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What is MPI? 

•  MPI = Message Passing Interface 

•  Executable is run in multiple processes 
•  Processes may be on multiple nodes of a cluster 
•  Multiple processes may be placed on a node to utilize multi-core 

processors 
•  All processes can communicate with each other 

•  C and Fortran library APIs given by the standard 
•  3rd party bindings exist (Python, C++, etc) 
•  Will concentrate on C library bindings here 
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Process to Build MPI Programs 

•  Compile code with an MPI wrapper 
•  mpicc, mpicxx, mpifort, ... !

•  Run code with an MPI wrapper 
•  mpirun, mpiexec, aprun, srun!
•  Example: mpirun -n 4 ./MyProg!

•  This will run the MyProg executable in 4 processes 
•  Each process can query: 

 - how many total processes are being run 
 - a unique index for itself 

•  Each process can send/receive data to/from any other process 
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How MPI Works 
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#include <mpi.h> !
#include <stdio.h> !
!
int main(int argc, char **argv) !
{ !
    int rank, numRanks; !
    MPI_Init(&argc, &argv); !
!
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
    MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
!
    printf("Rank %d of %d\n", rank, numRanks); !
!
    MPI_Finalize(); !
    return 0; !
} !

 

First MPI Program 

  --- Output --- !
$ mpirun -n 4 ex1.x !
Rank 0 of 4 !
Rank 2 of 4 !
Rank 3 of 4 !
Rank 1 of 4 !
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Include mpi.h #include <mpi.h> !
#include <stdio.h> !
!
int main(int argc, char **argv) !
{ !
    int rank, numRanks; !
    MPI_Init(&argc, &argv); !
!
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
    MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
!
    printf("Rank %d of %d\n", rank, numRanks); !
!
    MPI_Finalize(); !
    return 0; !
} !

 

First MPI Program 
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#include <mpi.h> !
#include <stdio.h> !
!
int main(int argc, char **argv) !
{ !
    int rank, numRanks; !
    MPI_Init(&argc, &argv); !
!
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
    MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
!
    printf("Rank %d of %d\n", rank, numRanks); !
!
    MPI_Finalize(); !
    return 0; !
} !

 

Init before everything 

Finalize after everything 

First MPI Program 
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•  Rank is a unique integer  
for each process 

•  Size is the number  
of processes  

#include <mpi.h> !
#include <stdio.h> !
!
int main(int argc, char **argv) !
{ !
    int rank, numRanks; !
    MPI_Init(&argc, &argv); !
!
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
    MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
!
    printf("Rank %d of %d\n", rank, numRanks); !
!
    MPI_Finalize(); !
    return 0; !
} !

 

First MPI Program 
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•  MPI_COMM_WORLD is a  
communicator 

•  Represents all processes 
•  Can create subcommunicators 

•  Useful for libraries 

#include <mpi.h> !
#include <stdio.h> !
!
int main(int argc, char **argv) !
{ !
    int rank, numRanks; !
    MPI_Init(&argc, &argv); !
!
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
    MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
!
    printf("Rank %d of %d\n", rank, numRanks); !
!
    MPI_Finalize(); !
    return 0; !
} !

 

First MPI Program 
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MPI Collectives 



Los Alamos National Laboratory 

   |   11 

Let’s Calculate Pi 

•  Split unit circle into n rectangles 

•  Pi is approximately the sum of 
rectangles 

•  Each rectangle has  
•  Width: dx = 2 / n 
•  Midpoint: x_i = -1 + dx / 2 + dx * i 
•  Height: h = 2 * sqrt(1 - x_i^2) 
•  Area: area = dx * h 
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Let’s Calculate Pi 

#include <stdio.h> !
#include <math.h> !
!
int main(int argc, char **argv) !
{ !
    const int N = 1000; !
    double pi = calcPi(N); !
    double error = fabs(pi - M_PI); !
    !
    printf("Approximation of pi: %f   Error: %e\n", pi, error); !
!
    return 0; !
} !
!
!

