.
° ch?sAlamos

NATIONAL LABORATORY
————— (37.194) ~

LA-UR-17-24553

Approved for public release; distribution is unlimited.

Title:
Author(s):

Intended for:

Issued:

An MPI Tutorial: Collectives and Point-to-Point Communication
Garrett, Charles Kristopher

Lecture for Parallel Computing Summer Research Internship

2017-06-06

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for

the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Los Alamos National Laboratory

An MPI Tutorial

Collectives and Point-to-Point Communication

Kris Garrett

June 2017

. YV Q@
B 1STD > NSEC Nrsa

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Los Alamos National Laboratory

B 1sTD HNSEC

What is MPI?

 MPI = Message Passing Interface

 Executable is run in multiple processes
» Processes may be on multiple nodes of a cluster

» Multiple processes may be placed on a node to utilize multi-core
processors

» All processes can communicate with each other
« C and Fortran library APIs given by the standard

« 3" party bindings exist (Python, C++, etc)
« Will concentrate on C library bindings here

Los Alamos National Laboratory

B 1sTD HNSEC

Process to Build MPI Programs

« Compile code with an MPI wrapper
e mpicc, mpicxx, mpifort,

 Run code with an MPI wrapper
e mplirun, mpiexec, aprun, srun
« Example: mpirun -n 4 ./MyProg
« This will run the MyProg executable in 4 processes
« Each process can query:
- how many total processes are being run
- a unique index for itself
« Each process can send/receive data to/from any other process

Los Alamos National Laboratory

B 1sTD HNSEC

How MPI Works

01,
a
) S
8 &
8
9
% o e
T 011 o0 S
1o, 10y
. n®
D101010101010 "
3 \

Core O
Core 1
A
Y
Core O
Core 1
Core 0O
Core 1l

ode 0 Node 1 Node 2

Cluster

=

Los Alamos National Laboratory

B 1sTD HNSEC

First MPl Program

#include <mpi.h> —— OQutput ——-
#include <stdio.h> $ mpirun -n 4 ex1l.x
Rank 0 of 4
: . Rank 2 of 4
ok
int main(int argc, char xxargv) Rank 3 of 4
Rank 1 of 4
int rank, numRanks;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &numRanks);
printf("Rank %d of %d\n", rank, numRanks);
MPI_Finalize();
return 0;
}

Los Alamos National Laboratory
- ISTD HNSEC

First MPI Program

#include <mpi.h> Include mpi.h
#include <stdio.h>

int main(int argc, char xxargv)

{

int rank, numRanks;
MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &numRanks);

printf("Rank %d of %d\n", rank, numRanks);

MPI Finalize();
return 0;

Los Alamos National Laboratory

B 1sTD HNSEC

First MPI Program

#include <mpi.h>
#include <stdio.h>

int main(int argc, char xxargv)

{
int rank, numRanks;
MPI_Init(&argc, &argv); Init before everything
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &numRanks);
printf("Rank %d of %d\n", rank, numRanks);
MPI_Finalize(); Finalize after everything
return 0;

¥

Los Alamos National Laboratory
“IIIII’LIE;iFiak“j>hUE;EEQJ

First MPI Program

#include <mpi.h>
#include <stdio.h>

int main(int argc, char xxargv)

{
int rank, numRanks;
MPI_Init(&argc, &argv);
 Rank is a unique integer
MPI_Comm_rank (MPI_COMM_WORLD, &rank); for each process
MPI_Comm_size (MPI_COMM_WORLD, &numRanks); * Size is the number
of processes
printf("Rank %d of %d\n", rank, numRanks);
MPI_Finalize();
return 0;
}

Los Alamos National Laboratory
- ISTD HNSEC

First MPI Program

#include <mpi.h>
#include <stdio.h>

int main(int argc, char xxargv)

{
int rank, numRanks;
MPI Init(&argc, &argv);)

