
LA-UR-17-24553
Approved for public release; distribution is unlimited.

Title: An MPI Tutorial: Collectives and Point-to-Point Communication

Author(s): Garrett, Charles Kristopher

Intended for: Lecture for Parallel Computing Summer Research Internship

Issued: 2017-06-06

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

NOTE: THIS IS
YOUR TITLE
SLIDE.

If you use the
Walk-in Slide, you
may replace the
gray LANL logo
on the Title Slide
with your
organization’s
logo and delete
the NNSA logo/
management
statement.

If you DO NOT
use one of the two
the Walk-in Slide
options, you
MUST keep the
LANL and NNSA
logos and
management
statement on this
Title Slide.

Los Alamos National Laboratory

An MPI Tutorial

Kris Garrett

June 2017

Collectives and Point-to-Point Communication

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Los Alamos National Laboratory

 | 2

What is MPI?

•  MPI = Message Passing Interface

•  Executable is run in multiple processes
•  Processes may be on multiple nodes of a cluster
•  Multiple processes may be placed on a node to utilize multi-core

processors
•  All processes can communicate with each other

•  C and Fortran library APIs given by the standard
•  3rd party bindings exist (Python, C++, etc)
•  Will concentrate on C library bindings here

Los Alamos National Laboratory

 | 3

Process to Build MPI Programs

•  Compile code with an MPI wrapper
•  mpicc, mpicxx, mpifort, ... !

•  Run code with an MPI wrapper
•  mpirun, mpiexec, aprun, srun!
•  Example: mpirun -n 4 ./MyProg!

•  This will run the MyProg executable in 4 processes
•  Each process can query:

 - how many total processes are being run
 - a unique index for itself

•  Each process can send/receive data to/from any other process

Los Alamos National Laboratory

 | 4

How MPI Works

Los Alamos National Laboratory

 | 5

#include <mpi.h> !
#include <stdio.h> !
!
int main(int argc, char **argv) !
{ !
 int rank, numRanks; !
 MPI_Init(&argc, &argv); !
!
 MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
 MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
!
 printf("Rank %d of %d\n", rank, numRanks); !
!
 MPI_Finalize(); !
 return 0; !
} !

First MPI Program

 --- Output --- !
$ mpirun -n 4 ex1.x !
Rank 0 of 4 !
Rank 2 of 4 !
Rank 3 of 4 !
Rank 1 of 4 !

Los Alamos National Laboratory

 | 6

Include mpi.h #include <mpi.h> !
#include <stdio.h> !
!
int main(int argc, char **argv) !
{ !
 int rank, numRanks; !
 MPI_Init(&argc, &argv); !
!
 MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
 MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
!
 printf("Rank %d of %d\n", rank, numRanks); !
!
 MPI_Finalize(); !
 return 0; !
} !

First MPI Program

Los Alamos National Laboratory

 | 7

#include <mpi.h> !
#include <stdio.h> !
!
int main(int argc, char **argv) !
{ !
 int rank, numRanks; !
 MPI_Init(&argc, &argv); !
!
 MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
 MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
!
 printf("Rank %d of %d\n", rank, numRanks); !
!
 MPI_Finalize(); !
 return 0; !
} !

Init before everything

Finalize after everything

First MPI Program

Los Alamos National Laboratory

 | 8

•  Rank is a unique integer
for each process

•  Size is the number
of processes

#include <mpi.h> !
#include <stdio.h> !
!
int main(int argc, char **argv) !
{ !
 int rank, numRanks; !
 MPI_Init(&argc, &argv); !
!
 MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
 MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
!
 printf("Rank %d of %d\n", rank, numRanks); !
!
 MPI_Finalize(); !
 return 0; !
} !