            --- Output --- !
Approximation of pi: 3.141623   Error: 3.080323e-05!
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Let’s Calculate Pi 

double calcPi(int n) !
{ !
    double a = -1.0;    // Left endpoint !
    double b = 1.0;     // Right endpoint !
    double dx = (b - a) / n; !
    double area = 0.0; !
!
    for (int i = 0; i < n; i++) { !
        double x = a + dx / 2.0 + i * dx; !
        double h = 2.0 * sqrt(1.0 - x * x); !
        area = area + dx * h; !
    } !
!
    return area; !
} !
!
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Let’s Calculate Pi with MPI 

•  Sets of rectangles owned by a rank 
•  Each rank calculates a ‘slice’ of pi 
•  Add all the slices in the end 

•  Different number of rectangles for 
each rank is possible if n is not 
divisible by the number of ranks 
•  Example: 

•  14 total rectangles into 4 ranks 
•  Ranks 0 and 1 have 4 rectangles 
•  Rank 2 and 3 have 3 rectangles 
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Let’s Calculate Pi with MPI 

•  Create function to get local problem 
information 

!
void getMyBounds(int globalN, !

int *begin, !
int *end, !
int *localN) !

!
! Rank ! globalN! begin ! end ! localN!
0 ! 14 ! 0 ! 3 ! 4 !
1 ! 14 ! 4 ! 7 ! 4 !
2 ! 14 ! 8 ! 10 ! 3 !
3 ! 14 ! 11 ! 13 ! 3 !
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Let’s Calculate Pi with MPI: Reduce 

•  To sum across ranks, use MPI_Reduce 
•  Performs a binary operation across all ranks in a communicator 

•  Common built-in functions for reduce include 
•  MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD 

•  Can create your own  
binary operation 

•  MPI_Allreduce 
•  All ranks get sum 

Rank 0 Rank 1 Rank 2 Rank 3

Rank 0

x0 x1 x2 x3

x0+x1+x2+x3
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Anatomy of MPI_Reduce 

int MPI_Reduce(const void *sendbuf, void *recvbuf, int count, !
  MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm) !

!
sendbuf Address of send buffer !
recvbuf Address of receive buffer (significant only at root) !
count Number of elements in send buffer !
datatype Data type of elements of send buffer !
op Reduce operation !
root Rank of root process !
comm Communicator !
!
Returns error. !
Should always check for return of MPI_SUCCESS. !
Won’t do that here for clarity of code and space. !
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MPI Data Types 

--- List of Common C Data Types --- !
!
MPI_CHAR MPI_SHORT !
MPI_INT MPI_LONG !
MPI_LONG_LONG MPI_FLOAT !
MPI_DOUBLE MPI_LONG_DOUBLE !
MPI_INT8_T MPI_INT16_T !
MPI_INT32_T MPI_INT64_T !
MPI_BYTE !
!
!
There are also MPI data types corresponding to Fortran data types !
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Let’s Calculate Pi with MPI: Scan  

•  To calculate offsets for ownership of rectangles, use MPI_Scan 
•  Performs an inclusive scan operation across all ranks in a communicator 

•  MPI_Exscan 
•  Exclusive scan 
•  Rank 0: 0 
•  Rank 1: x0 
•  Rank 2: x0+x1 

 

x0 x1 x2

Rank 0

Rank 0

Rank 1

Rank 1

Rank 2

Rank 2

x0 x0+x1 x0+x1+x2
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Anatomy of MPI_Scan 

int MPI_Scan(const void *sendbuf, void *recvbuf, int count, !
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm) !

!
sendbuf Address of send buffer !
recvbuf Address of receive buffer !
count Number of elements in send buffer !
datatype Data type of elements of send buffer !
op Reduce operation !
comm Communicator !
!
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Let’s Calculate Pi with MPI: main 

int main(int argc, char **argv) !
{ !
    const int globalN = 1000; !
    int localN, begin, end; !
    double dx, a, b, piSlice, pi; !
    !
    // Init MPI !
    MPI_Init(&argc, &argv); !
!
    // Get local problem extents !
    getMyBounds(globalN, &begin, &end, &localN); !
    dx = 2.0 / globalN; !
    a = -1.0 + begin * dx; !
    b = a + localN * dx; !
!
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Let’s Calculate Pi with MPI: main 

