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Compiling Stages 

•  Three stages of compiling 
•  Preprocessing 
•  Compiling to object files 
•  Linking 

Usually done in one step 
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Stage 1: Preprocessing 

•  Acts only on preprocessing directives in code 
•  Lines that begin with # !

•  Examples 
•  #include “file.h” !

•  Replace line with contents in file.h!
•  #ifdef NAME !

•  Only insert code if NAME is defined 
•  #define N 100 !

•  Replace N with 100 everywhere below this line (string replacement) 
•  This is a rudimentary language to change your source code 
•  To only do preprocessing: gcc -E !
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Stage 1: Preprocessing 

•  Uses 
•  Platform check: #ifdef __GNUC__ !
•  Debug version: #ifdef DEBUG !
•  Macros: #define MAX(a,b) ((a) > (b) ? (a) : (b)) !
•  Include guards: 

#ifndef __FILE_H__ !
#define __FILE_H__ !
... Code in header file ... !
#endif!

•  Language additions with pragma: 
#pragma omp parallel !
#pragma ivdep!
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Stage 2: Compiling 

•  Compiles each source file into an object file ending in .o !
•  gcc -c file.c!
•  Output: file.o!
•  Also calls the preprocessor 

•  Object files are machine code (possibly optimized) 
•  Missing addresses to global functions and variables 

•  Allows recompiling only a few files when making small changes 
•  Saves a lot of time for builds that take hours 
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Stage 3: Linking 

•  Link together .o files to create executable 
•  gcc file1.o file2.o -o program.x!

•  This invokes the linker ld!
•  You can use ld directly if you want 

•  You can compile and link with one command 
•  gcc file1.c file2.c -o program.x!
•  Convenient for small programs 
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Linking with a library 

•  Two library types: static and dynamic 
•  Static: all machine code is copied into the executable 

•  Name: liblibrary.a!
•  Dynamic: only hooks into the library are put into the executable 

•  When executable is run: need to know where the library is 
•  Name: liblibrary.so!

•  If dynamic link library is not in standard location: Two Options 
1.  Set LD_LIBRARY_PATH=<path_to_library>:$LD_LIBRARY_PATH !
2.  Set rpath in link command 

gcc ... -Wl,-rpath=<path_to_library> !
!
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Linking with a library 

•  Link command 
•  gcc file1.o file2.o \ !
-L/path/to/library -llibrary -o program.x!

•  -L flag: Add library path if library is not in standard location 
•  -l flag: link either liblibrary.a or liblibrary.so!

•  Link order matters 
•  Library name needs to be after all source/object/library files that use the 

library 
•  Best practice: put library after all source/object files 
•  gcc file1.o file2.o -llib1 -llib2 !

•  Files 1 and 2 depend on libraries and lib1 depends on lib2 
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Useful Compile Flags 

•  Debug 
•  -g (Adds source code information into executable) 

•  Optimize 
•  -O2 or -O3 (capital letter Oh) 
•  -march=... (Specify CPU architecture) 

•  To profile executable: enable both debug and optimize flags 



Los Alamos National Laboratory 

2/9/16   |   10 

Useful Compile Flags 

•  Include directory 
•  -I/path/to/include (Directory to check for #include) 

•  Warning flags 
•  -Wall –Wextra!

•  OpenMP 
•  GCC: -fopenmp!
•  Intel: -qopenmp!
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Common Build Processes 

•  Autotools 
•  ./configure    make    make install !
•  Can change several options by adding parameters to configure 
•  May need sudo make install if installing to a system directory 

•  cmake 
•  cmake .    <change options>    make    make install !
•  Change options by 

•  editing CMakeCache.txt!
•  ccmake . !
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Common Build Processes 

•  What does configure do? 
•  Setup compile and link flags 

•  Debug vs Optimized 
•  Set library paths 
•  Set install directory 
•  Make sure compiler exists and can compile up to your standard 
•  Create makefiles 
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Compiling with MPI 

•  Will need at least two modules 
•  Load compiler and then MPI (in this order) 
•  Example: module load gcc openmpi!