First MPI Program

Los Alamos National Laboratory

 | 9

•  MPI_COMM_WORLD is a
communicator

•  Represents all processes
•  Can create subcommunicators

•  Useful for libraries

#include <mpi.h> !
#include <stdio.h> !
!
int main(int argc, char **argv) !
{ !
 int rank, numRanks; !
 MPI_Init(&argc, &argv); !
!
 MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
 MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
!
 printf("Rank %d of %d\n", rank, numRanks); !
!
 MPI_Finalize(); !
 return 0; !
} !

First MPI Program

Los Alamos National Laboratory

 | 10

MPI Collectives

Los Alamos National Laboratory

 | 11

Let’s Calculate Pi

•  Split unit circle into n rectangles

•  Pi is approximately the sum of
rectangles

•  Each rectangle has
•  Width: dx = 2 / n
•  Midpoint: x_i = -1 + dx / 2 + dx * i
•  Height: h = 2 * sqrt(1 - x_i^2)
•  Area: area = dx * h

Los Alamos National Laboratory

 | 12

Let’s Calculate Pi

#include <stdio.h> !
#include <math.h> !
!
int main(int argc, char **argv) !
{ !
 const int N = 1000; !
 double pi = calcPi(N); !
 double error = fabs(pi - M_PI); !
 !
 printf("Approximation of pi: %f Error: %e\n", pi, error); !
!
 return 0; !
} !
!
!

 --- Output --- !
Approximation of pi: 3.141623 Error: 3.080323e-05!

Los Alamos National Laboratory

 | 13

Let’s Calculate Pi

double calcPi(int n) !
{ !
 double a = -1.0; // Left endpoint !
 double b = 1.0; // Right endpoint !
 double dx = (b - a) / n; !
 double area = 0.0; !
!
 for (int i = 0; i < n; i++) { !
 double x = a + dx / 2.0 + i * dx; !
 double h = 2.0 * sqrt(1.0 - x * x); !
 area = area + dx * h; !
 } !
!
 return area; !
} !
!

Los Alamos National Laboratory

 | 14

Let’s Calculate Pi with MPI

•  Sets of rectangles owned by a rank
•  Each rank calculates a ‘slice’ of pi
•  Add all the slices in the end

•  Different number of rectangles for
each rank is possible if n is not
divisible by the number of ranks
•  Example:

•  14 total rectangles into 4 ranks
•  Ranks 0 and 1 have 4 rectangles
•  Rank 2 and 3 have 3 rectangles

Los Alamos National Laboratory

 | 15

Let’s Calculate Pi with MPI

•  Create function to get local problem
information

!
void getMyBounds(int globalN, !

int *begin, !
int *end, !
int *localN) !

!
! Rank ! globalN! begin ! end ! localN!
0 ! 14 ! 0 ! 3 ! 4 !
1 ! 14 ! 4 ! 7 ! 4 !
2 ! 14 ! 8 ! 10 ! 3 !
3 ! 14 ! 11 ! 13 ! 3 !

Los Alamos National Laboratory

 | 16

Let’s Calculate Pi with MPI: Reduce

•  To sum across ranks, use MPI_Reduce
•  Performs a binary operation across all ranks in a communicator

•  Common built-in functions for reduce include
•  MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD

•  Can create your own
binary operation

•  MPI_Allreduce
•  All ranks get sum

Rank 0 Rank 1 Rank 2 Rank 3

Rank 0

x0 x1 x2 x3

x0+x1+x2+x3

Los Alamos National Laboratory

 | 17

Anatomy of MPI_Reduce

int MPI_Reduce(const void *sendbuf, void *recvbuf, int count, !
 MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm) !

!
sendbuf Address of send buffer !
recvbuf Address of receive buffer (significant only at root) !
count Number of elements in send buffer !
datatype Data type of elements of send buffer !
op Reduce operation !
root Rank of root process !
comm Communicator !
!
Returns error. !
Should always check for return of MPI_SUCCESS. !
Won’t do that here for clarity of code and space. !

