‘ ! ! . LLNL-TH-732004

LAWRENCE
LIVERM ORE
NATIONAL

orarony | ON the Preconditioning of a Newton-Krylov Solver
for a High-Order reconstructed Discontinuous
Galerkin Discretization of All-Speed Compressible
Flow with Phase Change for Application in
Laser-Based Additive Manufacturing

B. Weston

May 25, 2017




Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.



On the Preconditioning of a Newton-Krylov Solver for a High-Order reconstructed
Discontinuous Galerkin Discretization of All-Speed Compressible Flow with Phase
Change for Application to Laser-Based Additive Manufacturing

By
Brian T. Weston
B.S. (University of California, Santa Cruz) 2012
DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY
in
MECHANICAL AND AEROSPACE ENGINEERING
in the
OFFICE OF GRADUATE STUDIES
of the
UNIVERSITY OF CALIFORNIA
DAVIS

Approved:

Jean-Pierre Delplanque

Robert Nourgaliev

Robert Guy
Committee in Charge

2017

-i-



(© Brian T. Weston, 2017. All rights reserved.



Contents

Abstract iv
Acknowledgments v
Chapter 1. Introduction 1
1.1. Motivation: Additive Manufacturing 1
1.2. Challenges 2
1.3. Background on Fully-Implicit Framework )
1.4. Overview of the Dissertation 8
Chapter 2. Mathematical Model 10
2.1. Governing Equations 10
2.2. Modeling of Melting and Solidification 12
2.3. Laser Beam Model 16
2.4. Non-Dimensionalization 17
Chapter 3. Numerical Methods 20
3.1. Spatial Discretization 22
3.2. Temporal Discretization 23
3.3.  Jacobian-Free Newton-Krylov (JFNK) Solver 24
3.4. Preconditioning 26
Chapter 4. Code Verification and Mesh Convergence 29
4.1. Method of Manufactured Solutions for the Compressible Navier-Stokes Equations 29
4.2. Mesh Convergence of the PyP; and P> Ps rDG schemes 35
Chapter 5. Solidification Model Results 39
5.1. Problem Formulation 39

5.2.  Analysis of Velocity Suppression Models 39

-1i-



Chapter 6. Parametric Studies
6.1. Prandtl Number Effects
6.2. Stefan Number Effects
6.3. Rayleigh Number Effects
6.4. Melting/Solidification Configuration Effects

Chapter 7. Laser Processing Results: Moving Laser-Induced Melt Convection

7.1. 2D Single-Track Simulations
7.2. 3D Single-Track Simulations
7.3. Single-Track Length: 2D vs. 3D

Chapter 8. Exploring Preconditioning Strategies
8.1. Need for a Scalable and Efficient Preconditioner
8.2.  Survey of Preconditioning Techniques
8.3. Low-Mach Lid-Driven Cavity Flow Results
8.4. Low-Mach Melt Convection of a Steel Brick Results
8.5. 3D Selective Laser Melting Results: Single Track
8.6. 3D Selective Laser Melting Results: Multiple Tracks

Chapter 9. Conclusion and Future Directions
9.1. Concluding Remarks
9.2. Future Work

Appendix A.
A.1. Equations of State (EOS)
A.2. CFL Conditions and Fourier Numbers
A.3. Laser and Material Properties

Bibliography

ii-

43
43
48
50
93

o6
o6
o7
60

63
63
64
68
78
83
83

86
86
87

90
90
90
91

93



Brian T. Weston
June 2017
Mechanical & Aerospace Engineering

On the Preconditioning of a Newton-Krylov Solver for a High-Order reconstructed
Discontinuous Galerkin Discretization of All-Speed Compressible Flow with Phase

Change for Application to Laser-Based Additive Manufacturing

Abstract

This dissertation focuses on the development of a fully-implicit, high-order compressible flow
solver with phase change. The work is motivated by laser-induced phase change applications, par-
ticularly by the need to develop large-scale multi-physics simulations of the selective laser melting
(SLM) process in metal additive manufacturing (3D printing). Simulations of the SLM process
require precise tracking of multi-material solid-liquid-gas interfaces, due to laser-induced melt-
ing/solidification and evaporation/condensation of metal powder in an ambient gas. These rapid
density variations and phase change processes tightly couple the governing equations, requiring a
fully compressible framework to robustly capture the rapid density variations of the ambient gas
and the melting/evaporation of the metal powder. For non-isothermal phase change, the veloc-
ity is gradually suppressed through the mushy region by a variable viscosity and Darcy source
term model. The governing equations are discretized up to 4*'-order accuracy with our recon-
structed Discontinuous Galerkin spatial discretization scheme and up to 5*-order accuracy with
L-stable fully implicit time discretization schemes (BDF2 and ESDIRK3-5). The resulting set of
non-linear equations is solved using a robust Newton-Krylov method, with the Jacobian-free version
of the GMRES solver for linear iterations. Due to the stiffnes associated with the acoustic waves
and thermal and viscous/material strength effects, preconditioning the GMRES solver is essential.
A robust and scalable approximate block factorization preconditioner was developed, which uti-
lizes the velocity-pressure (vP) and velocity-temperature (v') Schur complement systems. This
multigrid block reduction preconditioning technique converges for high CFL/Fourier numbers and
exhibits excellent parallel and algorithmic scalability on classic benchmark problems in fluid dy-
namics (lid-driven cavity flow and natural convection heat transfer) as well as for laser-induced

phase change problems in 2D and 3D.
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CHAPTER 1

Introduction

This work is motivated by the need to develop large-scale multi-physics simulations of 3D metal
additive manufacturing processes, such as the selective laser melting (SLM) process. Simulating
the SLM process requires solving the low-Mach compressible Navier-Stokes equations with phase
change. This dissertation focuses on the development of a scalable and robust solver for numerical

simulations of laser-based additive manufacturing processes.

1.1. Motivation: Additive Manufacturing

Additive manufacturing (AM) is the process of constructing a pre-designed solid object by
adding material, as opposed to subtractive manufacturing in which material is removed to form the
final shape. In 3D printing, a three-dimensional part is additively manufactured, layer by layer,
using a computer aided design (CAD) model. 3D printing processes enable the production of com-
ponents that would otherwise be impossible to produce from traditional manufacturing methods.
In Figure 1.1 (right image), a complex manifold with a built in piping system was created with a

metal 3D printer.

Powder Bed Fusion (PBF) methods are a type of 3D printing that use a laser or electron beam
to sinter or melt material powder together. Common PBF processes include: Electron beam melt-
ing (EBM), Selective laser sintering (SLS), Direct metal laser sintering (DMLS), and Selective laser
melting (SLM). For manufacturing metal components, SLM is a powder bed process that creates a
part by using a high powered laser to selectively melt metallic powder together. As seen in Figure
1.2, the powdered metal is spread evenly on a substrate plate in the build chamber. An inert gas,
typically argon or nitrogen, occupies the rest of the chamber in order to reduce oxidation. Before

production, the powder bed is preheated in preparation for melting. During operation, the laser
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FIGURE 1.1. Left: Photo of the selective laser melting process [77]. Right: Complex
manifold produced with a 3D SLM printer [1].

rapidly scans a 2D cross section of the part on a powder layer. Along the path of the laser, the
powder rapidly melts and then solidifies. A piston then lowers the substrate and a new layer of

powder is rolled on top, repeating this process until the part is finished.

Metal AM is poised to substantially change the design and production of metal parts in the
aerospace, automotive, military, and medical industries [31, 38]. Comparable mechanical prop-
erties of additively manufactured metal parts to their cast or wrought counterparts, cannot be
achieved, however, until several scientific and technical challenges are addressed. Currently, metal
parts manufactured using powder-based methods have different micro-structural properties and
performances than those produced with traditional manufacturing techniques [25]. Physics-based
models, however, can elucidate the driving mechanisms in the SLM process. Coupled with Un-
certainty Quantification (UQ) techniques, computational simulations of the AM process will be an

indispensable tool for optimizing the design of metal parts [38].

1.2. Challenges

Developing physics-based computer simulations of the selective laser melting process for metal-

additive manufacturing, is a challenging task, however. Multiple physical processes are involved
9.
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FIGURE 1.2. Top: Concept Laser M2 machine at LLNL [39]. Bottom: 2D cross-

section of the build chamber [60].

including laser radiation and absorption, rapid phase change (melting/solidification and evapo-

ration/condensation), heat transfer (conduction, convection, and radiation), fluid dynamics, and

complex interfacial physics at multi-material interfaces, such as surface tension, Marangoni con-

vection, and wetting [36, 45]. Furthermore, all of the physics occurs on a similar time-scale and
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cannot be de-coupled from one another.

Besides the difficulties in modeling all of the physical processes relevant to SLM, there are
several numerical modeling challenges. Simulations of the powder melting process require inter-
face tracking of multiple materials and phases, which have large variations in the thermo-physical
properties (density, thermal conductivity, viscosity, specific heat, internal energy, etc.) across sharp
solid-liquid-gas interfaces. These rapid density variations and phase change processes (laser-induced
melting/solidification and evaporation/condensation) tightly couple the governing equations, ren-
dering incompressible flow solvers, such as the SIMPLE /projection-family of algorithms, ineffective
for these applications. Therefore, an adequate model of the laser melt dynamics requires an all-
speed, fully-compressible formulation, since the fluid dynamics in the melt pool are at low-Mach
number. For non-isothermal phase change problems, the thermo-physical properties transition be-
tween the solid and liquid phases through the presence of a mushy region. The solid phase must
enforce a no velocity condition and there are various models in the literature for suppressing the
velocity in the solid phase, which introduce additional non-linearities in the governing equations
[19, 26, 84]. Lastly, the rapid heating due to the laser source introduces large and localized tem-

perature gradients, which further increases the non-linearity and coupling of the equations.

The low-Mach compressible flow regime constitutes a common regime in many engineering
processes. Applications include combustion processes [33, 34, 42, 62, 80], high temperature gases
in nuclear reactors [24, 47], and laser welding/melting processes [4, 37, 46, 69]. As outlined in
[9, 47, 64], simulating low-Mach compressible flow is challenging because the governing equations
change nature from hyperbolic to mixed hyperbolic-elliptic, as the flow transitions from compress-
ible to incompressible flow. As a result, two categories of solvers have been developed for simulating
flows in this transitional regime: density-based methods from high-speed compressible solvers and
pressure-based methods from incompressible solvers. For small density variations, incompressible
flow solvers utilizing the Boussinesq approximation are widely used in the literature [19, 26, 84]. For
large temperature gradients, which subsequently result in large density variations, the Boussinesq

approximation, however, is no longer valid [9, 48, 59] and a compressible formulation is required.
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Compressible flow solvers suffer from challenges of their own in the low-Mach regime. Due to the
disparity of the acoustic and velocity time scales, the eigenvalues of the system become highly ill-
conditioned and convergence stalls [15, 50, 64, 83]. Furthermore, the numerical solutions are known

to become inaccurate in the limit of low-Mach numbers due to lack of numerical dissipation [30, 50].

Since we are solving the compressible flow equations with melting and solidification, there are
several physical time scales associated with the governing equations: acoustic waves, viscous diffu-
sion, thermal diffusion, material advection, and melting front dynamics. In the low-Mach regime,
there is a huge discrepancy between the acoustic and advection timescales leading to a numerically
stiff system. Due to the stiffness and necessity of stepping over acoustic and advection timescales?,
numerical algorithms using explicit time integrators or operator-splitting algorithms, such as pro-
jection algorithms or SIMPLE, have severe time step restrictions due to stability requirements,
making large-scale simulations prohibitively expensive and requiring weeks to months of HPC time
on even the largest supercomputers [36, 46]. With a fully-implicit time discretization, large time
steps can be taken, chosen based on the adequate resolution of the dynamic time scales of the
problem, rather than by numerical stability restrictions dictated by the physical time-scales. Step-
ping over these time-scales, however, results in numerical systems that develop strong hyperbolic
and parabolic stiffnesses [13]. To effectively step over these time-scales, we employ L-stable time
integrators, like BDFy or the ptt-order Ezplicit, Singly-Diagonal Implicit Runge-Kutta schemes,
ESDIRK,, [10, 12, 68].

1.3. Background on Fully-Implicit Framework

The Discontinuous Galerkin (DG) methods, built upon fully-implicit Newton-Krylov-based
solvers, are a promising class of solution algorithms for high-fidelity simulations of the SLM pro-
cess on large-scale supercomputers. Popular within the high-speed aerodynamics community, a
DG-based framework retains attractive features from both the finite element and finite volume

methods and has excellent conservation and convergence properties. The DG framework allows

IDynamic time scales of AM processes with melting/solidification are rather slow compared to CFL/Fourier number
based time scales. Cost-effective simulations necessitate stepping over advection timescales.
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for the development of higher-order methods that are well suited for handling hybrid hyper-
bolic/elliptic/parabolic equations within the finite element/volume framework for complex geome-
tries on unstructured meshes [68]. In addition, the methods are locally conservative allowing for
spatially compact stencils and non-conforming elements. As a result, DG methods are highly paral-
lelizable due to minimal communication requirements between elements. Furthermore, DG methods
have a high arithmetic intensity, allowing the methods to readily exploit the massive parallelism

from future computer architectures, such as the Graphics Processing Units (GPUs).

In order to solve the system of non-linear equations at each time step, a robust solution algo-
rithm is needed. The Newton-Krylov framework, which uses an outer Newton method combined
with an inner Krylov iterative method, provides such an approach [40]. The Newton-Krylov frame-
work has been successfully applied to the non-equilibrium radiation diffusion equations [63], the
shallow water equations [65], the incompressible Navier-Stokes equations [43, 70, 72], low-Mach
combustion [42], and more recently to the compressible Navier-Stokes equations [14, 68, 73]. The
framework has also been applied to Stefan problems for both pure-materials and alloys [41], as well

for solidifying flow applications involving 2D melt convection for incompressible flow [26, 44].

