaged over 50 time steps.

The number of processors varied from 16 to 128 for each scheme.

In Figure 8.14 on the left, we observe that all three rDG schemes have good algorithmic scal-

ability and have the roughly the same number of outer GMRES iterations. On the right, we see

that the low-order, P0P1, scheme converges in the least CPU-time. As seen in Table 8.2, even

though the acoustic CFL and viscous Fourier number are the highest for P0P1 (since the mesh

is the finest), the smaller matrix bandwidth more than compensates for the higher CFL/Fourier

numbers, leading to a faster run-time. We also note that the P2P3 scheme converges moderately

faster than the P1P3 scheme. Even though P2P3’s matrix bandwidth is slightly larger, it has a

cheaper cost of reconstruction, leading to a slightly faster run-time. We note that since the number

of degrees of freedom were kept constant between each of the schemes, we would generally expect

the low-order methods to be more efficient (in CPU-time) than the higher-order methods, due to

the smaller matrix bandwidth. An efficiency comparison between the P0P1 and P2P3 schemes was
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conducted in Section 4.2, which demonstrated that for the same resolving power, the P2P3 scheme

needed to solve for less total degrees of freedom.

Scheme Smallest Mesh Largest Mesh Min. Foν Max. Foν CFLc
P0P1 380× 760 1075× 2150 88 248 597
P1P3 219× 438 620× 1240 29 82 344
P2P3 155× 310 438× 876 15 41 244

Table 8.2. Required mesh resolution and corresponding CFL/Fourier numbers for
all three rDG schemes to have the same solution vector size.

Figure 8.14. Weak scaling (fixed CFL) study comparing P0P1, P1P3, and P2P3

schemes for the same solution vector size.
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8.5. 3D Selective Laser Melting Results: Single Track

We consider a moving 3D laser-induced melt convection problem on a single-track. The domain

is 1 mm long × 0.3 mm wide × 0.15 mm high. A similar domain is shown in Figure 7.3. The

material is initially solid steel at room temperature, T0 = 300 K. The bottom wall has a Dirichlet

boundary condition for temperature, fixed at T = 300 K, while the other walls have adiabatic (zero

heat flux) temperature boundary conditions. A no-slip velocity boundary condition is enforced

at all walls. The laser power is 200W and has a scan speed of 2000 mm/s. For computational

efficiency, we only simulate half the domain since the problem is symmetrical across the Z-axis.

8.5.1. Weak Scaling. In Table 8.3, we conduct a (fixed CFL) weak scaling study for the vP -

vT Schur complement preconditioner. Starting at t = 0, we count the number of outer FGMRES

iterations and CPU time per time step, averaged over 50 time steps. In all of the cases, the number

of degrees of freedom per processor is fixed, to keep the workload constant. The number of degrees

of freedom is varied from 5 million up to 40 million, while the number of processors varied from 64

to 512. The acoustic CFL number is 50.

As we increase the total problem size, the number of outer FGMRES iterations per Newton

step and number of Newton steps per time step are roughly constant. This example demonstrates

that the vP -vT Schur complement preconditioner has excellent algorithmic scalability in 3D.

DoF FGMRES/Newton Newton/Cycle CPU-Time/Cycle (Secs)
5 million 16.2 1.0 10.8

10 million 17.0 1.0 15.4
20 million 18.0 1.0 19.0
40 million 18.1 1.0 19.74

Table 8.3. Weak scaling (fixed time step) study for the 3D laser melting problem.

8.6. 3D Selective Laser Melting Results: Multiple Tracks

In our final numerical example, we consider a computationally challenging, moving 3D laser-

induced melt convection problem on multiple melt tracks. The domain is 1 mm long × 1 mm
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wide × 0.3 mm high, as shown in Figures 8.15. The material is initially solid steel at room

temperature, T0 = 300 K. The bottom wall has a Dirichlet boundary condition for temperature,

fixed at T = 300 K, while the other walls have zero heat flux temperature boundary conditions.

A no-slip velocity boundary condition is enforced at all walls. The laser power is 500W and has

a scan speed of 4000 mm/s. As discussed in Section 7.1, the large temperature values are due to

neglecting the evaporation, radiation, and Marangoni convection.

8.6.1. Weak Scaling. In Table 8.4, we conduct a (fixed CFL) weak scaling study for the vP -

vT Schur complement preconditioner. Starting at t = 0, we count the number of outer FGMRES

iterations and CPU time per time step, averaged over 300 time steps. In all of the cases, the number

of degrees of freedom (DoFs) per processor is fixed, to keep the workload constant. The number of

degrees of freedom is varied from 5 million up to 40 million, while the number of processors varied

from 108 to 8642.

As we increase the total problem size, the number of outer FGMRES iterations per Newton

step and number of Newton steps per time step is roughly constant. This demonstrates that the

vP -vT Schur complement preconditioner has excellent algorithmic scalability in 3D.

66
LLNL-PRES-705390

Figure 8.15. Temperature and melting front dynamics from 3D laser-induced
phase change on multiple melt-tracks.