Los Alamos National Laboratory

 | 18

MPI Data Types

--- List of Common C Data Types --- !
!
MPI_CHAR MPI_SHORT !
MPI_INT MPI_LONG !
MPI_LONG_LONG MPI_FLOAT !
MPI_DOUBLE MPI_LONG_DOUBLE !
MPI_INT8_T MPI_INT16_T !
MPI_INT32_T MPI_INT64_T !
MPI_BYTE !
!
!
There are also MPI data types corresponding to Fortran data types !

Los Alamos National Laboratory

 | 19

Let’s Calculate Pi with MPI: Scan

•  To calculate offsets for ownership of rectangles, use MPI_Scan
•  Performs an inclusive scan operation across all ranks in a communicator

•  MPI_Exscan
•  Exclusive scan
•  Rank 0: 0
•  Rank 1: x0
•  Rank 2: x0+x1

x0 x1 x2

Rank 0

Rank 0

Rank 1

Rank 1

Rank 2

Rank 2

x0 x0+x1 x0+x1+x2

Los Alamos National Laboratory

 | 20

Anatomy of MPI_Scan

int MPI_Scan(const void *sendbuf, void *recvbuf, int count, !
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm) !

!
sendbuf Address of send buffer !
recvbuf Address of receive buffer !
count Number of elements in send buffer !
datatype Data type of elements of send buffer !
op Reduce operation !
comm Communicator !
!

Los Alamos National Laboratory

 | 21

Let’s Calculate Pi with MPI: main

int main(int argc, char **argv) !
{ !
 const int globalN = 1000; !
 int localN, begin, end; !
 double dx, a, b, piSlice, pi; !
 !
 // Init MPI !
 MPI_Init(&argc, &argv); !
!
 // Get local problem extents !
 getMyBounds(globalN, &begin, &end, &localN); !
 dx = 2.0 / globalN; !
 a = -1.0 + begin * dx; !
 b = a + localN * dx; !
!

Los Alamos National Laboratory

 | 22

Let’s Calculate Pi with MPI: main

 // Calculate local circle area and sum values together !
 piSlice = calcPiSlice(a, b, localN); !
 MPI_Reduce(&piSlice, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); !
!
 // Print value of pi and error !
 if (begin == 0) { !
 double error = fabs(pi - M_PI); !
 printf("Approximation of pi: %f Error: %e\n", pi, error); !
 } !
!
 // End !
 MPI_Finalize(); !
 return 0; !
} !

Los Alamos National Laboratory

 | 23

Let’s Calculate Pi with MPI: calcPiSlice

double calcPiSlice(double a, double b, int n) !
{ !
 double dx = (b - a) / n; !
 double area = 0.0; !
!
 for (int i = 0; i < n; i++) { !
 double x = a + dx / 2.0 + i * dx; !
 double h = 2.0 * sqrt(1.0 - x * x); !
 area = area + dx * h; !
 } !
!
 return area; !
} !
!

Los Alamos National Laboratory

 | 24

Let’s Calculate Pi with MPI: getMyBounds

void getMyBounds(int globalN, int *begin, int *end, int *localN) !
{ !
 int rank, numRanks; !
 MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
 MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
!

*localN = globalN / numRanks; !
 if (rank < globalN % numRanks) !
 *localN = *localN + 1; !
!

MPI_Scan(localN, end, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); !
 *begin = *end - *localN; !
 *end = *end - 1; !
} !
!

Los Alamos National Laboratory

 | 25

Let’s Calculate Pi with MPI: getMyBounds

void getMyBounds(int globalN, int *begin, int *end, int *localN) !
{ !
 int rank, numRanks; !
 MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
 MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
!

*localN = globalN / numRanks; !
 if (rank < globalN % numRanks) !
 *localN = *localN + 1; !
!

MPI_Scan(localN, end, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); !
 *begin = *end - *localN; !
 *end = *end - 1; !
} !
!

Trick to get the local problem
size when the global problem
size is not evenly divisible

Los Alamos National Laboratory

 | 26

Let’s Calculate Pi with MPI: getMyBounds

void getMyBounds(int globalN, int *begin, int *end, int *localN) !
{ !
 int rank, numRanks; !
 MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
 MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
!