We use a globalized line search strategy, where the descent direction and step size is computed
with a Jacobian-Free Newton-Krylov (JFNK) framework. GMRES is chosen as the Krylov (linear)
solver because it is robust and guarantees a monotonically decreasing residual. Since the linear
system is the result of a discretization of the compressible Navier-Stokes equations with phase
change, it has a 1) mixed hyperbolic and parabolic nature, 2) non-symmetry due to upwinding
in the approximate Riemann solver, 3) non-diagonally dominant structure when large time-steps
are chosen. Furthermore, the governing equations are tightly-coupled within the stencil and the
resulting (global) linear system of discrete equations is highly ill-conditioned, with condition num-
bers exceeding a million [68]. Thus, preconditioning the GMRES-Newton solver is required for

convergence.



There are two primary design requirements for the preconditioner. First, the preconditioner
must be able to converge the solution of highly ill-conditioned linear systems corresponding to large
CFL and Fourier numbers. Second, the preconditioning strategy must be scalable and computa-
tionally efficient in run time and memory storage so that large-scale multi-physics simulations are
cost-effective. Classic iterative methods such as Jacobi, Gauss-Seidel, Sucessive-Over-Relaxation
(SOR), and Algebraic Multigrid (AMG) are effective preconditioners when the matrix is diagonally
dominant [74]. Due to the lack of diagonal dominance in our systems, however, these techniques are
not guaranteed to converge (theoretically) and fail to converge in practice. On the other extreme,
the most robust preconditioner is an LU factorization of the original Jacobian matrix. Although
direct solvers are effective for small problems, they are not well-suited for massive computations as

their computational cost does not scale linearly with the size of the computational problem [74].

Domain decomposition methods, such as additive Schwarz variants, are natural for unstructured
meshes [82] and take a divide-and-conquer approach to parallelism [40, 74]. Additive Schwarz tech-
niques have been effective preconditioners for Newton-Krylov solvers in compressible flow [79],
reactive flow problems [76], and low-Mach compressible combustion [42]. A drawback of one-level
additive Schwarz methods is the locality assumption, since neighboring degrees of freedom to an
element are strongly coupled while long-range interactions are ignored. As a result, the perfor-
mance of additive Schwarz preconditioners generally degrades for elliptic problems as the number
of processor domains increase, due to the lack of global coupling [78, 81]. To address the lack
of global coupling in domain decomposition methods, a field-block approach segregates all of the
degrees of freedom of a particular field into separate blocks. These reduced scalar block (pres-
sure, temperature, or velocity) systems are more amenable for iterative methods to approximate
the action of their inverse. Variations of this physics-block preconditioning approach have been
successfully applied to the non-equilibrium radiation diffusion equations [63], the shallow water
equations [65], MHD [13, 18], solidifying flow applications [44], the incompressible Navier-Stokes

equations [26, 72], and more recently to the compressible Navier-Stokes equations [68, 70, 73].



This work explores approximate block decomposition strategies on the segregated physics
blocks. Approximate physics-block factorizations have been explored as a preconditioner for the
incompressible Navier-Stokes equations and MHD using various approximations of the Schur com-
plement matrix [17, 18, 22, 23]. This work differs as we extend these techniques to the all-speed
compressible Navier-Stokes equations with phase change using a high-order reconstructed Discon-
tinuous Galerkin discretization in the limit of large CFL and Fourier numbers. These approximate
block factorizations are multigrid block reductions and algebraic multigrid (AMG) methods can be

effectively applied on these reduced systems, which are linearly scalable algorithms, O(n).

The framework is implemented and tested within LLNL’s ALE3D code [3, 29, 61]. ALE3D
is a multi-physics numerical simulation tool, focusing on modeling hydrodynamics and structural
mechanics in all-speed multi-material applications. Additional ALE3D features include heat trans-
fer, chemical kinetics and species transport, incompressible flow, a wide range of material models,
chemistry models, multi-phase flow, and magneto-hydrodynamics for long- (implicit) and short-

(explicit) time-scale applications.

1.4. Overview of the Dissertation

The rest of this dissertation is organized as follows. The physical and mathematical models
required for simulating laser-induced melt convection problems are discussed in Chapter 2. In
Chapter 3, a brief introduction is given on the reconstructed Discontinuous Galerkin (rDG) spa-
tial discretization scheme and its advantages for the underlying linear algebra are highlighted. The
fully-implicit time discretization schemes are outlined along with the Jacobian-Free Newton-Krylov
(JFNK) solver. The preconditioning (Jacobian) matrices for the rDG schemes are also explained.
In Chapter 4, verification of the different rDG discretization schemes is demonstrated with the
Method of Manufactured Solutions (MMS) to verify that the schemes converge to the design order
of accuracy for the compressible Navier-Stokes equations. To illustrate the benefit of a 4%-order

over a 2"-order rDG spatial discretization scheme, a qualitative comparison of the flow features is
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conducted for a laser-induced phase change problem. Various combinations of the velocity suppres-
sion models for a solid-liquid phase change problem are analyzed in Chapter 5. A variable viscosity
method combined with a drag force model is found to be the most robust and computationally
efficient model for suppressing the velocity in the solid and mushy phases. In Chapter 6, sensitivity
studies are performed for the non-dimensional numbers (Rayleigh, Prandtl, and Stefan Numbers)
and different melting and solidification configurations are tested, demonstrating this algorithm’s
ability to robustly handle both melting and solidification problems. In Chapter 7, 2D and 3D
moving laser-induced melt convection problems are tested using the developed velocity suppression
and laser beam models. Chapter 8 compares different preconditioning strategies and finds that the
most robust and efficient preconditioner is an approximate physics-block factorization technique
(multigrid block reduction), utilizing the velocity-pressure (vP) and velocity-temperature (v7)
Schur complement systems. Lastly, Chapter 9 concludes the dissertation and provides an outline of
future directions. Future work involves moving to larger block systems due to higher-order (greater
than 2"-order) schemes and binary alloy systems, incorporating additional physics, such as surface
tension, Marangoni convection, radiation and evaporation, and coupling to solid-thermal mechanics
solvers. The larger block (4 x 4, 5 x5, N x N) systems will need to be preconditioned in a scalable
and efficient manner. I plan to extend my preconditioning techniques to these larger block systems

using an N x N multigrid block reduction technique.

The work was primarily conducted at the Lawrence Livermore National Laboratory in Liver-
more, California and occasionally at the University of California, Davis. This dissertation summa-
rizes the work performed by the author during the time period of June, 2014 to June, 2017. It
resulted in 11 conference presentations, 2 peer-reviewed papers, and 2 additional papers currently

in preparation.



CHAPTER 2

Mathematical Model

2.1. Governing Equations

2.1.1. Conservation Laws. In this work, we consider the time-dependent compressible Navier-
Stokes equations with solid-liquid phase change. The governing conservation equations in vector

form are given by

(2.1) g?—l—v-(pv) =0
(2.2) 8(52’)—i—V-(pvva):—VP—i-V-E—i-pg—fD
(23) Q) 49 (pve) = V- (KVT) = PV v £ V- (v-7) + g5

where v = (vg, vy, v.) is the material velocity vector in Cartesian coordinates, P is the pressure, p is
the density, g is gravity, ¢ is the viscous stress tensor defined in 2.1.2, ¢ = u+ V; is the specific total
energy, u is the specific internal energy', k is the thermal conductivity, and T is the temperature.
The drag force due to solidification is represented by fp = —Kv, where K increases from zero to
a very large number as the local solid fraction varies from zero to one, suppressing the motion in
the solid phase. Laser heating is modeled as a volumetric source term, ¢,, in the energy equation,
which is defined in Section 2.3. In this work, we neglect energy dissipation due to viscous stresses
and pressure forces, since we are studying compressible flows in the low-Mach limit. Radiation,

evaporation, and free-surface dynamics are also neglected and will be considered in future work.

The same governing equations can also be written in following flux vector form

ouU
(2.4) 5 TV (F-D)=s,

1We choose to discretize the energy equation in the internal energy form, as opposed to the enthalpy or total energy
form. Mathematically, all energy formulations are equivalent, but when considering our rDG numerical discretization,
we find that the internal energy formulation is easier to implement.

10



where U is the solution vector of conservative variables, defined as

(2.5) U= { 0, PV, pe }T,

while F, D, and S are the vectors of hyperbolic fluxes, diffusion fluxes, and sources, respectively,

defined as
pv 0 0
(2.6) F=| pvxvl4+pl |, D= o ., S=1|f
pve + pv —kVT +v-G Qv

We also introduce a vector of “primitive” variables, W, which is generally different from U, and

chosen based on the “better system conditioning” considerations as defined in Section 3.4.

2.1.2. Constitutive Equations. In this work we consider Newtonian fluids. As defined in

[5, 8, 86], the viscous stress tensor is
(2.7) G =2ue+ ANV -v)I,

where p is the dynamic viscosity and X is the second viscosity coefficient. Following Stokes hypoth-

esis, the second viscosity is taken as A = —% i [5]. The strain rate tensor, €, is defined as
(2.8) -1 (Vv + (Vv)T)
. 5 .

The final constitutive relationship is due to the equation of state (EOS). This dissertation uses the
simple 2-parameter (po, ¢) EOS to directly control the sound speed

(2.9) P(p) = poc? (p = > :

Po

since we are interested in the low Mach regime, Ma = % < 1072, where pg and c¢ are the
given reference density and sound speed, respectively. With direct control of the sound speed
in our EOS, we can artificially reduce the sound speed and thus Mach numbers to tractable values
(1075 < Ma < 10~2), which is favorable for the underlying linear algebra. We numerically verified

that the numerical solution is independent of the Mach number in this range and this approach is
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similar to artificial compressibility methods used in incompressible flow solvers [16]2.

2.2. Modeling of Melting and Solidification

2.2.1. Phase Transition. Phase change is modeled with an energy-based (homogenous ther-
mal equilibrium) approach. Phase transitions are implicitly tracked with our thermal model u(T")

as follows.

I. Solid. (T < Ts, u < ug), where Tg and ug are the solid melt temperature and specific
internal energy, respectively.

II. Liquid. (T > T7, u > ur), where Ty, and uy, are the liquid melt temperature and specific
internal energy, respectively.

III. Two-Phase. (T's < T < T, us < u < ur,).

The three material zones are shown in Figure 2.1. We introduce a transitional two-phase
region, between the solid and liquid phases to avoid a non-singular mapping between v and 1. The
thickness of the two-phase mushy region is defined by € = Tr, — Ts. The jump in internal energy

between the solid and liquid phases is stored in the latent heat term, defined as
(2.10) Uf = Uf, — Ug.

To suppress the velocity in the mushy and solid phases, we use a velocity suppression model
as outlined in Section 2.2.2. More details are described in our paper, [68], explaining how the
thermodynamic properties transition between the phases, such as viscosity, thermal conductivity,

internal energy, and specific heat.

2In this work, we do not intend to account for realistic sound speeds in metal, which would drive the Mach number
to restrictively small values, since the sound speeds are on the order of km/s. In future work, we will implement the
AUSM™-up Riemann solver, which correctly mimics the pressure fluctuations of an incompressible flow solver in the
asymptoptic limit of small Mach number [49, 50, 51].
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FIGURE 2.1. Thermal model, u(T'), for equilibrium phase change.

2.2.2. Velocity Suppression Models. In this Section, we briefly review two of the well
known velocity suppression models used in phase change problems to extinguish the velocity in the
solid and mushy phases. Based on these two models, we develop a combined velocity suppression

model. A more extensive review of velocity suppression techniques can be found in [58].

2.2.2.1. Darcy Source Term Model. To suppress the velocity in the solid and mushy phases,
many authors [26, 32, 84] use a drag force/momentum sink term, inspired from Darcy’s Law for

porous media flow

2.11 v=——VP,
(2.11) .
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where & is the permeability coefficient of the medium. In this work, we approximate the permeability

to be a function of the porosity, where the porosity is defined as
(2.12) A=1-¢s =z,

where x is the thermodynamic quality and ¢, is the local solid faction. ¢, varies linearly as a
function of temperature from 0 (in a liquid state) to 1 (in a solid state). As the local solid fraction
approaches 1, the velocities in the material tend to 0. To numerically mimic the Darcy’s law, a

source term in the momentum equation can be introduced
(2.13) fop=-Kv,

where K is a number that increases from zero to a very large number, as the local solid fraction
varies from 0 to 1, effectively suppressing the motion in the solid phase. Inspired by the Carman-
Kozeny equation in [11], K is typically modeled as

A=
A3+ e

i

(2.14) K=

where C'is some constant that depends on the permeability of the porous medium and e is typically
set to a small value ~ 1073, to avoid division by zero [84]. For simplicity, the drag force model

used in this work has a linear dependence on the porosity
(2.15) K=C(1-M\),

which is also used in [26, 28]. More complex permeability models based on the Darcy’s law have
been developed in [21], which we will consider in future work for solidification and re-melting prob-

lems.

2.2.2.2. Variable Viscosity Model. Another common velocity suppression model is known as
the enhanced viscosity method or variable viscosity method [19, 20, 58]. In this model, material
strength is a linear function of the strain tensor where the dynamic viscosity is a smooth function

of temperature between the solid and liquid phases
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KL it T > 17
(2.16) p(T) =94 ppfu(T) ifTs <T <Ty -
I if T <Ts

fu(T) is the viscosity factor, a function that smoothly varies from 1 to a large number, % As
seen in Figure 2.2, this model progressively increases the viscosity of the material from the mushy

region to the solid region, inhibiting material deformation.

T T T T I T T T T ! T T T T
0'E 1 E
. Creeping solid | ]
I .~ Mushy zone
= 1
Sl 2] 4 _
o 10°F ‘ ]
S C 1 ]
|3} N i B
& L ! ]
& - ! |
.g | _
L " |
2 2 5
” Wk i} &
o 72} =
r | 1@
100 1 1 1 1 | 1 1 1 1 i 1 1 1 1
12 13 14 15

T/T
FI1GURE 2.2. An example viscosity factor, as a function of temperature.