2The 3D SLM simulation on multiple-tracks also converged on 25 million elements (125 million DoFs) with 4096
processors using the Jade supercomputer.
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DoF FGMRES/Newton Newton/Cycle CPU-Time/Cycle (Sec)
5 million 20.3 6.3 70.1

10 million 20.5 6.0 71.7
20 million 19.3 5.9 72.54
40 million 20.8 5.3 63.46

Table 8.4. Weak scaling (fixed time step) study for the 3D laser melting problem
on multiple melt-tracks.
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CHAPTER 9

Conclusion and Future Directions

9.1. Concluding Remarks

A scalable block-based preconditioner was developed for a Newton-Krylov solver of a fully-

implicit rDG-based discretization of the all-speed compressible flow equations with phase change.

The primary challenge was to robustly converge time-accurate solutions at high CFL/Fourier num-

bers representing an ill-conditioned system of discrete equations, corresponding to simulations of

fluid flow with laser-induced phase change. To address this challenge, I developed a robust approxi-

mate block factorization preconditioner, which is a multigrid block reduction technique that reduces

a fully-coupled 3× 3 block system to a sequence of two 2× 2 block systems: the velocity-pressure

(vP ) and velocity-temperature (vT ) Schur complement systems. For all tested problems, I found

that the monolithic algebraic multigrid and one-level additive Schwarz preconditioners were ineffec-

tive at high CFL/Fourier numbers. The physics-block Gauss-Seidel preconditioner fared better, but

the proposed vP -vT Schur complement based preconditioner converged the fastest and required

the least number of iterations. The vP -vT preconditioner, which uses AMG as a preconditioner

to GMRES for the inner block solves, exhibited excellent algorithmic and parallel scalability.

Furthermore, the framework was shown to be robust for a wide range of non-dimensional num-

bers and phase change configurations. To enforce the attenuation of velocity in the mushy and solid

phases, I developed a velocity suppression model, which combines the variable viscosity and Darcy

source term model. I have demonstrated that this framework is robust and capable of solving phase

change problems for a wide range of parameters, including both melting and freezing in various

configurations and moving laser-induced melt-convection problems at large CFL/Fourier numbers.

The high-order rDG-based schemes were shown to produce highly accurate solutions and resolve

flow features on very coarse meshes. Solutions converged at low-Mach numbers (Ma ≤ 10−2)
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without explicit acoustic filtering, demonstrating all-speed flow capabilities, which is necessary for

modeling tightly-coupled rapid phase change processes, such as evaporation/condensation, in metal

additive manufacturing processes such as SLM.

9.2. Future Work

9.2.1. Physics Enhancement. Currently, large viscosity ratios between the solid and liquid

phases
(
µs
µl
≥ 1000

)
are challenging for the solvability of the underlying linear algebra, since the

velocity matrix Mvv becomes non-diagonally dominant due to the large off-diagonal entries. The

non-diagonal dominant rows, however, are confined to a thin region near the solid-liquid interface.

Future work will involve detecting the non-diagonally dominant rows at the interface and solving

the interface elements with a more robust LU factorization.

Additionally, a novel Marker Re-Distancing (MRD) and sharp mix-cell reconstruction method

was recently developed for evolving multi-material interfaces at high-order [67]. With multi-phase

capabilities, future work involves incorporating more realistic physics, such as radiation, evap-

oration/condensation, surface tension, Marangoni convection, and recoil forces due to material

evaporation. With a suitable laser model based on ray tracing, we will be able to simulate 3D

multi-material metal additive manufacturing processes such as SLM [36, 37]. Since heating and

cooling rates in the SLM process exceed 105 K/s, an equilibrium phase change model is not appro-

priate and solidification with undercooling must be accounted for [38]. With the interface tracking

method, we can incorporate a kinetic model for rapid solidification, a non-equilibrium thermody-

namics process [85].

9.2.2. ‘N ×N ′ Multigrid Block Reduction. Future work involves solving larger block sys-

tems from higher-order (greater than 2nd-order) schemes, binary and ternary systems, and coupling

to solid and thermal mechanics solvers. Larger 4 × 4, 5 × 5, and in general N ×N block systems

will need to be preconditioned in a scalable and robust manner. I plan to extend the 2 × 2 Schur

complement preconditioning technique used in this research to solve these larger block systems in
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a nested N ×N multigrid block reduction strategy.

Currently, our framework solves a 3×3 block system in the preconditioning stage with a reduced

set of two 2× 2 Schur complements: the velocity-pressure and velocity-temperature systems. This

preconditioning strategy is effective when the velocity-pressure and velocity-temperature couplings

are strong. This strategy neglects the temperature-pressure coupling, however, which is not ap-

propriate when the temperature-pressure coupling is strong, as in the case of more sophisticated

equations of state (Appendix A.1). The first step is to robustly solve the 3× 3 block system using

a single 2× 2 Schur complement between the full [velocity-pressure] and temperature system

M[Pv] M[Pv]T

MT [Pv] MTT

x[Pv]

xT

 =

b[Pv]

bT

 .(9.1)

As with any 2× 2 block system, there are always two distinct Schur complements. Using forward

and backward substitution with the Schur complement of the M[Pv] block, leads to

x∗T = M−1
TT bT

x[Pv] = S−1
[Pv]T

(
b[Pv] −M[Pv]Tx

∗
T

)
xT = M−1

TT

(
bT −MT [Pv]x[Pv]

)
,

where

S[Pv]T = M[Pv] −M[Pv]TM
−1
TTMT [Pv].