- ’ ’ . MPI_COMM_WORLD is a
MPT Comm_rank (MPI_COMM_WORLD, &rank): communicator
MPI_Comm_size(MPI_COMM_WORLD, &numRanks); * Represents all processes
» (Can create subcommunicators

printf("Rank %d of %d\n", rank, numRanks); « Useful for libraries
MPI_Finalize();
return 0;

}

Los Alamos National Laboratory

MPI Collectives

10

Los Alamos National Laboratory

Let’s Calculate Pi

« Split unit circle into n rectangles

* Piis approximately the sum of
rectangles

« Each rectangle has
« Width:dx=2/n
* Midpoint: x i=-1+dx/2+dx*i
* Height: h =2 * sqrt(1 - x_i"2)
 Area:area=dx*h

B 1sTD HNSEC

Los Alamos National Laboratory

B 1sTD HNSEC

Let’s Calculate Pi

#include <stdio.h>
#include <math.h>

int main(int argc, char xxargv)

{
const int N = 1000;
double pi = calcPi(N);
double error = fabs(pi - M_PI);
printf("Approximation of pi: %f Error: %e\n", pi, error);
return 0;
y ——— OQutput —
Approximation of pi: 3.141623 Error: 3.080323e-05

Los Alamos National Laboratory

B 1sTD HNSEC

Let’s Calculate Pi

double calcPi(int n)

{
double a = -1.0; // Left endpoint

double b = 1.0; // Right endpoint
double dx = (b - a) / n;
double area = 0.0;

for (int 1 =0; i < n; i++) {
double x = a + dx / 2.0 + i * dx;
double h = 2.0 % sqrt(1.0 — x x x);
area = area + dx x h;

return area;

Los Alamos National Laboratory

B 1sTD HNSEC

Let’s Calculate Pi with MPI

« Sets of rectangles owned by a rank
« Each rank calculates a ‘slice’ of pi
« Add all the slices in the end

« Different number of rectangles for
each rank is possible if n is not
divisible by the number of ranks

« Example:
* 14 total rectangles into 4 ranks
 Ranks 0 and 1 have 4 rectangles
 Rank 2 and 3 have 3 rectangles

Los Alamos National Laboratory

B 1sTD HNSEC

Let’s Calculate Pi with MPI

« Create function to get local problem
information

void getMyBounds(int globalN,
int *xbegin,
int xend,
int xlocalN)

Rank | globall | begin | end | LocalN |
0 14 0 3 4

1 14 4 7 4
2 14 8 10 3
3 14 11 13 3

Los Alamos National Laboratory

B 1sTD HNSEC

Let’s Calculate Pi with MPI: Reduce

« To sum across ranks, use MPIl_Reduce
« Performs a binary operation across all ranks in a communicator

« Common built-in functions for reduce include
« MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD

- Can create your own Rank O Rank 1 Rank 2 Rank 3

binary operation X0 x1 X2 X3
. MPI_Allreduce \ \ / /
 All ranks get sum X0+Xx1+x2+x3

Rank O

Los Alamos National Laboratory
FE 1STD SNSEC

Anatomy of MPl_Reduce

int MPI_Reduce(const void xsendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

sendbuf Address of send buffer

recvbuf Address of receive buffer (significant only at root)
count Number of elements in send buffer

datatype Data type of elements of send buffer

op Reduce operation

root Rank of root process

comm Communicator

Returns error.
Should always check for return of MPI_SUCCESS.
Won’t do that here for clarity of code and space.