2.2.2.3. Combined Velocity Suppression Model. In this work, we use a combination of the
Darcy source term and variable viscosity models to extinguish the velocity in the mushy and solid
phases. Recall that in the Darcy model we introduce a source term in the momentum equation,
fp = —C(1—\)v, which introduces an additional model parameter, the drag coefficient, C. In the

viscosity model, we introduce a variable coefficient parabolic operator in the momentum equation
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Vu(T)Vv, which also has one model parameter, the solid-liquid viscosity ratio, % The combined

velocity suppression model is analyzed in Section 5.2.

2.2.2.4. Non-Linearity Associated with Velocity Suppression Models. Both of the velocity sup-
pression models introduce non-linearities to the governing equations. The Darcy strength model
enforces a source-term coupling between the momentum and energy equations. The variable viscos-
ity model, however, introduces a very strong coupling between the momentum and energy equations
through the parabolic (viscous) operator, which presents challenges for solvability of the underlying
systems. More details on the non-linearity of the velocity suppression models are given in Section

5.23.

2.3. Laser Beam Model

To simulate laser-induced melt convection, we implement a laser source heating term in our
non-dimensional energy equation. The effects of different laser beam modes on melt pools was
studied in [32]. In this work, we only consider source heating terms with a cylindrical, Gaussian
profile. We define r = (7, z), which is a function of the radius, r, in 2D and a function of both the

radius and depth, z, in 3D.

In 2D, the source heating term is modeled with a Gaussian profile. Relating the power of the

max

laser, @), to the max volumetric flux, ¢,"**,

27 0 )
(2.17) Q= q;jm‘”/ / e " rdrdd,
o Jo
where a = #, 7o is the radius of the laser’s spot size, 2 = 22 + y?. After integration, we solve for
0
qmax
v
a
(2.18) g, = @

B Azm(1l — erd)’

3Future work will seek to replace the velocity suppression model in the solid phase with realistic material strength. In
alloy systems, a velocity suppression models will, however, still be used to model the dynamics in the mushy region.
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where we set Az = 10rg. The flux can now be evaluated anywhere in the domain

2

(2.19) G = ¢, f(r) = g, e,
where in 2D, f(r) =e™*".

In 3D, we model the vertical (exponential) attenuation of the laser with a quadratic function

in the z dimension. The relation between power and max volumetric flux becomes

2 _ )2
(2.20) —qvm“m/ / / —ar? o) —==rdrdfdz,
20

where h and zp are the maximum and minimum heights of energy deposition (user defined), re-

spectively. Solving for ¢/"**

maxr __ 3Qa
(2.21) T =)l — ey

Again, the volumetric flux can be evaluated anywhere in the domain

___max _ max —ar (Z_Z0>2
(2.22) @ =gy f(r) = q; (h = 2)2°

where in 3D, f(r) = ¢~ ((Z:'Zg%z

2.4. Non-Dimensionalization

To non-dimensionalize the system of Eq.’s (2.1-2.3), we define four scaling parameters: length,

velocity, temperature, and density:

(2.23) p,L,v,AT

For natural convection flows, the velocity scale is defined from the buoyancy term in the momentum

equation, known as Grashof scaling

(2.24) v =1/gBLAT,
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where (3 is the volumetric thermal expansion coefficient. Given the base scaling parameters,

p, L, v, AT (Appendix A.3), we can define the remaining scaling parameters

_ L _ _
(2.25) t== P = pv? o=pvl
A%
(2.26) k= uC, AT =Ty —Te E =C,AT
_E, B —
(2.27) G = f’? K= %

(2.28) 7= T_TTO f;% {,:%
(2.29) ﬁ:% k:%: PrlRe ﬂ:g:Rle
(2.30) ézg p:g f-:%
(231) G- g =2 - BT k=g =t

The latent heat of fusion associated with solid-liquid phase change, is related to the Stefan number

CyAT

uf

(2.32) Ste =

which is defined as the ratio of sensible heat to latent heat. Appearing in both the momentum and

energy equations are the Grashof and Prandtl numbers

gBATL?  v*L?
(2.33) Gr="—p— = —3 = Re’

(2.34) Pr =

=TI

Defining the external Rayleigh number for buoyancy driven flows

gBATL3

ra

(2.35) Ra, = = GrPr = Re*Pr

and defining the internal Rayleigh number for laser-source heating

90

(2.36) Ray =
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We note that the Mach number is defined as

(2.37) Ma = il

)
c

which arises from the equation of state. With these scaling parameters, the non-dimensional com-

pressible Navier-Stokes equations are

0p ~
(2.38) —§+V-(ﬁ\7):()
%) o o wn Lo oo Ra oo o
2. - . = _VP+ —V- T K
(2.39) o +V-(pvxv) \Y +Rev (f V)+P7“R62pgﬁ v
009 o o 1 o o Ra
(240) af + V- (pve) = RePT‘v . (kVT) + mf(r),

. . . . . Ra
where we use an approximate buoyancy term in the momentum equation. Using Re = 4/ 5,

W & o ae
2.41 4+ V- (pV) =0
(2.41) o TV (V)
8([)‘7) = PN AT 2, A VPr . ~n

2.42 MEANES v =—VP V- (aV T-K
(2.42) o TV Xy t e (AV¥) + pgp v

Pe) | & (acs | P Ra; ..
2.43 — + V- = V. (kVT) + ———5 f(#
(2.43) o (pve) T (kVT) = f(®)
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CHAPTER 3

Numerical Methods

To solve the non-dimensionalized equations in Section 2.4, we use the fully-implicit, Newton-
Krylov framework with the rDG spatial discretization scheme, developed in [68]. In this Chapter,
we describe our numerical approach and highlight its major advantages for the solvability of the

underlying linear algebra.

Recently, the Discontinuous Galerkin (DG) method has become increasingly popular in compu-
tational fluid dynamics, owing to its flexibility of handling complex geometry, its compact stencil
for arbitrarily higher-order solutions, and its amenability to parallelization and hp-adaptation. In
contrast to more traditional finite volume (FV) methods in CFD, high-order accuracy is achieved
by simply adding additional degrees of freedom (DoFs) per element, per variable. As a result, the
DG(P)) of any order p has the same stencil (i.e., only face-neighbors are involved in discretization),
which is a very attractive feature in terms of parallelization and code design. On the other hand, the
size of the solution vector grows significantly, as more DoFs must be solved for. Such an increase in
the size of the solution vector is unfavorable in the context of implicit solvers, imposing significant
memory requirements (for storage of the matrices) and adversely affecting solution scalability, as
a majority of linear solvers do not scale linearly [74]. In order to reduce high costs associated with

DG, the reconstructed DG (rDG) methods have been developed [56, 57, 89].

We capitalize on the recent work of extending the rDG discretization to a Newton-Krylov
framework for solving highly ill-conditioned multi-physics problems [68]. We use the orthogonal
modal Legendre-based tensor-product basis functions. These basis functions are hierarchical, which
naturally facilitates p-refinement, and can be easy implemented on hybrid meshes with AMR. The
0t-order degrees of freedom are cell-averaged quantities, while the higher order degrees of freedom

correspond to derivatives of the cell-averaged quantities (slopes, quadratics, cubics, etc). In the
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rDG Py Pjs schemes, we solve for a Py scheme of polynomial order N and reconstruct to a Py

scheme of polynomial order M, which is a (M + 1) order-accurate method in space.

In this work, we study the performance of the PyP;, P Ps, and P> Ps (2nd—order and 4th—order)
accurate discretization schemes. The benefits of reconstructed DG vs. unreconstructed DG with
regards to solution vector size can be seen in Table 3.1. The DG P3 scheme in 2D has a total of 10
DoFs per equation per element: 1 cell-averaged value + 2 slopes 4+ 3 quadratics 4+ 4 cubics, while
in 3D it has a total of 20 DoF's per equation per element: 1 cell-averaged value + 3 slopes + 6
quadratics + 10 cubics. The rDG P, Ps scheme operates on the same polynomial space and has the
same total number of DoF's and order of accuracy as the DG Ps scheme, but with a significantly
smaller solution vector size. This is because only the cell-averaged value, slopes, and curvatures
are solved for, while the cubic DoFs are reconstructed. It can be easily observed that the
benefit of reconstructed DG vs. unreconstructed DG increases as the dimension increases. Thus
the required number of degrees of freedom to be solved for per equation per element for each

discretization scheme is listed in Table 3.2. Since the base 0"

-order degrees of freedom are cell-
averaged quantities, this DG method can be viewed as a generalized extension of the finite-volume
(FV) algorithm to high-order (greater than 2"4-order) on unstructured hybrid meshes, without the
need to extend the stencil. The stencil for our rDG scheme includes neighbors of neighbors, a total

12 neighboring elements in 2D, and 24 neighboring elements in 3D. This stencil is in fact identical

to 2"-order finite-volume methods, common in most commercial CFD solvers.

Dim. DG P3 rDG P2P3
1D 4 DoFs 3 DoF's
2D 10 DoFs 6 DoF's
3D 20 DoF's 10 DoFs
TABLE 3.1. Solution vector size per equation per element for unreconstructed vs.
reconstructed 4"-order DG.

The beauty of rDG methods is that they provide a unified formulation for both FV and DG,
and contain both classical FV and standard DG as two special cases of the rDG formulation. In
[68], we developed the rDG method which is specifically designed for solving stiff multiphysics

problems using fully-implicit formulation. Two major innovations are 1) the combination of the
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Scheme 2D 3D
rDG PyP; 1 DoF 1 DoF
rDG P P;s 3 DoF 4 DoF
rDG P,P3; 6 DoF 10 DoF
TABLE 3.2. Solution vector size per equation per element for rDG schemes consid-
ered here.

in-cell and inter-cell reconstructions using orthogonal basis/test functions on unstructured meshes,
and 2) an ability to solve for primitive variables, chosen on the requirement of solvability (better
conditioning) of the underlying physics. Both developments are aimed at better conditioning of
linear steps during the Newton-based non-linear iterative procedure in fully-implicit solver. In the
contrast to early rDG efforts [52, 53, 54, 55, 56, 57, 87, 88, 89], which used conservation variables as
a solution vector, the new method is designed for all-speed flow capabilities, with phase change
(melting/solidification). In these cases, the set of conservation variables (i.e., mass, momentum
and total energy) is poorly conditioned and restrictive in terms of feasible flow regimes (Mach
number limitations). Thus, we use the sets of primitive variables, which boost solvability, such as
pressure, velocity and either specific internal energy, enthalpy or temperature, as an energy trans-
port variable. Note that residuals are always formed for mass, momentum and energy, to ensure
conservation upon convergence of the non-linear solver, within the framework of the Newton-Krylov

algorithm.

3.1. Spatial Discretization

The computational domain 2 is subdivided into a collection of non-overlapping linear QUAD4
(4-node) and HEXS8 (8-node) elements, €2_. The solution is represented in the broken Sobolev space

V., consisting of discontinuous vector-values polynomial functions of degree p
(3.1) V= {vh €L, ()" i v, € [vﬂ VO, € Q}

where m is the dimension of the unknown vector and V), is the space of all polynomials of degree < p.
The governing equations (2.1), (2.2) and (2.3) are represented in the following weak formulation,

which is obtained by multiplying by a test function W, , integrating over an element §2_, and then
-929.



performing an integration by parts

J

R, (U)=2% [UW,d2+ [ (F,(U,)-D,(U,))n,W,dl—

(3.2) 2 o

- f |:(F] (Uh) - Dj (Uh)) oz ,h + S (Uh) Wh:| dQv vwh € VZ’
Q, J

where U, and W, are represented by piecewise-polynomial functions of degrees p, which are dis-
continuous between the cell interfaces, and n = n, denotes the unit outward normal vector to
the element face I', (i.e., the boundary of €2 ). The local residual function R, (U,) is an inner
product between the solution residue representation (with a chosen set of basis functions) and the

test functions, W, . In our fully-implicit solution procedure, we are minimizing this inner product.

The hyperbolic flux function F, (U, ) n, appearing in the face integral term of eq.(3.2) is replaced
by a numerical Riemann flux function, H, (UZ, US) n;, which is computed by some (approximate)
Riemann solver (see [68] for details). Here, UI’: and Uf: are the conservative state vectors at the

left and right side of the element boundary.

Numerical polynomial solutions U, in each element are expressed using a chosen set of basis

functions B, (x), as

K-1
(33) Uh (th) = I—I(k)e (t) B(k) (X) )
k=0

where U(k)e denotes degrees of freedom (DoF) in an element e. Here, we use tensor-product
Legendre-polynomial-based basis functions, described in [68]. It is instructive to note that, with
these basis functions, the first degree of freedom is the cell-averaged quantity, which naturally
connects this method to finite-volume methods. In addition, these basis functions are modal and

hierarchical.

3.2. Temporal Discretization

To prevent severe time step restrictions due to either explicit [36] or semi-implicit [46] time

discretizations, we use fully-implicit methods, employing L-stable time integrators, like BDF, or
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the ptt-order Explicit, Singly-Diagonal Implicit Runge-Kutta schemes, ESDIRK,, [10, 12, 68] L
With these, our time stepping is dictated by accuracy requirements, rather than by numerical
stability, which can be prohibitively expensive in explicit or operator-splitting algorithms [36]. For
low-Mach flows, there is a large discrepancy between the acoustic and material velocities, leading
to a numerically stiff system. Furthermore, for melting and solidification phase change problems,
there is a strong nonlinearity in the momentum equation, since the viscosity operator is now a
variable coefficient diffusion operator that is a strong function of space and temperature. We are
thus required to tightly couple all three conservation equations (mass, momentum, and energy)
and cannot employ operator splitting strategies. By tightly coupling all of the physics, we can pick
time steps significantly exceeding the material CFL number (without loss of accuracy), which is

the major time-stepping limit in operator-splitting based algorithms [46].

