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Compiling Stages

* Three stages of compiling
* Preprocessing

« Compiling to object files } Usually done in one step
 Linking
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Stage 1: Preprocessing

Acts only on preprocessing directives in code
 Lines that begin with #
Examples
« #include “file.h”
* Replace line with contents in file.h
« #ifdef NAME
* Only insert code if NAME is defined
- #define N 100
« Replace N with 100 everywhere below this line (string replacement)
This is a rudimentary language to change your source code
To only do preprocessing: gcc -E
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Stage 1: Preprocessing

 Uses
» Platform check: #ifdef _ GNUC__
* Debug version: #ifdef DEBUG
* Macros: #define MAX(a,b) ((a) > (b) ? (a) : (b))

* Include guards:
#ifndef _ FILE_H__
#define __ FILE_H__
. Code in header file ...
#endif

« Language additions with pragma:
#pragma omp parallel
#pragma ivdep
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Stage 2: Compiling

« Compiles each source file into an object file ending in .0
« gcc —c file.c
e Qutput: file.o
» Also calls the preprocessor

* Object files are machine code (possibly optimized)
* Missing addresses to global functions and variables

« Allows recompiling only a few files when making small changes
« Saves a lot of time for builds that take hours
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Stage 3: Linking

* Link together . o files to create executable
« gcc filel.o file2.0 —0 program.Xx

* This invokes the linker 1d
* You can use ld directly if you want

* You can compile and link with one command

« gcc filel.c file2.c -0 program.X
« Convenient for small programs
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Linking with a library

 Two library types: static and dynamic
« Static: all machine code is copied into the executable
« Name: liblibrary.a
« Dynamic: only hooks into the library are put into the executable
 When executable is run: need to know where the library is
« Name: liblibrary.so

 If dynamic link library is not in standard location: Two Options

1. Set LD_LIBRARY_PATH=<path_to_library>:$LD_LIBRARY_PATH
2. Set rpath inlink command
gcc ... -WLl,-rpath=<path_to_library>
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Linking with a library

e Link command

« gcc filel.o file2.0 \
-L/path/to/library -1library —-o program.x

« —L flag: Add library path if library is not in standard location
« —1flag: link either Liblibrary.aor liblibrary.so

 Link order matters

« Library name needs to be after all source/object/library files that use the
library

« Best practice: put library after all source/object files
« gcc filel.o file2.0 —-1libl -11ib2
* Files 1 and 2 depend on libraries and lib1 depends on lib2
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Useful Compile Flags

* Debug
* —g (Adds source code information into executable)

* Optimize
« —02 or-03 (capital letter Oh)
« —march=... (Specify CPU architecture)

« To profile executable: enable both debug and optimize flags
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Useful Compile Flags

* Include directory
« —I/path/to/include (Directory to check for #1include)

« Warning flags
- -Wall —Wextra

« OpenMP

« GCC: -fopenmp
* Intel: —qopenmp
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Common Build Processes

« Autotools
« ./configure make make install
« Can change several options by adding parameters to configure
« May need sudo make install ifinstalling to a system directory

* cmake
« Ccmake . <change options> make make install
« Change options by
 editing CMakeCache. txt
- ccmake .

29116 | 11



Los Alamos National Laboratory

B 1sTD HNSEC

Common Build Processes

« What does configure do?
« Setup compile and link flags
* Debug vs Optimized
Set library paths
Set install directory
Make sure compiler exists and can compile up to your standard
Create makefiles
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Compiling with MPI

* Will need at least two modules
« Load compiler and then MPI (in this order)
 Example: module load gcc openmpi

« Use compiler wrapper to build
« Same wrapper used for many compiler vendors: GCC, Intel, PGlI, ...
* Links to MPI libraries
* OpenMPI wrappers
 mpicc for C
e mpicxx for C++
« mpifort for Fortran
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Compiler Wrappers are not Magic

$ mpicc ——showme

gcc
-I/usr/projects/hpcsoft/toss2/moonlight/openmpi/1.10.5-gcc-5.3.
openmpi/opal/mca/hwloc/hwlocl191/hwloc/include
-I/usr/projects/hpcsoft/toss2/moonlight/openmpi/1.10.5-gcc-5.3.
openmpi/opal/mca/event/libevent2021/libevent
-I/usr/projects/hpcsoft/toss2/moonlight/openmpi/1.10.5-gcc-5.3.
openmpi/opal/mca/event/libevent2021/1libevent/include
-I/usr/projects/hpcsoft/toss2/moonlight/openmpi/1.10.5-gcc-5.3.
-I/usr/projects/hpcsoft/toss2/moonlight/openmpi/1.10.5-gcc-5.3.
openmpi

—pthread

-W1,-rpath -W1l, /usr/projects/hpcsoft/toss2/moonlight/openmpi/1.
gcc-5.3.0/1ib
—L/usr/projects/hpcsoft/toss2/moonlight/openmpi/1.10.5-gcc-5.3.