*localN = globalN / numRanks; !
 if (rank < globalN % numRanks) !
 *localN = *localN + 1; !
!

MPI_Scan(localN, end, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); !
 *begin = *end - *localN; !
 *end = *end - 1; !
} !
!

Example:
globalN = 7 numRanks = 3 !

Rank 0: localN = 3 !
Rank 1: localN = 2 !
Rank 2: localN = 2 !

Los Alamos National Laboratory

 | 27

Let’s Calculate Pi with MPI: getMyBounds

void getMyBounds(int globalN, int *begin, int *end, int *localN) !
{ !
 int rank, numRanks; !
 MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
 MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
!

*localN = globalN / numRanks; !
 if (rank < globalN % numRanks) !
 *localN = *localN + 1; !
!

MPI_Scan(localN, end, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); !
 *begin = *end - *localN; !
 *end = *end - 1; !
} !
!

Example:
globalN = 7 numRanks = 3 !
Rank 0: end = 3 aaaaaaa!
Rank 1: end = 5 (3+2) a !
Rank 2: end = 7 (3+2+2) !

Los Alamos National Laboratory

 | 28

Let’s Calculate Pi with MPI: getMyBounds

void getMyBounds(int globalN, int *begin, int *end, int *localN) !
{ !
 int rank, numRanks; !
 MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
 MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
!

*localN = globalN / numRanks; !
 if (rank < globalN % numRanks) !
 *localN = *localN + 1; !
!

MPI_Scan(localN, end, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); !
 *begin = *end - *localN; !
 *end = *end - 1; !
} !
!

Example:
globalN = 7 numRanks = 3 !
Rank 0: begin = 0 end = 2!
Rank 1: begin = 3 end = 4 !
Rank 2: begin = 5 end = 6 !

Los Alamos National Laboratory

 | 29

Common Collectives: MPI_Barrier

•  Make all ranks wait until they hit the barrier
•  All ranks in communicator must call this before code moves forward
•  Can be useful for debugging

•  Be careful not to put this in a branching statement
•  Could cause a process to stall
•  Example: if, for, case, while

// Rank 0 will never continue !
if (rank == 0) !

MPI_Barrier(MPI_COMM_WORLD); !

Los Alamos National Laboratory

 | 30

Common Collectives: MPI_Scatter

Rank 0 Rank 1 Rank 2 Rank 3

Rank 0

•  Elements in array go to different ranks
•  Bcast: 1 element sent to all ranks

Los Alamos National Laboratory

 | 31

•  Elements from each rank goes into one array
•  Allgather: every rank gets the whole array

Common Collectives: MPI_Gather

Rank 0 Rank 1 Rank 2 Rank 3

Rank 0

Los Alamos National Laboratory

 | 32

•  MPI_Alltoall
•  Every rank sends different data to every other rank

•  MPI_Alltoallw
•  Most general version of MPI_Alltoall
•  Allows different data sizes

•  Varying Count Versions
•  MPI_Gatherv, MPI_Scatterv, MPI_Allgatherv, MPI_Alltoallv
•  More general versions than without ending in ‘v’
•  Use if number of elements is different per rank

Other Collectives

Los Alamos National Laboratory

 | 33

•  MPI_Reduce_scatter, MPI_Reduce_scatter_block
•  Reduce then scatter

•  Immediate Versions
•  Will discuss immediate MPI calls in next section
•  Add ‘I’ before each name
•  Examples: MPI_Igather, MPI_Iscatter, MPI_Ireduce

Other Collectives

Los Alamos National Laboratory

 | 34

MPI Point-to-Point

Los Alamos National Laboratory

 | 35

How to Send Data to 1 Rank

•  4 Types of Sends
•  MPI_Send!

•  May buffer message and return quickly (usually for short messages)
•  May wait until message is sent (usually for long messages)

•  MPI_Bsend (Buffered Send) !
•  Buffers message to return quickly
•  User can add buffer space for this call: MPI_Buffer_attach!