3.3. Jacobian-Free Newton-Krylov (JFNK) Solver

In this Section, we briefly review the Jacobian-free Newton-Krylov (JFNK) framework. Once
the equations are discretized in space and time, we seek to minimize the residual equation using a
globalized line search method®. Newton’s method is used to compute the step direction by solving

the non-linear system of equations
(3.4) F(x) =0,

where F is the nonlinear residual function and x is the solution vector, representing all of the
degrees of freedom. Using Newton’s method, we iteratively find better roots to Eq. (3.4) by solving

a sequence of linear problems

(3.5) Joxk = —F(xb),

where the Jacobian matrix is defined as J = g—g. Once the update vector, 6x*, is solved for, it is

added to the previous non-linear solution vector

(3.6) xFH = xF 4 oxP,

IMost of the calculations in this work were done with the 2"d-order L-stable BDF; time integrator.
?In this work, we use either the backtracking or critical point line search strategies in PETSc [7].
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until the Newton convergence criterion is satisfied
(3.7) IF(x")]l2 < toly|[F(x")]]2-

In this study, we choose a relative Newton tolerance of toly = 107°. For the linear solver, we use
the Arnoldi-based Generalized Minimal Residual method (GMRES) [75]. Since GMRES does not
require individual elements of the Jacobian matrix, only the action of matrix-vector products are
required and an explicit Jacobian matrix does not need to be formed. The action of the Jacobian

matrix-vector products is approximated by Fréchet derivatives

(3.8) TR~ F(x+€R) — F(x)’

€

where € is a small but finite number and < is a Krylov vector. Eq. (3.8) is a first-order Taylor series
expansion of the Jacobian times a vector, K. An inexact Newton method is used to ensure that the
linear system is tightly solved only when the accuracy matters — i.e. at the end of the nonlinear
iterations. With this approach, the convergence criteria of the linear residual is proportional to the

non-linear residual
(3.9) 136x" 4+ F(x*)||2 < tolp||F(x*)||2,

where tol;, is a constant®. Our (inexact) JFNK solver is implemented within PETSc, a high-

performance suite of non-linear and linear solvers developed at the Argonne National Laboratory

7).

Because GMRES stores all of the previous vectors that form the Krylov basis, it is necessary to
keep the number of iterations relatively small, to prevent the storage and CPU time from becoming
prohibitive. This is accomplished by preconditioning the linear system. A mathematically good
preconditioner should efficiently cluster the eigenvalues of the iteration matrix [40, 74]. Finding an

efficient preconditioner is often a combination of art, science, and intuition.

3In the present study, we use tol;, = 1075.
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3.4. Preconditioning

Although the governing equations are discretized in conservative form (mass, momentum, total
energy), we choose to solve for the primitive set of variables, [PvT] (pressure, velocity, tempera-
ture), since it is a better conditioned set of variables for low-speed flow [15, 64]. Introducing the

transformation

ouU
(3.10) 0U = S 0W.

where U = (p, pv, E) is the vector of conservative variables and W = (P,v,T) is the vector of

primitive variables. The linear system in Eq. (3.5) can now be transformed to

OF(x) 0U

(3.11)

It is important to emphasize that the change of variables does not affect conservation, since the
residual function is still written to satisfy the underlying conservation laws. The equations are thus
conserved to the non-linear tolerance level. One of the great strengths of the non-linear Newton-
Krylov algorithm is that it is not required to solve for conservative variables. Instead, one can solve
for another (mathematically equivalent) set of unknowns, which will render a better conditioned

system.

The right-preconditioned form of the system is
(3.12) IM~'Méx = —F(x),

where M is the preconditioning matrix*. Taking M as the approximate (finite-differenced) Jacobian

matrix, the degrees of freedom can be ordered by physics fields in a 3 x 3 block matrix

Mvv MVP MvT Xv bv
(3.13) Mpy, Mpp Mpr| |xp| = |bp|:
M7y Mrp My | |x7 br

4Although no matrix needs to be explicitly formed for the Jacobian-free Newton-Krylov (JENK) method, we choose
to explicitly form the matrix, M, for preconditioning purposes.
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where b is an incoming Krylov vector and x is the outgoing Krylov (solution) vector. Each block in

Eq. (3.13) is a block matrix of size nelems X Teqns X MDoFs/elem- 1he blocks corresponding to degrees

of freedom associated with velocity, for example, have two equations in 2D and three equations in

3D (vg, vy, V).

3.4.1. High-Order rDG. Since the PyP; scheme only solves for cell-averaged quantities, the
sub-blocks in Eq. (3.13) represent scalar (sparse) matrices for degrees of freedom corresponding
to that physics field. The higher-order schemes such as, P; P; or P>Ps3, however, have additional
degrees of freedom per equation per element (as listed in Table 3.2). In the higher-order schemes,
each block in Eq. (3.13) is now a block matrix itself, e.g. each physics block for the rDG P, P;3

scheme in 2D is a 6 x 6 block system corresponding to a cell-averaged value + 2 slopes + 3 curvatures

Mp,p, Mpp, Mpp, Mpp, Mpp, Mpp,
Mp,p, Mp,p, Mp,p, Mpp, Mpp, Mpnp,
Mpypo Mpypz MPyPy MPyPM 1VIPyPyy MPszy
(3.14) Mpp =
Mp,,p, Mp,p, Mp,p, Mp,p, Mp,p, Mp,p,
MPnyO MPnyI MPnyy MPnyzz MPnyyy MPnyzy
Mp,,p, Mp,,p, Mp,,p, Mp,p,., Mp,p, Mp,p,
Mvvovvo 1\/Ivvovvm Mvvovvy MVVOVVIZ Mvv0vvyy 1\/Ivvovvzy
Mvvwvvo Mvvxvvx 1\/Ivvl vvy Mvvwvvxm Mvvxvvyy Mvvmvva
Mvvyvvo Mvvyvvz Mvvyvvy Mvvyvvzz Mvvyvvyy Mvvyvvzy
(3.15)  Myy =
MVVZIVVO Mvvzzvvz 1v[vvgmvvy 1\/Ivvmcvvgm Mvvzzvvyy 1\/Ivvgmvvggy
MVVnyVO MVVnyVg: MVVnyVU MVVnyVxx MVVnyVyy MVVnyny
MVV@yVVO Mvvmyvvz MVszVVy MVszVVII MVszVVyy MVszVsz




Mr1, Mrr, Mpr, Mgr, Mrpr, Mg,
M7, M, Mg, Mg, M, Mo,
(3.16) My — M7y, 1, Mg, Mrpr, Mgr, Mrr, Mo,
Mz, 7, Mr,r, Mr,1, Mr,7,, M1,71,, M1,T,,

MTnyO MTnyw MTnyy MTnyl'm MTnyyy MTnyly

M7, Mr,1r, M1, 7, M1, 7., M1,T, Mr1,T,,

In 3D, these matrices would be 10 x 10 block-matrices, instead of 6 x 6 block systems.
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CHAPTER 4

Code Verification and Mesh Convergence

Since finding analytical solutions to the Navier-Stokes equations is difficult, the Method of
Manufactured Solutions (MMS) provides a technique to measure the numerical errors associated
with the discrete equations. This allows for the determination of the numerical scheme’s order
of accuracy, without using an analytical solution. In Section 4.1, we use the MMS to verify the
convergence rates in the L? norm for different rDG spatial discretization schemes. In Section 4.2,
we compare the computational efficiency between a high-order and a low-order rDG scheme by

conducting a qualitative convergence study.

4.1. Method of Manufactured Solutions for the Compressible Navier-Stokes

Equations

To test convergence in space and time for the problem with both hyperbolic and diffusion

operators, the following solution is manufactured in 2D

T (z,y) = T+ A, cos(2r (z+ v,t))sin (27 (y + v, t))
(4.1) P(x,y) = P+ A,sin(2m (2 + v,t))cos (27 (y + v,t))
v (z,y) = A, cos (21 (x +v,yt))sin (27 (y + v, 1))
v, (z,y) = A, sin (27 (z 4 v,t)) cos (27 (y + v, 1)),
where
A, = 0T, + a,sin(27t)
(4.2) A, = 6P, +a,sin(2nt)
A, = 0V, +a,sin(2nt),

and T, P, 0T, 6P,, 0V,, a,, a,, a,, v,, v, are given constants.
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FIGURE 4.1. On domain and mesh setup for 2D manufactured solution test problem.
a=p=10°.

Solution Eq. (4.1) corresponds to translating (with velocity w = (v,,v,)) and oscillating (with

amplitudes a,, a, and a,) waves. In the following simulations, we set
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a, = 0.05
a = 0.01
a = 0.05.
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FIGURE 4.3. Dynamics of the velocity field for manufactured problem, using
rDGP P, , ESDIRK,, At = 0.1, 32,762 elements.
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FIGURE 4.4. Dynamics of the temperature field for manufactured problem, using
rDszps, ESDIRK;, At = 0.1, 32,762 elements.
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FIGURE 4.5. On convergence of the pressure (left) and velocity (right) fields, with
mesh refinement and different space discretization schemes.

The ~-gas equation of state with v = 1.4 was used. Both thermal conductivity and dynamic
viscosity are set to be constant, xk = 0.1 and g = 0.1. Source terms generating this manufactured
solution are computed using symbolic manipulation in Mathematica. Once the source terms are
generated, the governing equations are solved on multiple grids with different mesh resolutions

using the generated source terms.

The domain and mesh are shown in Figure 4.1. Using high-fidelity space and time resolution,
the dynamics of pressure and velocity magnitude, and temperature fields are shown in Figures

4.2-4.4.

First, we measure space convergence rates, by using the 5%-order-accurate time discretization
ESDIRK35 and setting time step to 2 x At = 0.001. This ensures that time discretization errors are
smaller than space discretization errors. The results are shown in Figure 4.5. As one can see, all
three of the rDG schemes converge consistently — i.e., with second order for rDGPoP1’ with third

order for rDGP1P2, and with fourth-order for rDGP2 P,

In the simulations, we used I'DGP2 p, ON the mesh with 32,762 elements, to ensure small spatial

discretization errors. This space resolution is sufficient to measure nearly asymptotic convergence
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rates for time discretization schemes up to the 3'¢ order accurate. The fourth- and the fifth-order
accurate ESDIRK} 5 schemes exhibit nearly 4% order convergence rate, when time steps are large.

The convergence is flatten for smaller time steps, when space discretization errors become dominant.

4.2. Mesh Convergence of the PyP, and P, P; rDG schemes

In this Section, we compare the computational efficiency between the high-order, rDGP2 Py and
the low-order, rDGPoPl’ schemes for an internally heated, laser-induced melt convection problem.
Recall that the laser model is defined in Section 2.3. The figure of merit is to qualitatively resolve

all four unstable eddies/vortices at a non-dimensional time of £ = 35.

In Figure 4.6, the material is initially solid steel at a non-dimensional temperature of T=0on
the same non-uniform mesh in Section 6.3. The laser spot of radius 0.1 is centered at (0,0), inter-
nally heating the material, inducing unsteady melt convection. The bottom wall has a Dirichlet
boundary condition with temperature fixed at T = 0, while all other walls have Neumann boundary
conditions for temperature with zero heat flux. All four walls enforce a no-slip boundary condition
on velocity. The melt temperatures are Tioiqus = 0.95 and Tjiquidqus = 1.05, corresponding to a
mushy region thickness of € = 0.1. The Rayleigh, Prandtl, and Stefan numbers are: Ra = 10,

Pr = 0.13, and Ste = 8. In all runs, we used a time step, At = 0.1.

We refine the mesh, successively, until both the low-order and high-order schemes visually
resolve all four eddies with streamlines, as seen in Figure 4.6. On the left column, we observe that
the fourth eddie, V4, is finally captured with the 2"¢ order accurate, rDGrPopl scheme, on a fine,
320 x 160 mesh. On the right column, however, the 4*-order accurate, I'DGP2 P, scheme, captured
the fourth eddie with a very coarse, 48 x 24, mesh. For both schemes, we further refine the mesh

in order to verify that the solution has indeed converged.

In Figure 4.7, we compare both of the fully resolved cases, side by side. Comparing the two
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meshes, the 1rDGrPopl scheme required 45 times more elements than the I'DGP2P3 scheme. To com-
pare the number of degrees of freedom used, we note that in 2D, the 4*"-order scheme has 6 degrees
of freedom per equation per element, while the 2"%-order scheme has 1 degree of freedom per equa-
tion per element. Since the fourth order scheme has 6 times more degrees of freedom per element,
45 times less elements translates to a factor of 7.5 times less total degrees of freedom. The 4*"-order
scheme, however, only converged in half of the CPU runtime compared to the 2"%-order scheme,
because high-order methods are more computationally expensive per degree of freedom. We also
note that since the high-order method required only a coarse mesh, the CFL and Fourier num-
bers, defined in Appendix A.2, were much lower: CFL,., = 378, CFLya; = 0.87 and Fo, = 162,
Fo, = 1.2, as compared to much higher CFL and Fourier numbers with the low-order method:
CFLaco = 2500, CFLyat = 6 and Fo,, = 7000, Fo, = 55. Since the low-order case had significantly
higher CFL and Fourier numbers, the underlying linear systems are more ill-conditioned/stiff, se-

verely hindering scalability.

When we lowered the Rayleigh number, Ra < 103, for the same test problem, the convergence
study showed that the low order rDG-based scheme on a coarse mesh was sufficient to capture the
dynamics. This convergence study demonstrates that for Rayleigh numbers above Ra > 10° or when
the flow has several unstable vortices, the high-order rDG-based scheme is more computationally

efficient than the low-order rDG-based scheme, for the same qualitative solution.
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FIGURE 4.6. Qualitative convergence study of the low-order rDG scheme, left col-
umn, and the high-order rDG scheme, right column, for an internally heated melt-
convection problem. The figures show velocity magnitude with streamlines in red
at a non-dimensional time: ¢ = 35. All four vortices, V1-V4, indicate convergence.
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FIGURE 4.7. Side by side comparison showing the number of elements, number of
degrees of freedom, and CFL/Fourier numbers for both the low-order (top figure)
and high-order (bottom figure) rDG schemes.