    // Calculate local circle area and sum values together !
    piSlice = calcPiSlice(a, b, localN); !
    MPI_Reduce(&piSlice, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); !
!
    // Print value of pi and error !
    if (begin == 0) { !
        double error = fabs(pi - M_PI); !
        printf("Approximation of pi: %f   Error: %e\n", pi, error); !
    } !
!
    // End !
    MPI_Finalize(); !
    return 0; !
} !
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Let’s Calculate Pi with MPI: calcPiSlice 

double calcPiSlice(double a, double b, int n) !
{ !
    double dx = (b - a) / n; !
    double area = 0.0; !
!
    for (int i = 0; i < n; i++) { !
        double x = a + dx / 2.0 + i * dx; !
        double h = 2.0 * sqrt(1.0 - x * x); !
        area = area + dx * h; !
    } !
!
    return area; !
} !
!
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Let’s Calculate Pi with MPI: getMyBounds 

void getMyBounds(int globalN, int *begin, int *end, int *localN) !
{ !
    int rank, numRanks; !
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
    MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
!

*localN = globalN / numRanks; !
    if (rank < globalN % numRanks) !
        *localN = *localN + 1; !
!

MPI_Scan(localN, end, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); !
    *begin = *end - *localN; !
    *end = *end - 1; !
} !
!
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Let’s Calculate Pi with MPI: getMyBounds 

void getMyBounds(int globalN, int *begin, int *end, int *localN) !
{ !
    int rank, numRanks; !
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
    MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
!

*localN = globalN / numRanks; !
    if (rank < globalN % numRanks) !
        *localN = *localN + 1; !
!

MPI_Scan(localN, end, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); !
    *begin = *end - *localN; !
    *end = *end - 1; !
} !
!

Trick to get the local problem  
size when the global problem  
size is not evenly divisible 
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Let’s Calculate Pi with MPI: getMyBounds 

void getMyBounds(int globalN, int *begin, int *end, int *localN) !
{ !
    int rank, numRanks; !
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
    MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
!

*localN = globalN / numRanks; !
    if (rank < globalN % numRanks) !
        *localN = *localN + 1; !
!

MPI_Scan(localN, end, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); !
    *begin = *end - *localN; !
    *end = *end - 1; !
} !
!

Example: 
globalN = 7   numRanks = 3 !

Rank 0: localN = 3 !
Rank 1: localN = 2 !
Rank 2: localN = 2 !
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Let’s Calculate Pi with MPI: getMyBounds 

void getMyBounds(int globalN, int *begin, int *end, int *localN) !
{ !
    int rank, numRanks; !
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
    MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
!

*localN = globalN / numRanks; !
    if (rank < globalN % numRanks) !
        *localN = *localN + 1; !
!

MPI_Scan(localN, end, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); !
    *begin = *end - *localN; !
    *end = *end - 1; !
} !
!

Example: 
globalN = 7   numRanks = 3 !
Rank 0: end = 3 aaaaaaa!
Rank 1: end = 5 (3+2) a !
Rank 2: end = 7 (3+2+2) !
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Let’s Calculate Pi with MPI: getMyBounds 

void getMyBounds(int globalN, int *begin, int *end, int *localN) !
{ !
    int rank, numRanks; !
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
    MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
!

*localN = globalN / numRanks; !
    if (rank < globalN % numRanks) !
        *localN = *localN + 1; !
!

MPI_Scan(localN, end, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); !
    *begin = *end - *localN; !
    *end = *end - 1; !
} !
!

Example: 
globalN = 7   numRanks = 3 !
Rank 0: begin = 0 end = 2!
Rank 1: begin = 3 end = 4 !
Rank 2: begin = 5 end = 6 !
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Common Collectives: MPI_Barrier 

•  Make all ranks wait until they hit the barrier 
•  All ranks in communicator must call this before code moves forward 
•  Can be useful for debugging 

•  Be careful not to put this in a branching statement 
•  Could cause a process to stall 
•  Example: if, for, case, while 

 
// Rank 0 will never continue !
if (rank == 0) !