•  MPI_Ssend (Synchronous Send) !
•  Will wait until message is sent (no buffering)

•  MPI_Rsend (Ready Send) !
•  Assumes receive is already posted
•  Reduces handshaking overhead

•  These 4 send types ensure you can use the message buffer after the
call is complete

Los Alamos National Laboratory

 | 36

Anatomy of MPI_Send

int MPI_Send(const void *buf, int count, MPI_Datatype datatype, !
 int dest, int tag, MPI_Comm comm) !
!
buf Initial address of send buffer !
count Number of elements to send !
datatype Datatype of each send buffer element !
dest Rank of destination !
tag Message tag !
comm Communicator !
!
Receiver must match tag and communicator.
Can use buf after call has completed.
Can set dest=MPI_PROC_NULL.

Los Alamos National Laboratory

 | 37

Anatomy of MPI_Recv

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, !
 int tag, MPI_Comm comm, MPI_Status *status) !
!
buf Initial address of receive buffer !
count Maximum number of elements to receive !
datatype Datatype of each receive buffer entry !
source Rank of source !
tag Message tag !
comm Communicator !
status Status object !
!
Only 1 receive type as compared to the 4 send types.
Can use buf after call has completed.
Can receive less than count number of elements.
Can set tag=MPI_ANY_TAG and source=MPI_ANY_SOURCE or MPI_PROC_NULL.

Los Alamos National Laboratory

 | 38

MPI_Status

•  In C, status is a structure containing
•  MPI_SOURCE !
•  MPI_TAG !
•  MPI_ERROR !

•  Call MPI_Get_count on status to get number of elements received

•  Can use MPI_STATUS_IGNORE for status parameter
•  For array of statuses: MPI_STATUSES_IGNORE !

Los Alamos National Laboratory

 | 39

Immediate Versions of Send/Recv

•  There is an immediate (non-blocking) version of each send and receive
call
•  MPI_Isend, MPI_Ibsend, MPI_Issend, MPI_Irsend, MPI_Irecv!
•  Calls return immediately
•  Returns MPI_Request!

•  Best Practice: call MPI_Irecv before MPI_Isend to reduce amount of
handshaking

Los Alamos National Laboratory

 | 40

Immediate Versions of Send/Recv

•  Wait on or test MPI_Request to see if call is done
•  MPI_Wait: Wait until request is done
•  MPI_Test: Check if request is done
•  Message buffer cannot be used until MPI_Wait returns or MPI_Test

returns true
•  MPI_Wait or MPI_Test is required to deallocate memory used by an

immediate call

•  Variants of Wait and Test for multiple requests
•  MPI_Waitany, MPI_Waitall, MPI_Waitsome
•  MPI_Testany, MPI_Testall, MPI_Testsome

Los Alamos National Laboratory

 | 41

A Program That Fails

///// 2 MPI rank example that will never finish ///// !
If (rank == 0) { !
 MPI_Recv(recvbuf, count, MPI_DOUBLE, 1, tag, comm, MPI_STATUS_IGNORE); !
 MPI_Send(sendbuf, count, MPI_DOUBLE, 1, tag, comm); !
} !
If (rank == 1) { !
 MPI_Recv(recvbuf, count, MPI_DOUBLE, 0, tag, comm, MPI_STATUS_IGNORE); !
 MPI_Send(sendbuf, count, MPI_DOUBLE, 0, tag, comm); !
} !
!

Los Alamos National Laboratory

 | 42

A Program That May Fail

///// 2 MPI rank example that may never finish ///// !
// Relies on send buffering the message !
If (rank == 0) { !
 MPI_Send(sendbuf, count, MPI_DOUBLE, 1, tag, comm); !
 MPI_Recv(recvbuf, count, MPI_DOUBLE, 1, tag, comm, MPI_STATUS_IGNORE); !
} !
If (rank == 1) { !
 MPI_Send(sendbuf, count, MPI_DOUBLE, 0, tag, comm); !
 MPI_Recv(recvbuf, count, MPI_DOUBLE, 0, tag, comm, MPI_STATUS_IGNORE); !
} !
!