-38-



CHAPTER 5

Solidification Model Results

In this Chapter, we analyze different combinations of the velocity suppression models, as de-
scribed in Section 2.2.2. Since we are primarily interested in modeling melt convection, we only
require a simple strength model that enforces the solid phase to be static. Therefore, to discriminate
between the velocity suppression models, the primary figure of merit is the magnitude of velocity
in the solid. Since the drag force model is a function of the drag coefficient, C, and the enhanced
viscosity model is a function of the viscosity ratio, %, we test different combinations of the two

parameters that inhibit the motion of the solid and mushy regions.

5.1. Problem Formulation

For a laser-induced melt convection problem, as seen in Figure 5.1, we discriminate between
the various velocity suppression models by measuring the velocity magnitude as a function of po-
sition in the solid and mushy phases for each of the tested models. We use the material values
defined in Appendix A.3. The laser has a power of 200W and moves at 2000 mm/s. For this
problem, we choose to use a large mushy region to measure the velocity drop-off across many grid
cells, Tsoliqus = 945K and Tiiquidus = 2355K. The test problem is run on a 64 x 64 mesh using the
2" order accurate, rDGPOPI spatial discretization scheme. The measurements were made after 15

2nd

time steps using a At = 2.7us and using a 2"%-order, BDF5 time discretization scheme.

5.2. Analysis of Velocity Suppression Models

The results for all of the velocity suppression models are shown in Figure 5.2. For the top
four cases, we show results for varying drag coeflicients across the four plots and varying viscosity

ratio’s within each plot. For the bottom four cases, we show results for varying viscosity ratio’s
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across the four plots and varying drag coefficients within each plot. For the lower two drag co-
efficient cases, C' = 0 and C' = 10,000, we observe that the models with a higher viscosity ratio
correspond to smaller velocity magnitude values in the solid, as we would expect. For the higher
drag coefficient cases, C' = 100,000 and C' = 500,000, we observe that the higher viscosity ratio’s,
however, correspond to larger velocity magnitudes in the solid. This trend is expected because
as both parameters become very large, the viscous term begins to compete with the drag term,
reducing the efficacy of the drag model. Note that velocity magnitudes below 107!3 are in the

range of floating point roundoff and are negligible.

With the exception of the pure viscosity models, all of the tested velocity suppression models
have sufficient levels of velocity suppression in the solid. Thus we further discriminate between the
models by considering the computational efficiency (CPU wall-time) of the various models, which
is ultimately dependent on the underlying non-linear/linear solvers and choice of preconditioner.
Recall that the enhanced viscosity models introduce strong nonlinearities in the parabolic (viscous)
operator while the drag force models introduce strong nonlinearities in the source term operator.
As a result, we select a phase change model based on the choice of preconditioner, which is selected
based on the stiffness of the particular problem (large or small CFL numbers). For the externally
induced phase change problems (melting/freezing from the wall) with thick mushy regions, we use
a viscosity ratio of % = 10,000 and C = 500, 000. For the laser-induced melt convection problems
with thin mushy regions, we use a pure drag model (% = 1) with C' = 500, 000, in order to avoid

large viscosity jumps across the thin interface.
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FIGURE 5.1. Laser-induced melt pool showing temperature and streamlines at non-
dimensional time, ¢ = 1.5 x 1073. The velocity magnitude is measured on the the

vertical (red) line and used in Figure 5.2.
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FiGURE 5.2. Plots of velocity magnitude vs. vertical height. The top four figures
vary the drag coefficients across the plots and vary the viscosity ratio’s within each
plot. The bottom four figures vary the viscosity ratio’s across the plots and vary
the drag coefficients within each plot.
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CHAPTER 6

Parametric Studies

In this Chapter, we demonstrate that our numerical framework can robustly handle a wide range
of melt convection problems. To accomplish this, we independently scale each dimensionless num-
ber, analyzing the sensitivity of the melt convection dynamics to the non-dimensional parameters.
Different melting and solidification configurations are tested, verifying the ability to simulate both
melting and solidification problems. As described in Section 2.4, our non-dimensionalized equations
for melt convection problems depend on three dimensionless numbers: the Rayleigh number, Ra,

the Prandtl number, Pr, and the Stefan number, Ste.

In each of the following Sections, we vary one of the non-dimensional numbers while holding
the other two constant. When held constant, the dimensionless numbers are: Ste = 5, Pr = 0.1,

and Ra = 10°.

6.1. Prandtl Number Effects

In this Section, we vary the Prandtl number for three cases: Pr = 0.01 (mercury), 0.1 (steel),

7 (water), while holding the Rayleigh number, Ra = 10°, and Stefan number, Ste = 5, constant.

In all of the cases, the material is initially held at a non-dimensional temperature of T = 2. The
temperature boundary condition at the left and right walls have Dirichlet boundary conditions, set
to a temperature of T = 2. The temperature boundary condition on the top and bottom walls
have a Neumann boundary condition with zero heat flux. All four walls enforce a no-slip boundary
condition on velocity. The melt temperatures are Tyjiqus = 1.45 and Tjiguiqus = 1.55, correspond-
ing to a mushy region thickness of € = 0.1. At ¢ = 0, the left wall temperature drops to T =16,

inducing natural convection. Once steady-state circulation is developed at £ = 1000, the left wall
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temperature drops further to T= 1, forming a solid crust that advances from the left wall.

The simulations are run on a 64 x 64 mesh using a 4'"-order accurate rDGP2P3 spatial dis-
cretization scheme. We simulate £ = 2000 units of dimensionless time using a 2"4-order, BDF3 time
discretization scheme. Since our simulations are fully-implicit and we want to step over acoustic
and material timescales (dynamics evolve slowly), we pick a time step, At = 2.0, corresponding to

large CFL and Fourier numbers: CFL,., = 3,200, CFL,»; = 30, Fo, = 200, Fo,, = 200.

In Figure 6.1, the plots on the left column show the temperature and velocity vectors of natural
convection at steady-state for increasing Prandtl numbers (from top to bottom), while the plots on
the right column show velocity magnitudes of the corresponding cases at the same time. For the
top case, Pr = 0.01 (mercury), we observe that the natural convection pattern has a ring-shaped,
annular structure, as deduced from the velocity magnitude and velocity vectors. This low Prandtl
number case corresponds to a thin viscous boundary layer, allowing for easier flow penetration and
enhanced natural convection heat transfer near the vicinity of the wall. Our results are in agree-
ment with [66], which show a similar trend of increased heat transfer at the wall for decreasing
fluid Prandtl numbers. For the higher Prandtl number case, Pr = 7 (water), we observe that the
flow velocity begins to diminish near the top and bottom walls, which is due to a thicker viscous
boundary layer inhibiting flow penetration. As expected, the intermediate case, Pr = 0.1 (steel),

resembles a flow structure between the two extreme cases.

After natural convection at steady-state is developed, we drop the left wall temperature from
T =16 to T = 1, which is below the freezing temperature. As the liquid freezes, the solid
crust slowly advances to the right, until steady-state is reached again, as seen in Figure 6.2. As
expected, the natural convection patterns developed in Figure 6.1 are displaced to the right from
the advancing solid crust from the left wall. The solid-liquid interface is denoted by the two thin
black contour lines, where the left contour corresponds to the solidus temperature and the right

contour corresponds to the liquidus temperature, and the mushy region exists in-between. In the
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top case, Pr = 0.01, the solid-liquid interface is curved around the circular convection pattern,

while in the bottom case, Pr = 7, the solid-liquid interface is less curved and more straight.
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FI1GURE 6.1. Natural convection without phase change at steady-state. Left column
shows temperature with velocity vectors and right column shows velocity magnitude.
The Prandtl number increases from the top row to the bottom row: Pr = 0.01,0.1, 7.
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FI1GURE 6.2. Natural convection with phase change at steady-state. Left column
shows temperature with velocity vectors and right column shows velocity magnitude.
The Prandtl number increases from the top row to the bottom row: Pr = 0.01,0.1,7.
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6.2. Stefan Number Effects

In this Section, we vary the Stefan number for two cases: Ste = 5.0 and Ste = 0.5, while
holding the Prandtl number, Pr = 0.1, and Rayleigh number, Ra = 10°, constant and using the

same problem setup as in the last Section 6.1.

In Figure 6.3, we show the temperature and streamlines for both the low and high Stefan
numbers cases, on the top and bottom rows, respectively. The plots on the left column correspond
to a snapshot in time when the solid crust just begins to appear and advance to the right. Com-
paring both Stefan number cases, we observe that the solid-liquid interface for the higher Stefan
number case has advanced further to the right, for the same snapshot in time. This behavior is
expected if one recalls that the Stefan number, as defined in Eq. (2.32), is the ratio of sensible
heat to latent heat. Larger Stefan numbers correspond to relatively smaller latent heats, which
means less energy is required for a change of phase. Thus in problems with larger Stefan numbers,
for a given temperature gradient, the solid-liquid interface will propagate faster, as verified in the
left column of Figure 6.3. The plots on the right column correspond to a snapshot at steady-state.
Comparing the two cases, we observe only minor differences in the final position of the solid-liquid
interface. These differences are expected since natural convection occurs simultaneously as the
interface is propagating, thus changing the final position of the solid-liquid interface. Since the
velocity magnitudes are quite small, |v| < 1, there are only minor differences in the final interface
position. If the velocity magnitudes were very large, however, we would expect larger differences
in the final position of the solid-liquid interface due to the non-linear coupling of the governing
equations. In contrast, for a pure heat conduction (Stefan) problem, all Stefan number cases would

have the same final solid-liquid interface position.
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Ste=5.0

F1GURE 6.3. Temperature and streamlines are shown for two snapshots in time
and two different Stefan numbers (Ste = 0.5 on the top row and Ste = 5.0 on the
bottom row). The left column shows snapshots at £ = 275, when the solid crust
just appears, while the right column shows snapshots at ¢ = 2000, corresponding to
steady-state.
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6.3. Rayleigh Number Effects

In this Section, we vary the Rayleigh number for three cases: Ra = 10%,105, 108, while holding
the Prandtl number, Pr = 0.1, and Stefan number, Ste = 5, constant. In this study, we use a more

challenging non-uniform, wedge-shaped domain.

In all three cases in Figure 6.4, the material is initially solid steel with a non-dimensional tem-
perature of 7' = 1 on the non-uniform mesh. The top and bottom walls have Dirichlet boundary
conditions for temperature and both are initially set to a temperature of T = 1. The bottom
wall is quickly ramped to a higher temperature of 7' = 2.0, inducing melt convection from the
bottom. The left and right walls have Neumann boundary conditions for temperature with a zero
heat flux. All four walls enforce a no-slip boundary condition on velocity. The melt temperatures
are Tyoiqus = 1.4 and Tjigyiqus = 1.6, corresponding to a mushy region thickness of € = 0.2. The
simulations are run on a 40 x 80 mesh using a 4*"-order accurate rDGP2P3 spatial discretization
scheme. We simulate £ = 1000 units of dimensionless time using a 2"%-order, BDFy time discretiza-
tion scheme. We can again afford to pick a large time step, At = 0.5, corresponding to large

CFL/Fourier numbers: CFL,c, = 10,000, CFLy,at = 15, Fo, = 6, and Fo, = 624.

As seen in Figure 6.4, we increase the Rayleigh number by two orders of magnitude in each case.
For all cases, we observe that heating from the bottom produces the well known Rayleigh-Benard
thermal instability, due to thermal buoyancy. For the low Rayleigh number case, 104, steady-state
develops at t = 1000 with only two convection cells. As we increase the Rayleigh number to 109,
more convection cells grow, and steady-state never develops since the eddies become unsteady with
time, known as “soft turbulence”. In the high Rayleigh number case, Ra = 108, the onset of “hard
turbulence” begins and the simulation is completely unsteady with multiple large and small eddies.
In Figure 6.5, a time sequence is shown for this high Rayleigh number case, where we see the

formation and subsequent break-up of eddies with time.

-50-



-1.0

FIGURE 6.4. Temperature plots with streamlines at time, ¢ = 870, for increasing
Rayleigh number.

-51-



FIGURE 6.5. Temperature plots with streamlines for several time snapshots for the
high Rayleigh number case, Ra = 108.
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6.4. Melting/Solidification Configuration Effects

In this Section, we qualitatively verify that our numerical framework correctly produces the
expected results in melt convection problems for different melting and solidification configurations.
We accomplish this by analyzing the sensitivity of melting and freezing on four different configura-

tions. In all cases, we use the same geometry and parametric values in Section 6.3.

For each of the four different configurations in Figures 6.6 and 6.7, we have two oppositely
faced Dirichlet boundary conditions for temperature and two oppositely faced Neumann boundary
conditions for temperature. All four walls have no-slip boundary conditions for velocity. In the
top left case of Figure 8.10, the top wall is set to T = 1 while the bottom wall is set to a higher
temperature of T = 2, inducing melt convection from the bottom. In the other configurations, the

high temperature wall is set the top, left, and right walls, respectively.

As seen in the top left case of Figure 6.6, heating from the bottom produces the well known
Rayleigh-Benard instability, while heating from the top produces a stable configuration as seen in
the top right case. Heating from the left and right produce steady natural circulation cells for the

given Rayleigh number.

In Figure 6.7, we use the same four configurations except we reverse the boundary conditions
and instead cool from the bottom, top, right, and left, respectively. We observe similar flow
dynamics as in the melting cases, but an asymmetry exists due to the different initial conditions.
For the melting case, we start with an initial (solid) block of steel, where as in the freezing case,
we start with an initial (liquid) melt pool. The melting case is computationally very challenging,
especially for incompressible flow solvers, since V - v = 0 must be enforced at the beginning of the
melting process [46]. Since we use an artificial compressibility approach, as described in Section

2.1.2, we do not observe any such difficulty.
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FIGURE 6.6. Temperature plots with velocity vectors for four heating configura-
tions. Heating from the bottom, top, left, and right walls.
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FIGURE 6.7. Temperature plots with velocity vectors for four cooling configurations.
Cooling from the bottom, top, left, and right walls.
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CHAPTER 7

Laser Processing Results: Moving Laser-Induced Melt Convection

Since we are interested in developing numerical simulations of laser-based additive manufactur-
ing processes, such as SLM, we want to verify that our numerical framework can converge moving
laser-induced melt convection. We show converged results for 2D single-track simulations in Section
7.1 and 3D single-track simulations in Section 7.2. The necessity of 3D simulations is demonstrated
in Section 7.3, since 2D simulations have artificially elongated melt pools, an unphysical phenom-

enon.