0/include/
0/include/
0/include/

0/include
0/include/

10.5-

0/1lib -lmpi
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Pinning Ranks

* Depending on setup: MPI processes can float between cores

« Some applications get better performance if ranks are ‘pinned’ to a
core (or socket or hyperthread)

« Pinning means the process (rank) doesn’t change cores
 Use: on core resources don’t need to move such as cached data

* The following examples are run on:

» 2 sockets
» 18 cores per socket
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Pinning Ranks

./hello.x

1 [45589]: mask Oxfffffffff set
2 [45590]: mask Oxfffffffff set
3 [45591]: mask Oxfffffffff set
@ [45588]: mask Oxfffffffff set

$ srun ——cpu_bind=verbose -n 4
cpu_bind=MASK - sn@89, task 1
cpu_bind=MASK - sn@89, task 2
cpu_bind=MASK - sn@089, task 3
cpu_bind=MASK - sn@89, task 0

Rank 2 of 4 \

Rank 3 of 4

Rank @ of 4 Bit mask of possible
Rank 1 of 4 process placement

Ranks can bind to
any cores
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$ srun ——cpu_bind=verbose,cores -n 4 ./hello.x

cpu_bind=MASK - sn@89, task 0 @
cpu_bind=MASK - sn@89, task 1 1
cpu_bind=MASK - sn@89, task 2 2
cpu_bind=MASK - sn@89, task 3 3
Rank @ of 4
Rank 1 of 4
Rank 2 of 4
Rank 3 of 4

[45666] :
[45667] :
[45668] :
[45669] :

mask 0x00001 set (Core 0)
mask 0x40000 set  (Core 18)
mask 0x00002 set (Core 1)
mask 0x80000 set (Core 19)

\

Bit mask of possible
process placement

Ranks bind to one core
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Threading with OpenMP

Set number of threads
« export OMP_NUM_THREADS=2

Bind threads to cores (if desired)
« export OMP_PROC_BIND=true
« export OMP_PLACES=cores

Check OpenMP bindings
« export OMP_DISPLAY_ENV=VERBOSE

Each rank should bind to at least OMP_NUM_THREADS cores (or
hyperthreads)
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$ srun ——cpu_bind=verbose,cores -n 4 -c 2 ./hello_omp.x
cpu_bind=MASK -
cpu_bind=MASK -
cpu_bind=MASK -
cpu_bind=MASK -

Rank
Rank
Rank
Rank
Rank
Rank
Rank
Rank

SO0 W W N NPRFEL B

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

sn@89, task
sn@89, task
sn@89, task
sn@89, task

P O FrRr O FPr OFrr oS

0

1
2
3

0
1
2
3

[45405]: mask 0x000003 set (Cores 0,1)
[45406]: mask 0x0c0000 set (Cores 18,19)
[45407]: mask 0x00000c set (Cores 2,3)

(

[45408] : mask 0x300000 set

\

MPI process placement
Ranks bind to two cores
One core per OpenMP thread

Cores 20,21)
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MPI and OpenMP

OPENMP DISPLAY ENVIRONMENT BEGIN (for rank 0)
_OPENMP = '201307°
OMP_DYNAMIC = 'FALSE®
OMP_NESTED = 'FALSE®
OMP_NUM_THREADS = '2°
OMP_SCHEDULE = 'DYNAMIC®
OMP_PROC_BIND = 'TRUE*

Rank O Thread O pinned to core 0O
OMP_PLACES = '{0},{1}’' <—

Rank O Thread 1 pinned to core 1

OPENMP DISPLAY ENVIRONMENT END
——— OMP_PLACES for all ranks —-

Rank 0 Rank 1 Rank 2 Rank 3
‘{0},{1}’ '{2},{3}’ '{18},{19}"’ '{20},{21}"
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The End
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