Los Alamos National Laboratory

 | 43

A Program That Succeeds

///// 2 MPI Rank example that will finish ///// !
If (rank == 0) { !
 MPI_Send(sendbuf, count, MPI_DOUBLE, 1, tag, comm); !
 MPI_Recv(recvbuf, count, MPI_DOUBLE, 1, tag, comm, MPI_STATUS_IGNORE); !
} !
If (rank == 1) { !
 MPI_Recv(recvbuf, count, MPI_DOUBLE, 0, tag, comm, MPI_STATUS_IGNORE); !
 MPI_Send(sendbuf, count, MPI_DOUBLE, 0, tag, comm); !
} !
!

Los Alamos National Laboratory

 | 44

A Program That Succeeds

///// 2 MPI Rank example that will finish ///// !
If (rank == 0) { !
 MPI_Sendrecv(sendbuf, count, MPI_DOUBLE, 1, tag, !
 recvbuf, count, MPI_DOUBLE, 1, tag, !
 comm, MPI_STATUS_IGNORE); !
} !
If (rank == 1) { !
 MPI_Sendrecv(sendbuf, count, MPI_DOUBLE, 0, tag, !
 recvbuf, count, MPI_DOUBLE, 0, tag, !
 comm, MPI_STATUS_IGNORE); !
} !
!

Los Alamos National Laboratory

 | 45

Isend/Irecv to Eliminate Blocking

If (rank == 0) { !
 MPI_Irecv(recvbuf, count, MPI_DOUBLE, 1, tag, comm, !
 MPI_STATUS_IGNORE, &request[0]); !
 MPI_Isend(sendbuf, count, MPI_DOUBLE, 1, tag, comm, &request[1]); !
} !
If (rank == 1) { !
 MPI_Irecv(recvbuf, count, MPI_DOUBLE, 0, tag, comm, !
 MPI_STATUS_IGNORE, &request[0]); !
 MPI_Isend(sendbuf, count, MPI_DOUBLE, 0, tag, comm, &request[1]); !
} !
MPI_Waitall(2, request, MPI_STATUSES_IGNORE); !
!

Los Alamos National Laboratory

 | 46

MPI_Probe

•  MPI_Probe, MPI_Iprobe
•  Probe to see if a message exists to receive
•  Typical usage: probe then receive if message exists
•  Useful if you don’t know the size of the message
•  Useful if you don’t know when you will get messages

•  MPI_Mprobe, MPI_Improbe, MPI_Mrecv, MPI_Imrecv
•  “Matching” probe and recv
•  Makes sure message from probe and message received are the same
•  Useful for threaded programs

Los Alamos National Laboratory

 | 47

Persistent Communication Request

•  Setup communication
•  MPI_Send_init, MPI_Bsend_init, MPI_Rsend_init,
MPI_Ssend_init, MPI_Recv_init!

•  Start the communication
•  MPI_Start, MPI_Startall!
•  Returns an MPI_Request!

•  Wait or Test for communication to complete

Los Alamos National Laboratory

 | 48

Cellular Automata Example

•  Cellular automata live on a grid of
cells

•  Each cell has a finite number of
states

•  Each cell is updated based on
values of neighbors

Pattern 111 110 101 100 011 010 001 000
Rule 0 0 0 1 1 1 1 0

Los Alamos National Laboratory

 | 49

Cellular Automata: main

int main(int argc, char **argv) { !
int numIters = 200; !

 int N = 2 * numIters - 1; !
 char *data; !
!
 data = malloc(numIters * (N+2) * sizeof(char)); !
 memset(data, 0, numIters * (N+2) * sizeof(char)); !
 data[I2D(numIters, 0)] = 1; !
 !
 for (int iter = 1; iter < numIters; iter++) !
 applyRule(N, &data[I2D(0, iter-1)], &data[I2D(0, iter)]); !
 !
 writeData(N, numIters, data, "ex4.txt"); !
 return 0; !
} !