7.1. 2D Single-Track Simulations

In this numerical example, we simulate a moving two-dimensional laser-induced melt convec-
tion problem. As seen in Figures 7.1 and 7.2, the single-track domain is 1 mm x 0.3 mm. Using
the same material parameters defined in Appendix A.3 and the beam model described in Section
2.3, we scan a 200W laser at 2000 mm/s laser across the 1 mm track (centered at the top of the

domain). The max penetration depth of the laser is 0.05 mm.

The material is initially an idealized metal with properties similar to those of stainless steel
at room temperature, Ty = 300 K, with an energy absorption coefficient of 0.3. The bottom wall
has a Dirichlet boundary condition for temperature, fixed at T' = 300 K, while the other walls have
Neumann temperature boundary conditions with zero heat flux. The top wall has a slip-boundary
condition while the remaining walls enforce a no-slip boundary condition on velocity. The simu-
lation has 40,000 elements in the melt pool (50,000 elements total) using the 22d_order accurate,
rDGPOPI, spatial discretization scheme. Since we want to resolve the time scale associated with
the laser’s velocity, we pick a time step, At = 0.275us, which is below the dynamic time scale of
the laser. These time steps correspond to CFLae, = 1 and CFLy. = 107°, and Fo, = 1.6 and

Fo, = 0.2. Using a 2"-order, BDF, time discretization scheme, we simulate a total of 500 us,
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which is the time it takes for the laser to scan across the domain.

As the laser moves across the domain and heats the steel beyond its melt temperature, melt
pools are formed and subsequently solidified. The temperature field is shown in Figure 7.1 while the
velocity field and streamlines are shown in Figure 7.2. Both figures show plots for four snapshots
of the simulation in time. Peak temperatures of the steel are observed to be upwards of 5,800 K.
Similar laser parameters were used in a single-track simulation in [36], but the peak temperatures
were found to be 3,100 K, corresponding to the boiling temperature of steel. As mentioned in
Section 2.1, since the simulations do not account for the latent heat of vaporization of steel, which
is on the order of megajoules per kilogram, radiative effects, or Marangoni convection, the significant
over-prediction in temperature is expected. We note that since the Rayleigh number is very low,
Ra ~ 102, and there are only two stable vortices, the low-order, rDGpopl, scheme is sufficient to

capture the dynamics in the melt pool.

7.2. 3D Single-Track Simulations

In our final numerical example, we consider a 3D laser-induced melt convection problem on a
single-track. The domain is 1 mm x 0.1 mm x 0.1 mm as shown in Figure 7.3. We use the same

parameters as in the 2D laser-induced melt convection problem in Section 7.1.

As in the last example, the material is initially solid steel at room temperature, Ty = 300 K,
with an energy absorption coefficient of 0.3. The bottom wall has a Dirichlet boundary condition
for temperature, fixed at T' = 300 K, while the other walls have Neumann temperature boundary
conditions with zero heat flux. Both the top wall and the closest facing wall (at Z = 0.1 mm)
have slip-boundary conditions for velocity, while the remaining walls enforce a no-slip boundary
condition. For computational efficiency, we only simulate half the domain since the problem is

symmetrical across the Z-axis.

We simulated the 3D laser melting problem for two different cases: one with a coarse mesh with

a total of 150,000 elements and the other with a fine mesh, with a total of 700,000 elements. The
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Ficure 7.1. Temperature plots with temperature contours of a 2D single-track for
different time snapshots (in microseconds). Black contour line corresponds to the
solid-liquid interface.
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FIGURE 7.2. Velocity magnitude plots with streamlines of a 2D single-track for
different time snapshots (in microseconds). Black contour line corresponds to the
solid-liquid interface.
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coarse mesh case had 100,000 elements in the melt pool and required 6.5 hours on 120 processors
using a combined phase change model, % = 10,000 and C' = 500,000, with a At = 2.75 us, corre-
sponding to: CFL,., = 3 and CFLy,; = 107%, and Fo, = 1.43 and Fo, = 34. The fine mesh case,
as seen in Figure 7.3, had 450,000 elements in the melt pool and required 60 hours to complete
on 320 processors using a pure drag force phase change model, C' = 500, 000, with a At = 0.25 us,
corresponding to a CFLyeo = 0.5 and CFLy = 1077, and Fo, = 0.4 and Fo, = 0.05. In both

cases, the simulation are run using the rDGPO spatial discretization scheme and the BDF5 time

Py

discretization scheme with time steps that resolve the dynamic time scale of the laser.

Similar to the 2D single-track example, both of the 3D cases significantly over predict the
peak temperature, as expected. Simulations of the multi-material SLM process will require over a
million elements to capture high-resolution dynamics in the melt pool. Scaling up to simulations
with more than a million elements, however, requires a more computationally efficient solver and

preconditioner, such as developed in Chapter 8.

7.3. Single-Track Length: 2D vs. 3D

To verify the necessity of 3D laser melting simulations (instead of 2D approximations), we
compare the size of the melt pool from the 2D and 3D simulations on the (X-Y') plane at ¢ = 500us.
As seen in Figure 7.4, the melt pool in the 2D simulation is roughly twice as long as the melt pool
in the 3D simulation. This difference is expected, since in 3D there is an additional dimension for
energy to be transported, while in the 2D case, the energy is confined to the 2D plane, artificially
elongating the melt pool. The extra dimension also explains why the peak temperature in the
2D case is slightly higher than the 3D case. Thus, single-track laser melting experiments are
an inherently 3D process and require 3D simulations. The melt pool track length shown here

qualitatively compares to the simulation results in [37].
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F1cUre 7.3. 3D single-track showing half the domain on a 700,000 element mesh.
Temperature is shown on the top and the velocity magnitude with vectors is shown
on the bottom, at ¢ = 325 us. The black contour lines represent the solidus and
liquidus temperatures, respectively.
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FIGURE 7.4. Length and height of the melt pool on the (X-Y) plane for the 2D
and 3D single-track domains using a 1rDGP0P1 scheme.
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CHAPTER 8

Exploring Preconditioning Strategies

In this Chapter, we review and compare common preconditioning strategies in the literature.
Numerical results (strong and weak scaling studies) are shown for three problems of increasing
complexity: low-Mach lid-driven cavity flow, low-Mach melt convection on a non-uniform mesh,
and 3D laser-induced melt convection on single and multiple melt tracks. The lid-driven cavity
flow problem exhibits the numerical challenges associated with stepping over acoustic time-scales
in the low-Mach regime. In the melting brick problem, the acoustic time-scale as well as the viscous
time-scale associated with solid-liquid phase change are stepped over. Finally, the 3D laser melting
problems incorporate the previous challenges with an additional nonlinearity associated with rapid
heating due to a moving laser source. We find that the most robust and efficient preconditioner
is a multigrid block reduction technique, developed in Section 8.2.4, which uses the the velocity-

pressure (vP) and velocity-temperature (vI') Schur complement systems.

8.1. Need for a Scalable and Efficient Preconditioner

The results up until now have been using an LU factorization as a preconditioner for the outer
JENK solver, which is an unscalable approach since the largest problem that can be fit into memory
is 700,000 elements in 3D, as seen in Figure 7.3. To simulate larger problems, a scalable and com-
putationally efficient preconditioner needs to be developed with the ability to converge solutions

resulting from highly-ill conditioned systems at high CFL/Fourier numbers.

Performance of all preconditioners are compared by analyzing outer GMRES iteration counts
and CPU-times. All calculations requiring over 500 processors were run on the Jade supercomputer
at the Lawrence Livermore National Laboratory. The machine has 1,302 compute nodes (36 pro-

cessors per node) with 2.1 GHz Intel Xeon E5-2695 processors and 128 GB of memory per node. All
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other runs were performed on the RZMerl supercomputer with 154 compute nodes (16 processors

per node) using 2.6 GHz Sandy Bridge processors with 32 GB of memory per node.

8.2. Survey of Preconditioning Techniques

In this section, we survey common preconditioning techniques in the literature for JFNK solvers.

An extensive survey of JFNK methods and preconditioners can be found in [40].

8.2.1. One-Level Additive Schwarz Preconditioner. We consider an element-block ad-
ditive Schwarz method as a preconditioner for the outer JENK solver. In this study, the degrees
of freedom in each element-block consist of all three cell-averaged fields: pressure, velocity, and
temperature. In this one-level approach, we couple all degrees of freedom within an element block
to all degrees of freedom within neighboring elements in the stencil, using an element-block Schur
complement matrix. To form the Schur complement matrix, the element block matrix (a 4 x 4
system in 2D) is exactly inverted and a diagonal approximation is used for the overlapping degrees

of freedom.

8.2.2. Monolithic Algebraic Multigrid Preconditioner. We apply Algebraic Multigrid
(AMG ) on the fully-coupled monolithic system as a preconditioner to the outer GMRES-Newton
solver. We use HYPRE’s BoomerAMG, a parallel implementation of AMG developed at the
Lawrence Livermore National Laboratory [27]. In this study, we use the default settings for Boomer-

AMG, which utilizes a symmetric SOR smoother on a single V-Cycle with Falgout coarsening.

8.2.3. Physics-Block Gauss-Seidel. This preconditioner uses the lower triangular portion

of the approximate Jacobian matrix, ordered by physics blocks,

Mpp 0 0 Xp bp
(8'1) 1\/IvP 1\/Ivv 0 Xv| = bv
Mrp Mpy Mrr| | X1 b
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The outgoing vector is then solved for with one iteration of a block Gauss-Seidel method,

(82) Xp = M;)}:)bp

(8.3) xy = My (by — Mypxp)

(8.4) XT = ME%(bT — MTPXP — MTVXV)'

To approximate the action of the inverse for the three block solves in Eq.’s (8.2-8.4), we use
BoomerAMG as a preconditioner to FGMRES. A similar physics-block Gauss-Seidel strategy was

developed and implemented in [65, 70].

8.2.4. Physics-Block Schur Complement (vP-vT). Since our 2-parameter EOS has no
pressure-temperature dependance, the pressure and temperature coupling is weak. Therefore, the

Mpr and M7p blocks can be neglected without a loss in robustness. Thus, the 3 x 3 block system

reduces to
MVV MVP MvT Xv bv
(8.5) Mpy, Mpp 0 xp| = |bp
MTV 0 MTT XT bT

The block LU decomposition of this 3 x 3 system is

(8.6)
Mvv MVP MVT I 0 0 1\/[vv MVP MVT
Mp, Mpp 0 | = |[MpMg! I 0 0  Svp —Mp,MyIMyr
Mry 0 Mypp MroMy! —MpMyIM,pS,p 1 0 0 Z

where Sy p is the velocity-pressure Schur complement
(8.7) Svp = Mpp — MpyM it M, p,
and Z is a nested Schur complement matrix, coupling velocity, pressure, and temperature

(8.8) Z = My — My My (I+ M, pS, pMpy Myt )My
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As noted in [18], solving the fully-coupled 3 x 3 nested Schur complement system is formidable.
Instead, we reduce the 3 x 3 system to a sequence of reduced 2 x 2 block systems, the velocity-
pressure (vP) and velocity-temperature (v7T') systems. The block LU decomposition of the 2 x 2

v P system is given by

(8 9) Mvv MVP . 1\/Ivv 0 1 M;&MVP
Mpy Mpp Mpy Svp| |0 I

Similarly, the block LU decomposition of the 2 x 2 v system is given by,

M,v Myr M+ 0 I M;& M, r
(8.10) - :
Mr, Mrr Mz, Syr| |0 I

where the vP and v Schur complement matrices are defined as

(8.11) Svp =Mpp — MpyMyM,p

(8.12) Svr = My — Myy My Myr.

Using these physics-block factorizations, the vP-vT Schur complement preconditioning matrix is

(8.13)
M, M, p M, My, 0 0 ||I M{IM,p MylM,r
Myp—vr = |Mpy Mpp Mp, M IMy7r| = |Mpy, Syp 0 | |0 I 0
Mz, Mr,MyIM,p Mzt Mr, 0 Syr| [0 0 I

With the above preconditioning matrix, the solution procedure proceeds in two steps. First, the

intermediate velocity, pressure, and temperature solutions are solved using forward substitution

(8.14) x5 = My lbyy
(8.15) Xp = S;};(bp — MPVXT/)
(8.16) x1 = S 7(br — Mryx3).
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Finally, the velocity solution is corrected using backward substitution

(8.17) xy = Myl (by — Mypxp — Myrx7).

vV

Note that this procedure is analogous to Chorin’s projection algorithm and operator-splitting meth-

ods, such as SIMPLE, in incompressible flow solvers [16, 71].

Eq.’s (8.15) and (8.16) require approximating the action of the inverse of a Schur complement
system. Explicitly forming the exact Schur complement matrices is prohibitively expensive, since
the inverse of My, would be required. We implement three different strategies for solving the Schur

complement system.

(1) Form an approximate Schur complement matrix by using a diagonal approximation, Dy, =

diag(Myy). In this case, Syp and Sy are now replaced by Syp and Sy, respectively

(8.18) Svp =Mpp — MpyDiMyp

(8.19) SvT = My — MTVD;&MVT.

Dy is a good approximation of My, when the off-diagonal contributions are small relative
to the diagonal, such as the case for small time steps or small viscosity ratio’s between the

solid and liquid phase.

(2) Solve the exact Schur complement systems in a matrix-free fashion, without explicitly
forming the Schur complement matrices. In this strategy, M{,%, is approximated with a

single V-cycle.