MPI_Barrier(MPI_COMM_WORLD); !
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Common Collectives: MPI_Scatter 

Rank 0 Rank 1 Rank 2 Rank 3

Rank 0

•  Elements in array go to different ranks 
•  Bcast: 1 element sent to all ranks 
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•  Elements from each rank goes into one array 
•  Allgather: every rank gets the whole array 

Common Collectives: MPI_Gather 

Rank 0 Rank 1 Rank 2 Rank 3

Rank 0
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•  MPI_Alltoall 
•  Every rank sends different data to every other rank 

•  MPI_Alltoallw 
•  Most general version of MPI_Alltoall 
•  Allows different data sizes 

•  Varying Count Versions 
•  MPI_Gatherv, MPI_Scatterv, MPI_Allgatherv, MPI_Alltoallv 
•  More general versions than without ending in ‘v’ 
•  Use if number of elements is different per rank 

Other Collectives 
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•  MPI_Reduce_scatter, MPI_Reduce_scatter_block 
•  Reduce then scatter 

•  Immediate Versions 
•  Will discuss immediate MPI calls in next section 
•  Add ‘I’ before each name 
•  Examples: MPI_Igather, MPI_Iscatter, MPI_Ireduce 

Other Collectives 
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MPI Point-to-Point 
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How to Send Data to 1 Rank 

•  4 Types of Sends 
•  MPI_Send!

•  May buffer message and return quickly (usually for short messages) 
•  May wait until message is sent (usually for long messages) 

•  MPI_Bsend (Buffered Send) !
•  Buffers message to return quickly 
•  User can add buffer space for this call: MPI_Buffer_attach!

•  MPI_Ssend (Synchronous Send) !
•  Will wait until message is sent (no buffering) 

•  MPI_Rsend (Ready Send) !
•  Assumes receive is already posted 
•  Reduces handshaking overhead 

•  These 4 send types ensure you can use the message buffer after the 
call is complete 
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Anatomy of MPI_Send 

int MPI_Send(const void *buf, int count, MPI_Datatype datatype, !
             int dest, int tag, MPI_Comm comm) !
!
buf Initial address of send buffer !
count Number of elements to send !
datatype Datatype of each send buffer element !
dest Rank of destination !
tag Message tag !
comm Communicator !
!
Receiver must match tag and communicator. 
Can use buf after call has completed. 
Can set dest=MPI_PROC_NULL. 
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Anatomy of MPI_Recv 

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, !
             int tag, MPI_Comm comm, MPI_Status *status) !
!
buf Initial address of receive buffer !
count Maximum number of elements to receive !
datatype Datatype of each receive buffer entry !
source Rank of source !
tag Message tag !
comm Communicator !
status Status object !
!
Only 1 receive type as compared to the 4 send types. 
Can use buf after call has completed. 
Can receive less than count number of elements. 
Can set tag=MPI_ANY_TAG and source=MPI_ANY_SOURCE or MPI_PROC_NULL. 



Los Alamos National Laboratory 

   |   38 

MPI_Status 

•  In C, status is a structure containing 
•  MPI_SOURCE !
•  MPI_TAG !
•  MPI_ERROR !

•  Call MPI_Get_count on status to get number of elements received 

•  Can use MPI_STATUS_IGNORE for status parameter 
•  For array of statuses: MPI_STATUSES_IGNORE !
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Immediate Versions of Send/Recv 

•  There is an immediate (non-blocking) version of each send and receive 
call 
•  MPI_Isend, MPI_Ibsend, MPI_Issend, MPI_Irsend, MPI_Irecv!
•  Calls return immediately 
•  Returns MPI_Request!