Los Alamos National Laboratory

B 1sTD HNSEC

MPI Data Types

——— List of Common C Data Types ——-

MPI_CHAR MPI_SHORT
MPI_INT MPI_LONG
MPI_LONG_LONG MPI_FLOAT
MPI_DOUBLE MPI_LONG_DOUBLE
MPI_INTS_ T MPI_INT16_T
MPI_INT32_ T MPI_INT64_T
MPI_BYTE

There are also MPI data types corresponding to Fortran data types

Los Alamos National Laboratory

B 1sTD HNSEC

Let’s Calculate Pi with MPI: Scan

» To calculate offsets for ownership of rectangles, use MPI_Scan
» Performs an inclusive scan operation across all ranks in a communicator

« MPI_Exscan Rank O Rank 1 Rank 2
« Exclusive scan
« Rank 0: 0 x0 i X2
. Rank 1: x0 l \ \ l
 Rank 2: x0+x1
x0 x0+x1 X0+x1+x2

Rank O Rank 1 Rank 2

Los Alamos National Laboratory

B 1sTD HNSEC

Anatomy of MPIl_Scan

int MPI_Scan(const void xsendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

sendbuf Address of send buffer

recvbuf Address of receive buffer

count Number of elements in send buffer
datatype Data type of elements of send buffer
op Reduce operation

comm Communicator

Los Alamos National Laboratory

B 1sTD HNSEC

Let’s Calculate Pi with MPI: main

int main(int argc, char xxargv)

{
const int globalN = 1000;

int localN, begin, end;
double dx, a, b, piSlice, pi;

// Init MPI
MPI_Init(&argc, &argv);

// Get local problem extents
getMyBounds(globalN, &begin, &end, &localN);
dx = 2.0 / globalN;

a = -1.0 + begin * dx;

a + localN x dx;

b

Los Alamos National Laboratory

B 1sTD HNSEC

Let’s Calculate Pi with MPI: main

// Calculate local circle area and sum values together
piSlice = calcPiSlice(a, b, localN);
MPI_Reduce(&piSlice, &pi, 1, MPI_DOUBLE, MPI_SUM, @, MPI_COMM_WORLD);

// Print value of pi and error
if (begin == 0) {
double error = fabs(pi - M_PI);
printf("Approximation of pi: %f Error: %e\n", pi, error);

// End
MPI_Finalize();
return 0;

Los Alamos National Laboratory

F ISTD SNSEC

Let’s Calculate Pi with MPI: calcPiSli

double calcPiSlice(double a, double b, int n)
{

double dx = (b - a) / n;

double area = 0.0;

for (int 1 = 0; 1 < n; i++) {
double x = a + dx / 2.0 + 1 *x dx;
double h = 2.0 x sqrt(1.0 — x *x Xx);
area = area + dx x h;

return area;

Los Alamos National Laboratory

M ISTD SNSEC

Let’s Calculate Pi with MPI: getMyBo

void getMyBounds(int globalN, int xbegin, int *xend, int *xlocalN)
{
int rank, numRanks;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &numRanks);

*xlocalN = globalN / numRanks;
if (rank < globalN % numRanks)
*xlocalN = xlocalN + 1;

MPI_Scan(localN, end, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);

*begin = xend - *xlocalN;
xend = xend - 1;

Los Alamos National Laboratory

M ISTI) SNSEC

Let’s Calculate Pi with MPI: getMyBo

void getMyBounds(int globalN, int xbegin, int *xend, int *xlocalN)
{
int rank, numRanks;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &numRanks);

xlocalN = globalN / numRanks; Trick to get the local problem
if (rank < globalN % numRanks) size when the global problem
xlocalN = xlocalN + 1; size is not evenly divisible

MPI_Scan(localN, end, 1, MPI_INT, MPI_SuUM, MPI_COMM_WORLD);
*begin = *end - *xlocalN;
xend = xend - 1;

Los Alamos National Laboratory

M ISTI) SNSEC

Let’s Calculate Pi with MPI: getMyBo

void getMyBounds(int globalN, int xbegin, int *xend, int *xlocalN)
{
int rank, numRanks;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &numRanks);

Example:
*xlocalN = globalN / numRanks; globalN = 7 numRanks = 3
f (rank < globalN % Ranks) Rank @: localN = 3
LT trane = grobati e HHmnanis Rank 1: localN = 2
xlocalN = xlocalN + 1; Rank 2: localN = 2