+2 for boundary values

Los Alamos National Laboratory

 | 50

Cellular Automata: I2D Macro

// This is a common macro in C for 2D arrays !
#define I2D(i,j) ((i) + (j) * (N+2)) !

column row

Los Alamos National Laboratory

 | 51

Cellular Automata: Domain

Ghost cells hold boundary data

N Regular Cells

Los Alamos National Laboratory

 | 52

Cellular Automata (Parallel): Domain

Entire Domain

Node 0 Domain

Node 1 Domain

Los Alamos National Laboratory

 | 53

Cellular Automata (Parallel): main

int main(int argc, char **argv) { !
 int numIters = 200; !
 int totalN = 2 * numIters - 1; !
 char *data; !
 int begin, end, localN, rank; !
 char filename[20]; !
 !
 // Initialize MPI !
 MPI_Init(&argc, &argv); !
 !
 // Get bounds of local problem !
 getMyBounds(totalN, &begin, &end, &localN); !
!

Los Alamos National Laboratory

 | 54

Cellular Automata (Parallel): main

 // Allocate data and set initial condition !
 data = malloc(numIters * (localN+2) * sizeof(char)); !
 memset(data, 0, numIters * (localN+2) * sizeof(char)); !
 if (numIters >= begin && numIters <= end) { !
 data[I2D(numIters - begin + 1, 0)] = 1; !
 } !
!
 // Apply rule !
 for (int iter = 1; iter < numIters; iter++) { !
 commNeighbors(localN, &data[I2D(0, iter-1)]); !
 applyRule(localN, &data[I2D(0, iter-1)], &data[I2D(0, iter)]); !
 } !
!
!

Los Alamos National Laboratory

 | 55

Cellular Automata (Parallel): main

 // Allocate data and set initial condition !
 data = malloc(numIters * (localN+2) * sizeof(char)); !
 memset(data, 0, numIters * (localN+2) * sizeof(char)); !
 if (numIters >= begin && numIters <= end) { !
 data[I2D(numIters - begin + 1, 0)] = 1; !
 } !
!
 // Apply rule !
 for (int iter = 1; iter < numIters; iter++) { !
 commNeighbors(localN, &data[I2D(0, iter-1)]); !
 applyRule(localN, &data[I2D(0, iter-1)], &data[I2D(0, iter)]); !
 } !
!
!

Initial Condition

Communicate boundary
before applying rule
at each iteration

Los Alamos National Laboratory

 | 56

Cellular Automata (Parallel): main

 // Write out data for each rank !
 MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
 sprintf(filename, "ex5_%d.txt", rank); !
 writeData(localN, numIters, data, filename); !
 !
 // End !
 MPI_Finalize(); !
 return 0; !
} !

Los Alamos National Laboratory

 | 57

Cellular Automata (Parallel): main

 // Write out data for each rank !
 MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
 sprintf(filename, "ex5_%d.txt", rank); !
 writeData(localN, numIters, data, filename); !
 !
 // End !
 MPI_Finalize(); !
 return 0; !
} !

Might want rank 0 to create an additional
file containing the name of all the data files

Write data for each rank

Los Alamos National Laboratory

 | 58

Cellular Automata: commNeighbors

void commNeighbors(int localN, char *data) { !
 const int RECV_LEFT_TAG = 1; !
 const int SEND_RIGHT_TAG = 1; !
 const int RECV_RIGHT_TAG = 2; !
 const int SEND_LEFT_TAG = 2; !
 int rank, numRanks; !
 int leftRank, rightRank; !
 MPI_Request mpiRequest[4]; !
 !
 // Get rank info !
 MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
 MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
 leftRank = (rank == 0) ? MPI_PROC_NULL : rank - 1; !
 rightRank = (rank == numRanks-1) ? MPI_PROC_NULL : rank + 1; !
!