•  Best Practice: call MPI_Irecv before MPI_Isend to reduce amount of 
handshaking 
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Immediate Versions of Send/Recv 

•  Wait on or test MPI_Request to see if call is done 
•  MPI_Wait: Wait until request is done 
•  MPI_Test: Check if request is done 
•  Message buffer cannot be used until MPI_Wait returns or MPI_Test 

returns true 
•  MPI_Wait or MPI_Test is required to deallocate memory used by an 

immediate call 

•  Variants of Wait and Test for multiple requests 
•  MPI_Waitany, MPI_Waitall, MPI_Waitsome 
•  MPI_Testany, MPI_Testall, MPI_Testsome 
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A Program That Fails 

/////  2 MPI rank example that will never finish  ///// !
If (rank == 0) { !
    MPI_Recv(recvbuf, count, MPI_DOUBLE, 1, tag, comm, MPI_STATUS_IGNORE); !
    MPI_Send(sendbuf, count, MPI_DOUBLE, 1, tag, comm); !
} !
If (rank == 1) { !
    MPI_Recv(recvbuf, count, MPI_DOUBLE, 0, tag, comm, MPI_STATUS_IGNORE); !
    MPI_Send(sendbuf, count, MPI_DOUBLE, 0, tag, comm); !
} !
!
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A Program That May Fail 

/////  2 MPI rank example that may never finish  ///// !
// Relies on send buffering the message !
If (rank == 0) { !
    MPI_Send(sendbuf, count, MPI_DOUBLE, 1, tag, comm); !
    MPI_Recv(recvbuf, count, MPI_DOUBLE, 1, tag, comm, MPI_STATUS_IGNORE); !
} !
If (rank == 1) { !
    MPI_Send(sendbuf, count, MPI_DOUBLE, 0, tag, comm); !
    MPI_Recv(recvbuf, count, MPI_DOUBLE, 0, tag, comm, MPI_STATUS_IGNORE); !
} !
!
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A Program That Succeeds 

/////  2 MPI Rank example that will finish  ///// !
If (rank == 0) { !
    MPI_Send(sendbuf, count, MPI_DOUBLE, 1, tag, comm); !
    MPI_Recv(recvbuf, count, MPI_DOUBLE, 1, tag, comm, MPI_STATUS_IGNORE); !
} !
If (rank == 1) { !
    MPI_Recv(recvbuf, count, MPI_DOUBLE, 0, tag, comm, MPI_STATUS_IGNORE); !
    MPI_Send(sendbuf, count, MPI_DOUBLE, 0, tag, comm); !
} !
!
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A Program That Succeeds 

/////  2 MPI Rank example that will finish  ///// !
If (rank == 0) { !
    MPI_Sendrecv(sendbuf, count, MPI_DOUBLE, 1, tag, !
                 recvbuf, count, MPI_DOUBLE, 1, tag, !
                 comm, MPI_STATUS_IGNORE); !
} !
If (rank == 1) { !
    MPI_Sendrecv(sendbuf, count, MPI_DOUBLE, 0, tag, !
                 recvbuf, count, MPI_DOUBLE, 0, tag, !
                 comm, MPI_STATUS_IGNORE); !
} !
!
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Isend/Irecv to Eliminate Blocking 

If (rank == 0) { !
    MPI_Irecv(recvbuf, count, MPI_DOUBLE, 1, tag, comm, !
              MPI_STATUS_IGNORE, &request[0]); !
    MPI_Isend(sendbuf, count, MPI_DOUBLE, 1, tag, comm, &request[1]); !
} !
If (rank == 1) { !
    MPI_Irecv(recvbuf, count, MPI_DOUBLE, 0, tag, comm, !
             MPI_STATUS_IGNORE, &request[0]); !
    MPI_Isend(sendbuf, count, MPI_DOUBLE, 0, tag, comm, &request[1]); !
} !
MPI_Waitall(2, request, MPI_STATUSES_IGNORE); !
!
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MPI_Probe 

•  MPI_Probe, MPI_Iprobe 
•  Probe to see if a message exists to receive 
•  Typical usage: probe then receive if message exists 
•  Useful if you don’t know the size of the message 
•  Useful if you don’t know when you will get messages 

•  MPI_Mprobe, MPI_Improbe, MPI_Mrecv, MPI_Imrecv 
•  “Matching” probe and recv 
•  Makes sure message from probe and message received are the same 
•  Useful for threaded programs 
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Persistent Communication Request 

•  Setup communication  
•  MPI_Send_init, MPI_Bsend_init, MPI_Rsend_init, 
MPI_Ssend_init, MPI_Recv_init!