MPI_Scan(localN, end, 1, MPI_INT, MPI_SuUM, MPI_COMM_WORLD);
*begin = *end - *xlocalN;
xend = xend - 1;

Los Alamos National Laboratory

M ISTI) SNSEC

Let’s Calculate Pi with MPI: getMyBo

void getMyBounds(int globalN, int xbegin, int *xend, int *xlocalN)
{
int rank, numRanks;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &numRanks);

Example:
*xlocalN = globalN / numRanks; globalN = 7 numRanks = 3
f (rank < qlobalN % Ranks) Rank 0: end = 3
. r?” . 9t0 ? ; A Rank 1: end = 5 (3+2)
*localN = xlocalN + 1; Rank 2: end = 7 (3+2+2)

MPI_Scan(localN, end, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
*begin = *xend — xlocalN;
*xend = xend - 1;

Los Alamos National Laboratory

M ISTI) SNSEC

Let’s Calculate Pi with MPI: getMyBo

void getMyBounds(int globalN, int xbegin, int *xend, int *xlocalN)
{
int rank, numRanks;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &numRanks);

Example:
*xlocalN = globalN / numRanks; globalN =7 . numRanks = 3
f (rank < alobalN % Ranks) Rank @: begin = 0 end = 2
: r?n . o0 ? 1 A Rank 1: begin = 3 end = 4
xlocalN = *xlocalN + 1; Rank 2: begin = 5 end = 6

MPI_Scan(localN, end, 1, MPI_INT, MPI_SuUM, MPI_COMM_WORLD);
*begin = xend - xlocalN;
xend = xend - 1;

Los Alamos National Laboratory

B 1sTD HNSEC

Common Collectives: MPI_Barrier

« Make all ranks wait until they hit the barrier
 All ranks in communicator must call this before code moves forward
« Can be useful for debugging

« Be careful not to put this in a branching statement
» Could cause a process to stall
« Example: if, for, case, while

// Rank @ will never continue
if (rank == 0)
MPI_Barrier(MPI_COMM_WORLD) ;

Los Alamos National Laboratory

B 1sTD HNSEC

Common Collectives: MPIl_Scatter

« Elements in array go to different ranks
« Bcast: 1 element sent to all ranks

Rank O Rank 1 Rank 2 Rank 3

N/
(1]

Rank O

Los Alamos National Laboratory

B 1sTD HNSEC

Common Collectives: MPI_Gather

« Elements from each rank goes into one array
 Allgather: every rank gets the whole array

Rank O Rank 1 Rank 2 Rank 3

N/
(1]

Rank O

Los Alamos National Laboratory

B 1sTD HNSEC

Other Collectives

« MPIL_Alltoall
« Every rank sends different data to every other rank

 MPI_Alltoallw
* Most general version of MPI_Alltoall
» Allows different data sizes

« Varying Count Versions
 MPI_Gatherv, MPI_Scatterv, MPI1_Allgatherv, MPI_Alltoallv
* More general versions than without ending in ‘v’
» Use if number of elements is different per rank

Los Alamos National Laboratory

B 1sTD HNSEC

Other Collectives

« MPI_Reduce_scatter, MPl_Reduce_scatter_block
* Reduce then scatter

 Immediate Versions
» Will discuss immediate MPI calls in next section
» Add ‘I before each name
 Examples: MPI_Igather, MPI _Iscatter, MPI_Ireduce

Los Alamos National Laboratory

MPI Point-to-Point

| 34

Los Alamos National Laboratory

B 1sTD HNSEC

How to Send Data to 1 Rank

* 4 Types of Sends
« MPI_Send
* May buffer message and return quickly (usually for short messages)
« May wait until message is sent (usually for long messages)
« MPI_Bsend (Buffered Send)
» Buffers message to return quickly
« User can add buffer space for this call: MPI_Buffer_attach
« MPI_Ssend (Synchronous Send)
« Will wait until message is sent (no buffering)
« MPI_Rsend (Ready Send)
« Assumes receive is already posted
* Reduces handshaking overhead