!

Los Alamos National Laboratory

 | 59

Cellular Automata: commNeighbors

void commNeighbors(int localN, char *data) { !
 const int RECV_LEFT_TAG = 1; !
 const int SEND_RIGHT_TAG = 1; !
 const int RECV_RIGHT_TAG = 2; !
 const int SEND_LEFT_TAG = 2; !
 int rank, numRanks; !
 int leftRank, rightRank; !
 MPI_Request mpiRequest[4]; !
 !
 // Get rank info !
 MPI_Comm_rank(MPI_COMM_WORLD, &rank); !
 MPI_Comm_size(MPI_COMM_WORLD, &numRanks); !
 leftRank = (rank == 0) ? MPI_PROC_NULL : rank - 1; !
 rightRank = (rank == numRanks-1) ? MPI_PROC_NULL : rank + 1; !
!

!

Call to send/recv with
MPI_PROC_NULL does nothing

Los Alamos National Laboratory

 | 60

Cellular Automata: commNeighbors

 // recv and send !
 MPI_Irecv(&data[0], 1, MPI_CHAR, leftRank, RECV_LEFT_TAG, !
 MPI_COMM_WORLD, &mpiRequest[0]); !
 MPI_Irecv(&data[localN+1], 1, MPI_CHAR, rightRank, RECV_RIGHT_TAG, !
 MPI_COMM_WORLD, &mpiRequest[1]); !
 MPI_Isend(&data[1], 1, MPI_CHAR, leftRank, SEND_LEFT_TAG, !
 MPI_COMM_WORLD, &mpiRequest[2]); !
 MPI_Isend(&data[localN], 1, MPI_CHAR, rightRank, SEND_RIGHT_TAG, !
 MPI_COMM_WORLD, &mpiRequest[3]); !
 !
 // Wait for communication to complete !
 MPI_Waitall(4, mpiRequest, MPI_STATUSES_IGNORE); !
} !
!

Los Alamos National Laboratory

 | 61

Cellular Automata: commNeighbors

 // recv and send !
 MPI_Irecv(&data[0], 1, MPI_CHAR, leftRank, RECV_LEFT_TAG, !
 MPI_COMM_WORLD, &mpiRequest[0]); !
 MPI_Irecv(&data[localN+1], 1, MPI_CHAR, rightRank, RECV_RIGHT_TAG, !
 MPI_COMM_WORLD, &mpiRequest[1]); !
 MPI_Isend(&data[1], 1, MPI_CHAR, leftRank, SEND_LEFT_TAG, !
 MPI_COMM_WORLD, &mpiRequest[2]); !
 MPI_Isend(&data[localN], 1, MPI_CHAR, rightRank, SEND_RIGHT_TAG, !
 MPI_COMM_WORLD, &mpiRequest[3]); !
 !
 // Wait for communication to complete !
 MPI_Waitall(4, mpiRequest, MPI_STATUSES_IGNORE); !
} !
! Can ignore status

Los Alamos National Laboratory

 | 62

2D Cellular Automata

•  In 1D, used a 3 point stencil
•  In 2D, 5 point and 9 point stencils are common

2D 5 Point Stencil 2D 9 Point Stencil 1D 3 Point Stencil
Green cell depends on blue cells

Los Alamos National Laboratory

 | 63

2D Cellular Automata

•  5 point stencil communication
•  Post 4 Irecv calls
•  Post 4 Isend calls
•  Post a wait all

Los Alamos National Laboratory

 | 64

2D Cellular Automata

•  9 point stencil communication
•  Option 1

•  Post 8 Irecv calls
•  Post 8 Isend calls
•  Post a wait all

•  Option 2
•  Post 2 Irecv calls (up/down)
•  Post 2 Isend calls (up/down)
•  Post a wait all
•  Post 2 Irecv calls (left/right with ghost cells)
•  Post 2 Isend calls (left/right with ghost cells)
•  Post a wait all

Los Alamos National Laboratory

 | 65

The End