On the other hand, using forward and backward substitution with the Schur complement of the

MTT block leads to

x∗[Pv] = M−1
[Pv]b[Pv]

xT = S−1
T [Pv]

(
bT −MT [Pv]x

∗
[Pv]

)
x[Pv] = M−1

[Pv]

(
b[Pv] −M[Pv]TxT

)
,
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where

ST [Pv] = MTT −MT [Pv]M
−1
[Pv]M[Pv]T .

Both of these approaches are mathematically equivalent and have different pros and cons. In the

first approach, only one 2× 2 system, S[Pv]T , needs to be solved. Solving this system with a nested

Schur complement, however, would need to be approximated in a computationally efficient man-

ner1. In the second approach, two 2 × 2 systems (M[Pv]) would need to be solved, which doubles

the current computational cost. Each of these 2× 2 systems, however, can be solved with a nested

Schur complement system (using the v-P Schur complement), which is known to be efficient since

it is already used in the present work. These nested Schur complement techniques can be general-

ized to an N × N level multigrid block reduction strategy and can be applied to arbitrarily large

block systems, such as higher-order schemes. Currently the preconditioning technique for the low

and high-order rDG schemes are identical and both cases involve the Schur complement systems of

the full velocity-pressure and velocity-temperature systems. Instead of fully coupling the physics

systems for the higher order schemes, we want to extend the approximate block factorization tech-

nique between the orders of the degrees of freedom, with a nested Schur complement (p-multigrid

technique). The nested technique can also be applied to reduce the velocity system to its individual

velocity components.

Lastly, I plan to tightly couple the rDG CFD fields (velocity, pressure, and temperature) to a

solid-thermal mechanics Lagrangian/ALE solver (displacements, temperature). With the additional

degrees of freedom, the size of the block system and solution vector size would increase. To

precondition this system, we would like to apply the nested multigrid block reduction technique to

these fully-coupled solid-thermal-fluid systems.

1Research would need to be done to develop effective approximations to this system
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APPENDIX A

A.1. Equations of State (EOS)

A 3-parameter (ρ0, c, e) EOS with an explicit pressure-temperature coupling is given by

P (ρ, e) = P0 +A1

(
ρ

ρ0
− 1

)
+A2e,(A.1)

where the sound speed is a function of both the density and internal energy

c2 =
∂P

∂ρ

∣∣∣
T

+
P

ρ2

∂P

∂T

∣∣∣
ρ

=
A1

ρ
+
P

ρ2
A2Cv,(A.2)

where A1 and A2 are input coefficients.

The γ-law gas EOS is given by

P = ρ(γ − 1)e,(A.3)

where γ =
Cp
Cv

= 1.4 for air.

A.2. CFL Conditions and Fourier Numbers

The CFL (Courant-Friedrichs-Lewy) conditions and Fourier numbers are defined as follows

CFLaco =
c∆t

∆x
(A.4)

CFLmat =
v∆t

∆x
(A.5)

Foα =
α∆t

∆x2
(A.6)

Foν =
ν∆t

∆x2
,(A.7)
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where c is the sound speed, v is the material velocity, α is the thermal diffusivity, ν is the kinematic

viscosity, ∆t is the current time-step of the simulation, and ∆x is the length of the minimum mesh

width. Note that the Mach number and the Prandtl number can be numerically calculated as,

Ma = CFLmat
CFLaco

, and Pr = Foν
Foα

, respectively.

A.3. Laser and Material Properties

We use the following material properties for stainless steel [2, 6]:

ρ̄ Density 7, 800 kg/m3

C̄v Specific heat 800 J/(kg ·K)

k̄ Thermal conductivity 36 W/(m ·K)

µ̄ Dynamic viscosity 6.1× 10−3 N · s/m2

β̄ Volumetric coefficient of expansion 5× 10−5 1/K

TS Solid melt temperature 1, 675 K

TL Liquid melt temperature 1, 725 K

uf Latent heat of fusion 285, 000 J/(kg ·K).

We define the last two scaling parameters:

L̄ Characteristic length scale 1 mm

∆T Characteristic temperature difference 2, 700 K.

L̄ corresponds to a single-track length used in SLM simulations in [36]. ∆T is the difference between

the saturation temperature of stainless steel at atmospheric pressure and room temperature.
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We use the following process parameters:

Laser power = 200− 500 W

Material Absorption Coefficient = 0.3

Scan speed = 2000− 4000
mm

s

Beam radius = 0.026 mm

Max. deposition length = 0.05 mm.
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