(3) (Most robust case) Solve the exact matrix-free, Syp and Sy Schur complement systems,
but now preconditioned with the explicitly formed Schur complement matrices, Svp and

Svr, as defined in Eq.’s (8.18) and (8.19).
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These three strategies are compared in Section 8.4.2. To approximate the action of the inverse
of the block solves in Eq.’s (8.14-8.17), we use AMG preconditioned GMRES to solve each block
system to a relative linear tolerance of 10~!. Various combinations of preconditioners and solvers

(SOR, AMG, GMRES), as well as linear tolerances are explored in Section 8.3.4.

8.3. Low-Mach Lid-Driven Cavity Flow Results

The velocity magnitude with streamlines and temperature fields for the 2D lid-driven cavity
flow problem is shown in Figures 8.1 and 8.2, respectively. For performance analysis, the initial
temperature of the entire domain is set to a constant temperature T’ = 1 and all four walls have
isothermal boundary conditions for temperature at 7' = 1. The top wall is moving to the right
with a prescribed velocity, v, = 1, and all other walls enforce a no-velocity condition. For all of
the studies, we started at t =~ 2 and counted the number of outer FGMRES iterations and CPU
time per time step, averaged over 50 time steps. A square domain with a 512 x 512 mesh resolution
was used, except for the strong and weak scaling results. The Mach number varied in the range of
1072 to 107°. The 1"DGrPOPI scheme and the BDFs integrator were used for performance analysis

of different preconditioning techniques.
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FIGURE 8.2. Dynamics of the temperature field for rDGP2P3 , mesh resolution 128 x

128, ESDIRK5 , At = 1, Re = 10*. Left and right walls are initially held at
temperatures of T'= 1 and T = 2, respectively, with a linear temperature gradient

across the domain.
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8.3.1. Eigenvalues for a Lid-Driven Cavity Flow Matrix. To illustrate the complexity
of solving the Jacobian system in Eq. (3.5), the eigenvalues of an unpreconditioned Jacobian matrix
is plotted for the lid-driven cavity flow problem in Figure 8.3. In this system, the condition number
is on the order of 10 million, corresponding to an acoustic CFL number of 10,000 and an advection
CFL number of 30. An effective preconditioner that clusters the eigenvalues is thus necessary for

rapid convergence.
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Ficure 8.3. Eigenvalues of an unpreconditioned Jacobian matrix for the low-Mach
lid-driven cavity flow problem. The condition number is large, x = 107.

8.3.2. Weak Scaling Study. In Figure 8.4, we conduct a (fixed CFL number) weak scaling
study to analyze the algorithmic scalability of the different preconditioners for the low-Mach lid-
driven cavity flow problem. In all of the cases, the number of degrees of freedom per processor is
fixed, to ensure a constant workload. The mesh varied from 362 x 362 up to 2048 x 2048, while
the number of processors varied from 16 to 512. The acoustic CFL number was fixed at 15 and all
other time-scales were resolved. We note that as the number of degrees of freedom (DoF) increases

in each case, the mesh width decreases, which increases the Fourier number.

As seen in Figure 8.4, all of the preconditioners scale well in the weak sense. The one-level
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additive Schwarz preconditioner converges with the most iterations and CPU time for the given
CFL number. The physics-block Gauss-Seidel preconditioner fares better, but the LU factorization
and the vP-vT Schur complement preconditioners converge in the least number of iterations!. The
LU factorization is competitive up to 10> DoFs, but performance significantly degrades above 106.
Furthermore, the LU factorization preconditioner cannot load problems larger than 10° DoFs in
memory. As a result, the vP-vT Schur complement preconditioner had the best performance and

is algorithmically scalable.
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FIGURE 8.4. Weak scaling (fixed CFL) study for the low-Mach lid-driven cavity
flow problem.

8.3.3. Acoustic CFL Number Study. Next, in Figure 8.5, we study the effect of the acous-
tic CFL number on the performance of the different preconditioners. In each case, we increase the
sound speed by a factor of 10, which proportionally increases the acoustic CFL number from 1 to
1,280. Since the Mach number is a function of the sound speed, it decreases from 1072 to 1075,

All other time-scales were resolved.

W inear iterations are measured over the full time step, which may include several Newton steps. Additionally, since
the Jacobian matrix is only approximate, an LU factorization preconditioner will still require more than one GMRES
iteration.
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AMG on the fully-coupled system and the one level-additive Schwarz preconditioners were un-
able to converge for the problems above acoustic CFL numbers of 1 and 10, respectively. This result
is not surprising as the high CFL numbers create a strong global stiffness, leading to non-diagonal
dominance [13]. The physics-block Gauss-Seidel preconditioner was more effective in capturing the
global coupling and as a result was very efficient when the acoustic CFL number was less than
10. For larger CFL numbers, the physics-block Gauss-Seidel preconditioner became ineffective and
failed to converge above CFL numbers of 100. The only preconditioners that were moderately
independent of the acoustic CFL number were the LU factorization and the vP-vT Schur com-
plement preconditioners. Both methods had a constant number of outer FGMRES iterations per
time step, due to the robust coupling of the velocity-pressure system. We observe that the vP-vT
Schur complement preconditioner had the best performance as it converged with the least amount

of CPU time.
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FiGURE 8.5. Acoustic CFL number study for the low-Mach driven cavity flow problem.

8.3.4. vP-vT Schur Complement Preconditioner: Block Solver/Tolerance Study.
In Figures 8.6 and 8.7, we compare the performance of different relative block-tolerances and var-
ious combinations of solvers and preconditioners, respectively, as a function of time step for the
v P-vT Schur complement preconditioner. As the time step increases in each case for both studies,

all of the CFL and Fourier numbers increase, as seen in Table 8.1. In both studies, we observe that

-73-



as the time step increases, the average number of iterations and CPU time per time step increases
for all cases, which is expected since the condition number of the underlying systems is a function

of the CFL/Fourier numbers.

For the relative block tolerance study in Figure 8.6, each block is solved with AMG precondi-
tioned FGMRES (AMG-FGMRES). We observe that all three cases require a similar number of
outer GMRES iterations. A relative block tolerance of 10~!, however, converges with the shortest
CPU-time. To maximize computational efficiency, the block-solves should have a loose relative

tolerance in the preconditioner.

For the solver/preconditioner study in Figure 8.7, a fixed relative block tolerance of 107! is
used. GMRES as a standalone block-solver was the least robust and failed to converge above an
acoustic CFL number of 300. AMG as a standalone block-solver and SOR-FGMRES were more
robust solvers, but failed to converge past an acoustic CFL number of 3000. An LU factorization
and AMG-FGMRES were the most robust block-solvers and were able to converge the most ill-
conditioned case, corresponding to an acoustic CFL number greater than 30,000 and an advection

CFL number of 100.

Time Step CFL. CFL,,,+ Foq Fo,

2x 1071 38 0.1 0.17 0.017
2x 1073 380 1 1.7 0.17
2x 1072 3800 10 17 1.7
2 x 10~T 30800 100 170 17

TABLE 8.1. Time step correspondence to CFL and Fourier numbers.

8.3.5. vP-vI' Schur Complement Preconditioner: Strong Scaling. To demonstrate
parallel scalability, we perform a strong scaling study, shown in Figure 8.8. In this study, we
counted the total CPU-time over 50 time steps, starting from ¢ = 0. A square domain with a very
fine, 4047 x 4047, mesh resolution was used. The number of processors varied from 144 to 9216.

Since the problem size was fixed, the number of elements per processor varied from 113,737 to
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For parallel domain decomposition, we use the ParMETIS library [35]. The processor domain
decomposition is visualized in Figure 8.9 for the case with 9216 processors. In Figure 8.8, we
observe ideal scaling from 113,737 elements per processor down to 1,777 elements per processor.
At 1,777 elements per processor, the ratio of ghost zones to the total number of zones is 20% and
thus we see that the scaling flattens out, as expected, since the communication between processor

zones begins to dominate.

. 25

e—o vP-vT Schur Complement

e -e Theoretical Limit

e Percentage of Ghost Zones

104} 120
¢ g
o L
E 115 4
L £
c 103} 0
= Y
(-4 o
- Q
o
> {108
o c
- 8
% 10%} E
=
15
10} - ‘ 0
10° 10° 104

Processors

FiGURE 8.8. Strong scaling study for 2D lid-driven cavity flow problem with 64
million degrees of freedom. For the given mesh resolution, the preconditioner/solver
exhibits ideal scaling up to 9216 processor cores, demonstrating excellent parallel
scalability for the given mesh resolution.

-76-



o v

[ "li.'

r‘ & l" »

BT N

L n!",",lr*':l-.q."al o,
£ yad

Y-Axis

FIGURE 8.9. Processor domain decomposition across 9,216 processor cores for the
2D lid-driven cavity flow problem. Each colored island represents a particular pro-

cessor’s domain.
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8.4. Low-Mach Melt Convection of a Steel Brick Results

In this numerical example, shown in Figure 8.10, the material is initially solid steel with a
temperature of T = 1 on a wedged-shape, non-uniform mesh. The top and bottom walls have
Dirichlet boundary conditions for temperature and are both initially set to a temperature of T' = 1.
The bottom wall is quickly ramped to a higher temperature of T = 2, inducing melt convection
from the bottom. The left and right walls have adiabatic (zero heat flux) temperature boundary
conditions. All four walls enforce a no-slip boundary condition on velocity. The melt temperatures
are Tg = 1.4 and Ty, = 1.6, corresponding to a mushy region thickness of ¢ = 0.2. For all of the
studies, we staredt at t ~ 2 and counted the number of outer FGMRES iterations and CPU time

per time step, averaged over 50 time steps.

0.0 . 1.

FiGurE 8.10. Snapshot of temperature and streamlines for melting of a steel brick
on a non-uniform mesh. Black contour lines represent the solid-liquid interface.

8.4.1. Eigenvalues for a Solidification Phase Change Problem. The eigenvalues of an
unpreconditioned Jacobian matrix is plotted for a phase change problem in Figure 8.11. In the
phase change case, the condition number is on the order of a billion and the eigenvalues have
now spread across the imaginary axis, presenting significant challenges for the solvability of the

underlying linear system.
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Fi1GURE 8.11. Eigenvalues of an unpreconditioned Jacobian matrix for a solidifica-
tion phase change problem. For comparison, the eigenvalues from Figure 8.3 are
shown in red. For phase change, the condition number is very large, x = 10°.

8.4.2. vP Schur Complement Preconditioner for Varying Viscosity Ratios. To illus-
trate the numerical challenges associated with the viscosity-strength model in melting and solidifica-
tion problems, we compare the performance between three variations of the vP Schur complement
preconditioner, outlined in Section 8.2.4, for increasing viscosity ratios, as shown in Figure 8.12. A

800 x 1600 mesh resolution was used for this study.

We observe that for large viscosity ratios (% > 1000), the case which solves the approximate
Schur complement system, S, p, performs poorly compared to solving the full (matrix-free) Schur
complement system. This result is not surprising since My, becomes less diagonally dominant as
the viscosity ratio increases, making Dy a poor approximation. The two cases that iteratively
solve the exact Schur complement system, however, have excellent performance and converge with
a similar number of outer GMRES iterations. Performance in run-time is further improved in the
final case where the full Schur complement system is preconditioned with the approximate Syp

Schur complement matrix as a preconditioner to the full Schur complement system.

-79-



450

N
o
o

e—e Diag. Approx.
400} | e=e Matrix-Free System
e Matrix-Free System with Diag. Approx.

e—e Diag. Approx.
==e Matrix-Free System
o Matrix-Free System with Diag. Approx.

w
w
o

350

w
o
o

300

N
w
o

Average linear iterations per time-step
S
o

Average CPU time per time-step (secs)

250

200

=
w
o

150

=
o
(=]

100

wu
o

50

0 oL I—
102 10° 10° 102 10° 10*
Viscosity Ratio Viscosity Ratio

FIGURE 8.12. Viscosity ratio study of the vP Schur complement preconditioner.

8.4.3. vP Schur Complement Preconditioner Block Tolerance Study. In Figure 8.13,
we compare the performance of different relative block-tolerances on a 400 x 800 mesh. As the time
step increases in each case, all of the CFL and Fourier numbers increase. We generally observe
that as the time step increases, the average number of iterations and CPU time per time step
increase, which is expected since the condition number of the underlying systems is a function of

the CFL/Fourier numbers.

For the relative block tolerance study in Figure 8.13, each block is solved with AMG pre-
conditioned FGMRES. We observe that the loosest relative block tolerance of 10~! requires the
most outer GMRES iterations to converge, followed by the 1072 case. The CPU-time shown in
the the right graph of Figure 8.13, shows the opposite trend, which indicates a tradeoff between
the relative block tolerance and the number of outer GMRES iterations. Therefore, a relative
block tolerance of 10! requires the most outer GMRES iterations but is the most computationally

efficient case (in CPU-time).

8.4.4. Weak Scaling for vP — vI' Schur Complement Preconditioner: High-Order
rDG. In Figure 8.14, we compare the performance of three rDG schemes by conducting a weak
scaling study (fixed CFL). Since the higher-order schemes have more degrees of freedom per el-
ement, the total number of degrees of freedom is kept constant between the schemes, instead of

the number of elements. Table 8.2 shows the range of mesh sizes, range of Fourier numbers, and
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FiGURE 8.13. Relative block tolerance study for the vP-vI Schur complement
preconditioner on the 2D melting brick problem.

acoustic CFL number for three different rDG schemes. The total number of degrees of freedom for
each scheme ranges from 288,000 to 2.3 million DoFs. For this study, we start at ¢t ~ 10 and count
the number of outer FGMRES iterations and CPU time per time step, averaged over 50 time steps.

The number of processors varied from 16 to 128 for each scheme.