 These 4 send types ensure you can use the message buffer after the
call is complete

Los Alamos National Laboratory
FE 1STD SNSEC

Anatomy of MPl_Send

int MPI_Send(const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

buf Initial address of send buffer

count Number of elements to send

datatype Datatype of each send buffer element
dest Rank of destination

tag Message tag

comm Communicator

Receiver must match tag and communicator.
Can use buf after call has completed.
Can set dest=MPI_PROC_NULL.

Los Alamos National Laboratory
FE 1STD SNSEC

Anatomy of MPl_Recv

int MPI_Recv(void *xbuf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Status *xstatus)

buf Initial address of receive buffer
count Maximum number of elements to receive
datatype Datatype of each receive buffer entry
source Rank of source

tag Message tag

comm Communicator

status Status object

Only 1 receive type as compared to the 4 send types.

Can use buf after call has completed.

Can receive less than count number of elements.

Can set tag=MPI_ANY_TAG and source=MPI_ANY_SOURCE or MPI_PROC_NULL.

Los Alamos National Laboratory
FE 1STD SNSEC

MPI_Status

« In C, status is a structure containing
« MPI_SOURCE
« MPI_TAG
« MPI_ERROR

« Call MPI_Get_count on status to get number of elements received

« Can use MPI_STATUS_IGNORE for status parameter
« For array of statuses: MPI_STATUSES_IGNORE

Los Alamos National Laboratory

B 1sTD HNSEC

Immediate Versions of Send/Recv

 There is an immediate (non-blocking) version of each send and receive
call

e MPI_Isend, MPI_Ibsend, MPI_Issend, MPI_Irsend, MPI_Irecv
 Calls return immediately
 Returns MPI_Request

« Best Practice: call MPI_Irecv before MPI_Isend to reduce amount of
handshaking

Los Alamos National Laboratory

Immediate Versions of Send/Recv

B 1sTD HNSEC

« Wait on or test MPl_Request to see if call is done

MPI1_Wait: Wait until request is done
MPI_Test: Check if request is done

Message buffer cannot be used until MP1_Wait returns or MP|_Test
returns true

MPI_Wait or MPI_Test is required to deallocate memory used by an
immediate call

« Variants of Wait and Test for multiple requests
MPI1_Waitany, MPI_Waitall, MP1_Waitsome
MPI|_Testany, MPI_Testall, MP|_Testsome

Los Alamos National Laboratory

B 1sTD HNSEC

A Program That Fails

///// 2 MPI rank example that will never finish /////

If (rank == 0) {
MPI_Recv(recvbuf, count, MPI_DOUBLE, 1, tag, comm, MPI_STATUS_IGNORE);
MPI_Send(sendbuf, count, MPI_DOUBLE, 1, tag, comm);

}

If (rank == 1) {
MPI_Recv(recvbuf, count, MPI_DOUBLE, @, tag, comm, MPI_STATUS_IGNORE);
MPI_Send(sendbuf, count, MPI_DOUBLE, @, tag, comm);

Los Alamos National Laboratory

B 1sTD HNSEC

A Program That May Fail

///// 2 MPI rank example that may never finish /////
// Relies on send buffering the message
If (rank == 0) {
MPI_Send(sendbuf, count, MPI_DOUBLE, 1, tag, comm);
MPI_Recv(recvbuf, count, MPI_DOUBLE, 1, tag, comm, MPI_STATUS_IGNORE);

}
If (rank == 1) {
MPI_Send(sendbuf, count, MPI_DOUBLE, @, tag, comm);
MPI_Recv(recvbuf, count, MPI_DOUBLE, @, tag, comm, MPI_STATUS_IGNORE);