•  Start the communication 
•  MPI_Start, MPI_Startall!
•  Returns an MPI_Request!

•  Wait or Test for communication to complete 
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Cellular Automata Example 

•  Cellular automata live on a grid of 
cells 

•  Each cell has a finite number of 
states 

•  Each cell is updated based on 
values of neighbors 

Pattern 111 110 101 100 011 010 001 000 
Rule 0 0 0 1 1 1 1 0 
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Cellular Automata: main 

int main(int argc, char **argv) { !
int numIters = 200; !

    int N = 2 * numIters - 1; !
    char *data; !
!
    data = malloc(numIters * (N+2) * sizeof(char)); !
    memset(data, 0, numIters * (N+2) * sizeof(char)); !
    data[I2D(numIters, 0)] = 1; !
    !
    for (int iter = 1; iter < numIters; iter++) !
        applyRule(N, &data[I2D(0, iter-1)], &data[I2D(0, iter)]); !
    !
    writeData(N, numIters, data, "ex4.txt"); !
    return 0; !
} !

+2 for boundary values 
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Cellular Automata: I2D Macro 

// This is a common macro in C for 2D arrays !
#define I2D(i,j) ((i) + (j) * (N+2)) !

column row 
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Cellular Automata: Domain 

Ghost cells hold boundary data 

N Regular Cells 
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Cellular Automata (Parallel): Domain 

Entire Domain 

Node 0 Domain 

Node 1 Domain 
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Cellular Automata (Parallel): main 

int main(int argc, char **argv) { !
    int numIters = 200; !
    int totalN = 2 * numIters - 1; !
    char *data; !
    int begin, end, localN, rank; !
    char filename[20]; !
    !
    // Initialize MPI !
    MPI_Init(&argc, &argv); !
    !
    // Get bounds of local problem !
    getMyBounds(totalN, &begin, &end, &localN); !
!
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Cellular Automata (Parallel): main 

    // Allocate data and set initial condition !
    data = malloc(numIters * (localN+2) * sizeof(char)); !
    memset(data, 0, numIters * (localN+2) * sizeof(char)); !
    if (numIters >= begin && numIters <= end) { !
        data[I2D(numIters - begin + 1, 0)] = 1; !
    } !
!
    // Apply rule !
    for (int iter = 1; iter < numIters; iter++) { !
        commNeighbors(localN, &data[I2D(0, iter-1)]); !
        applyRule(localN, &data[I2D(0, iter-1)], &data[I2D(0, iter)]); !
    } !
!
!
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Cellular Automata (Parallel): main 

    // Allocate data and set initial condition !
    data = malloc(numIters * (localN+2) * sizeof(char)); !
    memset(data, 0, numIters * (localN+2) * sizeof(char)); !
    if (numIters >= begin && numIters <= end) { !
        data[I2D(numIters - begin + 1, 0)] = 1; !
    } !
!
    // Apply rule !
    for (int iter = 1; iter < numIters; iter++) { !
        commNeighbors(localN, &data[I2D(0, iter-1)]); !
        applyRule(localN, &data[I2D(0, iter-1)], &data[I2D(0, iter)]); !
    } !
!
!

Initial Condition 

Communicate boundary 
before applying rule 
at each iteration 
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Cellular Automata (Parallel): main 

    // Write out data for each rank !
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
    sprintf(filename, "ex5_%d.txt", rank); !
    writeData(localN, numIters, data, filename); !
    !
    // End !
    MPI_Finalize(); !
    return 0; !
} !
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Cellular Automata (Parallel): main 

    // Write out data for each rank !
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
    sprintf(filename, "ex5_%d.txt", rank); !
    writeData(localN, numIters, data, filename); !
    !
    // End !
    MPI_Finalize(); !
    return 0; !
} !