In Figure 8.14 on the left, we observe that all three rDG schemes have good algorithmic scal-
ability and have the roughly the same number of outer GMRES iterations. On the right, we see
that the low-order, PyP;, scheme converges in the least CPU-time. As seen in Table 8.2, even
though the acoustic CFL and viscous Fourier number are the highest for PyP; (since the mesh
is the finest), the smaller matrix bandwidth more than compensates for the higher CFL/Fourier
numbers, leading to a faster run-time. We also note that the P> Ps; scheme converges moderately
faster than the P;P3 scheme. Even though P,P;’s matrix bandwidth is slightly larger, it has a
cheaper cost of reconstruction, leading to a slightly faster run-time. We note that since the number
of degrees of freedom were kept constant between each of the schemes, we would generally expect
the low-order methods to be more efficient (in CPU-time) than the higher-order methods, due to

the smaller matrix bandwidth. An efficiency comparison between the PyP; and P, P3 schemes was
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conducted in Section 4.2, which demonstrated that for the same resolving power, the P, P3 scheme

needed to solve for less total degrees of freedom.

Average linear iterations per time-step

20

Jury
w

=
o

wv

Scheme Smallest Mesh Largest Mesh Min. Fo, Max. Fo, CFL,

Py Py 380 x 760 1075 x 2150 88 248 597
P, P; 219 x 438 620 x 1240 29 82 344
P P3 155 x 310 438 x 876 15 41 244

TABLE 8.2. Required mesh resolution and corresponding CFL/Fourier numbers for
all three rDG schemes to have the same solution vector size.
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FIGURE 8.14. Weak scaling (fixed CFL) study comparing PyP;, P;P3, and P,P;
schemes for the same solution vector size.
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8.5. 3D Selective Laser Melting Results: Single Track

We consider a moving 3D laser-induced melt convection problem on a single-track. The domain
is 1 mm long x 0.3 mm wide x 0.15> mm high. A similar domain is shown in Figure 7.3. The
material is initially solid steel at room temperature, Ty = 300 K. The bottom wall has a Dirichlet
boundary condition for temperature, fixed at 7' = 300 K, while the other walls have adiabatic (zero
heat flux) temperature boundary conditions. A no-slip velocity boundary condition is enforced
at all walls. The laser power is 200W and has a scan speed of 2000 mm/s. For computational

efficiency, we only simulate half the domain since the problem is symmetrical across the Z-axis.

8.5.1. Weak Scaling. In Table 8.3, we conduct a (fixed CFL) weak scaling study for the v P-
vT Schur complement preconditioner. Starting at t = 0, we count the number of outer FGMRES
iterations and CPU time per time step, averaged over 50 time steps. In all of the cases, the number
of degrees of freedom per processor is fixed, to keep the workload constant. The number of degrees
of freedom is varied from 5 million up to 40 million, while the number of processors varied from 64

to 512. The acoustic CFL number is 50.
As we increase the total problem size, the number of outer FGMRES iterations per Newton

step and number of Newton steps per time step are roughly constant. This example demonstrates

that the vP-vT Schur complement preconditioner has excellent algorithmic scalability in 3D.

DoF FGMRES/Newton Newton/Cycle CPU-Time/Cycle (Secs)

5 million 16.2 1.0 10.8
10 million 17.0 1.0 15.4
20 million 18.0 1.0 19.0
40 million 18.1 1.0 19.74

TABLE 8.3. Weak scaling (fixed time step) study for the 3D laser melting problem.

8.6. 3D Selective Laser Melting Results: Multiple Tracks

In our final numerical example, we consider a computationally challenging, moving 3D laser-

induced melt convection problem on multiple melt tracks. The domain is 1 mm long x 1 mm
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wide X 0.3 mm high, as shown in Figures 8.15. The material is initially solid steel at room
temperature, Ty = 300 K. The bottom wall has a Dirichlet boundary condition for temperature,
fixed at T' = 300K, while the other walls have zero heat flux temperature boundary conditions.
A no-slip velocity boundary condition is enforced at all walls. The laser power is 500W and has
a scan speed of 4000 mm/s. As discussed in Section 7.1, the large temperature values are due to

neglecting the evaporation, radiation, and Marangoni convection.

8.6.1. Weak Scaling. In Table 8.4, we conduct a (fixed CFL) weak scaling study for the v P-
vT Schur complement preconditioner. Starting at ¢ = 0, we count the number of outer FGMRES
iterations and CPU time per time step, averaged over 300 time steps. In all of the cases, the number
of degrees of freedom (DoFs) per processor is fixed, to keep the workload constant. The number of
degrees of freedom is varied from 5 million up to 40 million, while the number of processors varied

from 108 to 8642

As we increase the total problem size, the number of outer FGMRES iterations per Newton
step and number of Newton steps per time step is roughly constant. This demonstrates that the

v P-vT Schur complement preconditioner has excellent algorithmic scalability in 3D.

300.0 1640. 2980. 4321. 5661.
I T T(K)

FicUrRE 8.15. Temperature and melting front dynamics from 3D laser-induced
phase change on multiple melt-tracks.

2The 3D SLM simulation on multiple-tracks also converged on 25 million elements (125 million DoFs) with 4096
processors using the Jade supercomputer.
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DoF FGMRES/Newton Newton/Cycle CPU-Time/Cycle (Sec)

5 million 20.3 6.3 70.1
10 million 20.5 6.0 1.7
20 million 19.3 5.9 72.54
40 million 20.8 5.3 63.46

TABLE 8.4. Weak scaling (fixed time step) study for the 3D laser melting problem
on multiple melt-tracks.
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CHAPTER 9

Conclusion and Future Directions

9.1. Concluding Remarks

A scalable block-based preconditioner was developed for a Newton-Krylov solver of a fully-
implicit rDG-based discretization of the all-speed compressible flow equations with phase change.
The primary challenge was to robustly converge time-accurate solutions at high CFL/Fourier num-
bers representing an ill-conditioned system of discrete equations, corresponding to simulations of
fluid flow with laser-induced phase change. To address this challenge, I developed a robust approxi-
mate block factorization preconditioner, which is a multigrid block reduction technique that reduces
a fully-coupled 3 x 3 block system to a sequence of two 2 x 2 block systems: the velocity-pressure
(vP) and velocity-temperature (vI') Schur complement systems. For all tested problems, I found
that the monolithic algebraic multigrid and one-level additive Schwarz preconditioners were ineffec-
tive at high CFL/Fourier numbers. The physics-block Gauss-Seidel preconditioner fared better, but
the proposed v P-vT Schur complement based preconditioner converged the fastest and required
the least number of iterations. The vP-vT preconditioner, which uses AMG as a preconditioner

to GMRES for the inner block solves, exhibited excellent algorithmic and parallel scalability.

Furthermore, the framework was shown to be robust for a wide range of non-dimensional num-
bers and phase change configurations. To enforce the attenuation of velocity in the mushy and solid
phases, I developed a velocity suppression model, which combines the variable viscosity and Darcy
source term model. I have demonstrated that this framework is robust and capable of solving phase
change problems for a wide range of parameters, including both melting and freezing in various
configurations and moving laser-induced melt-convection problems at large CFL/Fourier numbers.
The high-order rDG-based schemes were shown to produce highly accurate solutions and resolve

flow features on very coarse meshes. Solutions converged at low-Mach numbers (Ma < 1072)

86



without explicit acoustic filtering, demonstrating all-speed flow capabilities, which is necessary for
modeling tightly-coupled rapid phase change processes, such as evaporation/condensation, in metal

additive manufacturing processes such as SLM.

9.2. Future Work

9.2.1. Physics Enhancement. Currently, large viscosity ratios between the solid and liquid
phases (% > 1000) are challenging for the solvability of the underlying linear algebra, since the
velocity matrix My, becomes non-diagonally dominant due to the large off-diagonal entries. The
non-diagonal dominant rows, however, are confined to a thin region near the solid-liquid interface.
Future work will involve detecting the non-diagonally dominant rows at the interface and solving

the interface elements with a more robust LU factorization.

Additionally, a novel Marker Re-Distancing (MRD) and sharp mix-cell reconstruction method
was recently developed for evolving multi-material interfaces at high-order [67]. With multi-phase
capabilities, future work involves incorporating more realistic physics, such as radiation, evap-
oration/condensation, surface tension, Marangoni convection, and recoil forces due to material
evaporation. With a suitable laser model based on ray tracing, we will be able to simulate 3D
multi-material metal additive manufacturing processes such as SLM [36, 37]. Since heating and
cooling rates in the SLM process exceed 10° K /s, an equilibrium phase change model is not appro-
priate and solidification with undercooling must be accounted for [38]. With the interface tracking
method, we can incorporate a kinetic model for rapid solidification, a non-equilibrium thermody-

namics process [85].

9.2.2. ‘N x N’ Multigrid Block Reduction. Future work involves solving larger block sys-
tems from higher-order (greater than 2"d-order) schemes, binary and ternary systems, and coupling
to solid and thermal mechanics solvers. Larger 4 x 4, 5 x 5, and in general N x N block systems
will need to be preconditioned in a scalable and robust manner. I plan to extend the 2 x 2 Schur

complement preconditioning technique used in this research to solve these larger block systems in
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a nested N x N multigrid block reduction strategy.

Currently, our framework solves a 3 x 3 block system in the preconditioning stage with a reduced
set of two 2 x 2 Schur complements: the velocity-pressure and velocity-temperature systems. This
preconditioning strategy is effective when the velocity-pressure and velocity-temperature couplings
are strong. This strategy neglects the temperature-pressure coupling, however, which is not ap-
propriate when the temperature-pressure coupling is strong, as in the case of more sophisticated
equations of state (Appendix A.1). The first step is to robustly solve the 3 x 3 block system using

a single 2 x 2 Schur complement between the full [velocity-pressure] and temperature system

Mipy)  Mipy v bipy
(9.1) Pyl Mipvir ) (Z(pvl ) _ [ Olpy)

Mripvy  Mrr xr br

As with any 2 x 2 block system, there are always two distinct Schur complements. Using forward

and backward substitution with the Schur complement of the M|p,j block, leads to
a:} = M;%bT
71 *
2(pv) = Sipyr (bpv) = Mipyirar)
or = Mgy (br — MT[PV]JJ[PV}) ;

where

Sipvr = Mipy — Mipyr Mg Mp(py).

On the other hand, using forward and backward substitution with the Schur complement of the

M block leads to

Tipy =M {}L]b[PV]
T = S;[lpv] (bT — MT[PV]‘TE(PV])
ipy) = Mipy; (bipy) — Mipyirar)
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where
Stipv) = Mrr — MT[PV]M[E,]M[PV]T-

Both of these approaches are mathematically equivalent and have different pros and cons. In the
first approach, only one 2 x 2 system, S|py|r, needs to be solved. Solving this system with a nested
Schur complement, however, would need to be approximated in a computationally efficient man-
ner!. In the second approach, two 2 x 2 systems (M| (pv]) would need to be solved, which doubles
the current computational cost. Each of these 2 x 2 systems, however, can be solved with a nested
Schur complement system (using the v-P Schur complement), which is known to be efficient since
it is already used in the present work. These nested Schur complement techniques can be general-
ized to an N X N level multigrid block reduction strategy and can be applied to arbitrarily large
block systems, such as higher-order schemes. Currently the preconditioning technique for the low
and high-order rDG schemes are identical and both cases involve the Schur complement systems of
the full velocity-pressure and velocity-temperature systems. Instead of fully coupling the physics
systems for the higher order schemes, we want to extend the approximate block factorization tech-
nique between the orders of the degrees of freedom, with a nested Schur complement (p-multigrid
technique). The nested technique can also be applied to reduce the velocity system to its individual

velocity components.

Lastly, I plan to tightly couple the rDG CFD fields (velocity, pressure, and temperature) to a
solid-thermal mechanics Lagrangian/ALE solver (displacements, temperature). With the additional
degrees of freedom, the size of the block system and solution vector size would increase. To
precondition this system, we would like to apply the nested multigrid block reduction technique to

these fully-coupled solid-thermal-fluid systems.

1Research would need to be done to develop effective approximations to this system
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APPENDIX A

A.1. Equations of State (EOS)

A 3-parameter (po, ¢,e) EOS with an explicit pressure-temperature coupling is given by

(A1) P(p,e) = Py + Ay (p” - 1) T Ase
0

where the sound speed is a function of both the density and internal energy

»_0OP| _POP| _ A P

(A2> + ?AQC”LM

ol T arl, T

where Ay and As are input coefficients.
The v-law gas EOS is given by
(A3) P =p(y—1e,

where v = g—i = 1.4 for air.

A.2. CFL Conditions and Fourier Numbers

The CFL (Courant-Friedrichs-Lewy) conditions and Fourier numbers are defined as follows

(A.4) CFLaco = CAA;

(A.5) CFLpat = VA—A;
(A.6) Fo, = Zi;
(A.7) Fo, = %7
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where c is the sound speed, v is the material velocity, « is the thermal diffusivity, v is the kinematic
viscosity, At is the current time-step of the simulation, and Ax is the length of the minimum mesh
width. Note that the Mach number and the Prandtl number can be numerically calculated as,

Ma = %, and Pr = gg”, respectively.
aco «

A.3. Laser and Material Properties

We use the following material properties for stainless steel [2, 6]:

p Density 7,800 kg/m?

" Specific heat 800 J/ (kg - K)
k Thermal conductivity 36 W/(m- K)
i Dynamic viscosity 6.1 x 1073 N -s/m?

B Volumetric coefficient of expansion 5x 107° 1/K

Ts Solid melt temperature 1,675 K

Tr Liquid melt temperature 1,725 K

uf Latent heat of fusion 285,000 J/(kg - K).

We define the last two scaling parameters:

L Characteristic length scale 1 mm

AT Characteristic temperature difference 2,700 K.

L corresponds to a single-track length used in SLM simulations in [36]. AT is the difference between

the saturation temperature of stainless steel at atmospheric pressure and room temperature.
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We use the following process parameters:

Laser power = 200 — 500 W
Material Absorption Coefficient = 0.3
Scan speed = 2000 — 4000 —
Beam radius = 0.026 mm

Max. deposition length = 0.05 mm.
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