Los Alamos National Laboratory

B 1sTD HNSEC

A Program That Succeeds

///// 2 MPI Rank example that will finish /////
If (rank == 0) {
MPI_Send(sendbuf, count, MPI_DOUBLE, 1, tag, comm);
MPI_Recv(recvbuf, count, MPI_DOUBLE, 1, tag, comm, MPI_STATUS_IGNORE);

}

If (rank == 1) {
MPI_Recv(recvbuf, count, MPI_DOUBLE, @, tag, comm, MPI_STATUS_IGNORE);
MPI_Send(sendbuf, count, MPI_DOUBLE, @, tag, comm);

Los Alamos National Laboratory

B 1sTD HNSEC

A Program That Succeeds

///// 2 MPI Rank example that will finish /////
If (rank == 0) {
MPI_Sendrecv(sendbuf, count, MPI_DOUBLE, 1, tag,
recvbuf, count, MPI_DOUBLE, 1, tag,
comm, MPI_STATUS_IGNORE);

}
If (rank == 1) {
MPI_Sendrecv(sendbuf, count, MPI_DOUBLE, 0, tag,
recvbuf, count, MPI_DOUBLE, @, tag,
comm, MPI_STATUS_IGNORE);

Los Alamos National Laboratory

Isend/Irecv to Eliminate Blocking

If (rank == 0) {
MPI_Irecv(recvbuf, count, MPI_DOUBLE, 1, tag,
MPI_STATUS_IGNORE, &request[Q]);
MPI_Isend(sendbuf, count, MPI_DOUBLE, 1, tag,
¥
If (rank == 1) {
MPI_Irecv(recvbuf, count, MPI_DOUBLE, 0, tag,
MPI_STATUS_IGNORE, &request[0]);
MPI_Isend(sendbuf, count, MPI_DOUBLE, 0, tag,

}
MPI_Waitall(2, request, MPI_STATUSES_IGNORE);

B 1sTD HNSEC

comm,

comm, &request[1]);

comm,

comm, &request[1]);

Los Alamos National Laboratory

B 1sTD HNSEC

MPI_Probe

 MPI_Probe, MPI_Iprobe
* Probe to see if a message exists to receive
« Typical usage: probe then receive if message exists
« Useful if you don’t know the size of the message
« Useful if you don’t know when you will get messages

« MPI_Mprobe, MPI_Improbe, MPI_Mrecv, MPIl_Imrecv
« “Matching” probe and recv
« Makes sure message from probe and message received are the same
» Useful for threaded programs

Los Alamos National Laboratory

B 1sTD HNSEC

Persistent Communication Request

« Setup communication
« MPI_Send _init, MPI _Bsend_init, MPI_Rsend _init,
MPI_Ssend_init, MPI_Recv_init

« Start the communication
« MPI_Start, MPI _Startall
 Returns an MPI_Request

» Wait or Test for communication to complete

Los Alamos National Laboratory

ISTD SNSEC

Cellular Automata Example

« Cellular automata live on a grid of
cells

« Each cell has a finite number of
states

« Each cell is updated based on
values of neighbors

"-Y

. f,:?;*f’ 7

ooy :Y vr" Hhan
;'%m- J’e,n’fUm

f = .a"rl'v:UfJ
Jj 7 J Jf

R

\5 “:.
(_‘-__“-L
Lol d_“t{‘*‘

i,(:L‘=<=(“—-{“ e

o RR P e

0 A o W1 0o "‘4.
Qo)
S 1- "‘{(

OSSR | Ko
XOPTh

=

=

2 A A5

T Y
£} vf' T 17’,]’331;7-

; v d
?‘};"'T J{; f’)’va
s

;‘4 hI7

;i’srl Gplifs,
;-'."-IJIg,s’afa
5 ‘J‘Yj i)

.......