Might want rank 0 to create an additional 
file containing the name of all the data files 

Write data for each rank 
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Cellular Automata: commNeighbors 

void commNeighbors(int localN, char *data) { !
    const int RECV_LEFT_TAG  = 1; !
    const int SEND_RIGHT_TAG = 1; !
    const int RECV_RIGHT_TAG = 2; !
    const int SEND_LEFT_TAG  = 2; !
    int rank, numRanks; !
    int leftRank, rightRank; !
    MPI_Request mpiRequest[4]; !
    !
    // Get rank info !
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
    MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
    leftRank = (rank == 0) ? MPI_PROC_NULL : rank - 1; !
    rightRank = (rank == numRanks-1) ? MPI_PROC_NULL : rank + 1; !
!

!
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Cellular Automata: commNeighbors 

void commNeighbors(int localN, char *data) { !
    const int RECV_LEFT_TAG  = 1; !
    const int SEND_RIGHT_TAG = 1; !
    const int RECV_RIGHT_TAG = 2; !
    const int SEND_LEFT_TAG  = 2; !
    int rank, numRanks; !
    int leftRank, rightRank; !
    MPI_Request mpiRequest[4]; !
    !
    // Get rank info !
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
    MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
    leftRank = (rank == 0) ? MPI_PROC_NULL : rank - 1; !
    rightRank = (rank == numRanks-1) ? MPI_PROC_NULL : rank + 1; !
!

!

Call to send/recv with 
MPI_PROC_NULL does nothing 
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Cellular Automata: commNeighbors 

    // recv and send !
    MPI_Irecv(&data[0],        1, MPI_CHAR, leftRank,  RECV_LEFT_TAG,               !
              MPI_COMM_WORLD, &mpiRequest[0]); !
    MPI_Irecv(&data[localN+1], 1, MPI_CHAR, rightRank, RECV_RIGHT_TAG,               !
              MPI_COMM_WORLD, &mpiRequest[1]); !
    MPI_Isend(&data[1],        1, MPI_CHAR, leftRank,  SEND_LEFT_TAG,               !
              MPI_COMM_WORLD, &mpiRequest[2]); !
    MPI_Isend(&data[localN],   1, MPI_CHAR, rightRank, SEND_RIGHT_TAG,               !
               MPI_COMM_WORLD, &mpiRequest[3]); !
    !
    // Wait for communication to complete !
    MPI_Waitall(4, mpiRequest, MPI_STATUSES_IGNORE); !
} !
!
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Cellular Automata: commNeighbors 

    // recv and send !
    MPI_Irecv(&data[0],        1, MPI_CHAR, leftRank,  RECV_LEFT_TAG,               !
              MPI_COMM_WORLD, &mpiRequest[0]); !
    MPI_Irecv(&data[localN+1], 1, MPI_CHAR, rightRank, RECV_RIGHT_TAG,               !
              MPI_COMM_WORLD, &mpiRequest[1]); !
    MPI_Isend(&data[1],        1, MPI_CHAR, leftRank,  SEND_LEFT_TAG,               !
              MPI_COMM_WORLD, &mpiRequest[2]); !
    MPI_Isend(&data[localN],   1, MPI_CHAR, rightRank, SEND_RIGHT_TAG,               !
               MPI_COMM_WORLD, &mpiRequest[3]); !
    !
    // Wait for communication to complete !
    MPI_Waitall(4, mpiRequest, MPI_STATUSES_IGNORE); !
} !
! Can ignore status 
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2D Cellular Automata 

•  In 1D, used a 3 point stencil 
•  In 2D, 5 point and 9 point stencils are common 

2D 5 Point Stencil 2D 9 Point Stencil 1D 3 Point Stencil 
Green cell depends on blue cells 
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2D Cellular Automata 

•  5 point stencil communication 
•  Post 4 Irecv calls 
•  Post 4 Isend calls 
•  Post a wait all 
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2D Cellular Automata 

•  9 point stencil communication 
•  Option 1 

•  Post 8 Irecv calls 
•  Post 8 Isend calls 
•  Post a wait all 

•  Option 2 
•  Post 2 Irecv calls (up/down) 
•  Post 2 Isend calls (up/down) 
•  Post a wait all 
•  Post 2 Irecv calls (left/right with ghost cells) 
•  Post 2 Isend calls (left/right with ghost cells) 
•  Post a wait all 
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The End 