Rule

Los Alamos National Laboratory

B 1sTD HNSEC

Cellular Automata: main

int main(int argc, char xxargv) {
int numIters = 200;
int N = 2 x numIters - 1;
+2 for boundary values
char xdata;
data = malloc(numIters * (N+2) % sizeof(char));
memset(data, @, numIters *x (N+2) * sizeof(char));
datal[I2D(numIters, Q)] = 1;

for (int iter = 1; iter < numIters; iter++)
applyRule(N, &datalI2D(@, iter-1)]1, &datal[I2D(@, iter)l);

writeData(N, numIters, data, "ex4.txt");
return 0;

Los Alamos National Laboratory

B 1sTD HNSEC

Cellular Automata: 12D Macro

// This is a common macro in C for 2D arrays
#define I2D(i,j) ((i) + () * (N+2))

[\

column

Los Alamos National Laboratory

B 1sTD HNSEC

Cellular Automata: Domain

r Ghost cells hold boundary data T

I i

i
N Regular Cells

Los Alamos National Laboratory

B 1sTD HNSEC

Cellular Automata (Parallel): Domain

Node 1 Domain

Node 0 Domain

Entire Domain

Los Alamos National Laboratory
Allllll’rlf;iii)_~‘f>hlsiﬂEﬁ;

Cellular Automata (Parallel): main

int main(int argc, char xxargv) {
int numlIters = 200;
int totalN = 2 % numIters - 1;
char xdata;
int begin, end, localN, rank;
char filename[20];

// Initialize MPI
MPI_Init(&argc, &argv);

// Get bounds of local problem
getMyBounds (totalN, &begin, &end, &localN);

Los Alamos National Laboratory

B 1sTD HNSEC

Cellular Automata (Parallel): main

// Allocate data and set initial condition

data = malloc(numIters * (localN+2) x sizeof(char));

memset(data, @, numIters x (localN+2) x sizeof(char));

if (numIters >= begin && numIters <= end) A{
data[I2D(numIters — begin + 1, 0)] = 1;

}

// Apply rule

for (int iter = 1; iter < numIters; iter++) {
commNeighbors(localN, &datalI2D(@, iter-1)1);
applyRule(localN, &datalI2D(@, iter-1)], &datal[I2D(@, iter)]);

Los Alamos National Laboratory

B 1sTD HNSEC

Cellular Automata (Parallel): main

// Allocate data and set initial condition

data = malloc(numIters * (localN+2) x sizeof(char));

memset(data, @, numIters x (localN+2) x sizeof(char));

if (numIters >= begin && numIters <= end) A{
data[I2D(numIters — begin + 1, 0)] = 1;

by ‘k\“~\\\

// Apply rule

for (int iter = 1; iter < numIters; iter++) {
commNeighbors(localN, &datalI2D(@, iter-1)1);
applyRule(localN, &datalI2D(@, iter-1)], &datQ%{%EfG, iter)]);

Initial Condition

Communicate boundary
before applying rule
at each iteration

Los Alamos National Laboratory

B 1sTD HNSEC

Cellular Automata (Parallel): main

// Write out data for each rank
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
sprintf(filename, "ex5_%d.txt", rank);
writeData(localN, numIters, data, filename);

// End
MPI_Finalize();
return 0;

Los Alamos National Laboratory
FE 1STD SNSEC

Cellular Automata (Parallel): main

// Write out data for each rank Write data for each rank

MPI_Comm_rank(MPI_COMM_WORLD, &rank); 4//”’//’
rank) ;

sprintf(filename, "ex5_%d.txt",
writeData(localN, numIters, data, filename);

// End
MPI_Finalize();
return 0;

Might want rank O to create an additional
file containing the name of all the data files

Los Alamos National Laboratory
FE 1STD SNSEC

Cellular Automata: commNeighbors

void commNeighbors(int localN, char xdata) {
const int RECV_LEFT_TAG = 1;
const int SEND_RIGHT _TAG = 1;
const int RECV_RIGHT_TAG = 2;
const int SEND_LEFT_TAG = 2
int rank, numRanks;
int leftRank, rightRank;
MPI_Request mpiRequest[4];

// Get rank info

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &numRanks);

leftRank = (rank == @) ? MPI_PROC_NULL : rank - 1;

rightRank = (rank == numRanks-1) ? MPI_PROC_NULL : rank + 1;

Los Alamos National Laboratory

B 1sTD HNSEC

Cellular Automata: commNeighbors

void commNeighbors(int localN, char xdata) {
const int RECV_LEFT_TAG = 1;
const int SEND_RIGHT _TAG = 1;
const int RECV_RIGHT_TAG = 2;
const int SEND_LEFT_TAG = 2
int rank, numRanks; Call to send/recv with

int leftRank, rightRank; MPI_PROC_NULL does nothing
MPI_Request mpiRequest[4];

// Get rank info

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &numRanks/;

leftRank = (rank == @) ? MPI_PROC_NULL : rank - 1;

rightRank = (rank == numRanks-1) ? MPI_PROC_NULL : rank + 1;

Los Alamos National Laboratory
FE 1STD SNSEC

Cellular Automata: commNeighbors

// recv and send

MPI_Irecv(&datalQ], 1, MPI_CHAR, leftRank, RECV_LEFT_TAG,
MPI_COMM_WORLD, &mpiRequest[0]);

MPI_Irecv(&datallocalN+1], 1, MPI_CHAR, rightRank, RECV_RIGHT_TAG,
MPI_COMM_WORLD, &mpiRequest[1]);

MPI_Isend(&datall], 1, MPI_CHAR, leftRank, SEND_LEFT_TAG,
MPI_COMM_WORLD, &mpiRequest[2]);

MPI_Isend(&datallocalN], 1, MPI_CHAR, rightRank, SEND_RIGHT_TAG,

MPI_COMM_WORLD, &mpiRequest[3]);

// Wait for communication to complete
MPI_Waitall(4, mpiRequest, MPI_STATUSES_IGNORE);

Los Alamos National Laboratory
FE 1STD SNSEC

Cellular Automata: commNeighbors

// recv and send

MPI_Irecv(&datalQ], 1, MPI_CHAR, leftRank, RECV_LEFT_TAG,
MPI_COMM_WORLD, &mpiRequest[0]);

MPI_Irecv(&datallocalN+1], 1, MPI_CHAR, rightRank, RECV_RIGHT_TAG,
MPI_COMM_WORLD, &mpiRequest[1]);

MPI_Isend(&datall], 1, MPI_CHAR, leftRank, SEND_LEFT_TAG,
MPI_COMM_WORLD, &mpiRequest[2]);

MPI_Isend(&datallocalN], 1, MPI_CHAR, rightRank, SEND_RIGHT_TAG,

MPI_COMM_WORLD, &mpiRequest[3]);

// Wait for communication to complete
MPI_Waitall(4, mpiRequest, MPI_STATUSES_IGNORE);

¥ ‘k\\\\\‘-
Can ignore status

Los Alamos National Laboratory

B 1sTD HNSEC

2D Cellular Automata

* In 1D, used a 3 point stencil
* In 2D, 5 point and 9 point stencils are common

Green cell depends on blue cells
1D 3 Point Stencil 2D 5 Point Stencil 2D 9 Point Stencil

Los Alamos National Laboratory

B 1sTD HNSEC

2D Cellular Automata

* 5 point stencil communication
» Post 4 Irecv calls
* Post 4 Isend calls
* Post a wait all

Los Alamos National Laboratory

B 1sTD HNSEC

2D Cellular Automata

* 9 point stencil communication

« Option 1
» Post 8 Irecv calls .
» Post 8 Isend calls
« Post a wait all

* Option 2
* Post 2 Irecv calls (up/down)
* Post 2 Isend calls (up/down)
* Post a wait all

* Post 2 Irecv calls (left/right with ghost cells)
» Post 2 Isend calls (left/right with ghost cells)
* Post a wait all

Los Alamos National Laboratory

The End

65