•  Use compiler wrapper to build 
•  Same wrapper used for many compiler vendors: GCC, Intel, PGI, ... 
•  Links to MPI libraries 
•  OpenMPI wrappers 

•  mpicc  for C 
•  mpicxx  for C++ 
•  mpifort  for Fortran 
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Compiler Wrappers are not Magic 

$ mpicc --showme!
gcc !
-I/usr/projects/hpcsoft/toss2/moonlight/openmpi/1.10.5-gcc-5.3.0/include/
openmpi/opal/mca/hwloc/hwloc191/hwloc/include !
-I/usr/projects/hpcsoft/toss2/moonlight/openmpi/1.10.5-gcc-5.3.0/include/
openmpi/opal/mca/event/libevent2021/libevent !
-I/usr/projects/hpcsoft/toss2/moonlight/openmpi/1.10.5-gcc-5.3.0/include/
openmpi/opal/mca/event/libevent2021/libevent/include !
-I/usr/projects/hpcsoft/toss2/moonlight/openmpi/1.10.5-gcc-5.3.0/include !
-I/usr/projects/hpcsoft/toss2/moonlight/openmpi/1.10.5-gcc-5.3.0/include/
openmpi !
-pthread !
-Wl,-rpath -Wl,/usr/projects/hpcsoft/toss2/moonlight/openmpi/1.10.5-
gcc-5.3.0/lib !
-L/usr/projects/hpcsoft/toss2/moonlight/openmpi/1.10.5-gcc-5.3.0/lib -lmpi!

!
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Pinning Ranks 

•  Depending on setup: MPI processes can float between cores 

•  Some applications get better performance if ranks are ‘pinned’ to a 
core (or socket or hyperthread) 
•  Pinning means the process (rank) doesn’t change cores 
•  Use: on core resources don’t need to move such as cached data 

•  The following examples are run on: 
•  2 sockets 
•  18 cores per socket 



Los Alamos National Laboratory 

2/9/16   |   16 

Pinning Ranks 

$ srun --cpu_bind=verbose -n 4 ./hello.x!
cpu_bind=MASK - sn089, task  1  1 [45589]: mask 0xfffffffff set !
cpu_bind=MASK - sn089, task  2  2 [45590]: mask 0xfffffffff set !
cpu_bind=MASK - sn089, task  3  3 [45591]: mask 0xfffffffff set !
cpu_bind=MASK - sn089, task  0  0 [45588]: mask 0xfffffffff set !
Rank 2 of 4 !
Rank 3 of 4 !
Rank 0 of 4 !
Rank 1 of 4 !
!

Bit mask of possible 
process placement 

 
Ranks can bind to  

any cores 
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Pinning Ranks 

$ srun --cpu_bind=verbose,cores -n 4 ./hello.x!
cpu_bind=MASK - sn089, task  0  0 [45666]: mask 0x00001 set   (Core 0) !
cpu_bind=MASK - sn089, task  1  1 [45667]: mask 0x40000 set   (Core 18) !
cpu_bind=MASK - sn089, task  2  2 [45668]: mask 0x00002 set   (Core 1) !
cpu_bind=MASK - sn089, task  3  3 [45669]: mask 0x80000 set   (Core 19) !
Rank 0 of 4 !
Rank 1 of 4 !
Rank 2 of 4 !
Rank 3 of 4 !

Bit mask of possible 
process placement 

 
Ranks bind to one core 
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Threading with OpenMP 

•  Set number of threads 
•  export OMP_NUM_THREADS=2 !

•  Bind threads to cores (if desired) 
•  export OMP_PROC_BIND=true !
•  export OMP_PLACES=cores !

•  Check OpenMP bindings 
•  export OMP_DISPLAY_ENV=VERBOSE !

•  Each rank should bind to at least OMP_NUM_THREADS cores (or 
hyperthreads) 
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MPI and OpenMP 

$ srun --cpu_bind=verbose,cores -n 4 -c 2 ./hello_omp.x!
cpu_bind=MASK - sn089, task  0  0 [45405]: mask 0x000003 set (Cores 0,1) !
cpu_bind=MASK - sn089, task  1  1 [45406]: mask 0x0c0000 set (Cores 18,19) !
cpu_bind=MASK - sn089, task  2  2 [45407]: mask 0x00000c set (Cores 2,3) !
cpu_bind=MASK - sn089, task  3  3 [45408]: mask 0x300000 set (Cores 20,21) !
!
Rank 1    Thread 0 !
Rank 1    Thread 1 !
Rank 2    Thread 0 !
Rank 2    Thread 1 !
Rank 3    Thread 0 !
Rank 3    Thread 1 !
Rank 0    Thread 0 !
Rank 0    Thread 1!

MPI process placement 
Ranks bind to two cores 

One core per OpenMP thread 
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MPI and OpenMP 

OPENMP DISPLAY ENVIRONMENT BEGIN (for rank 0) !
_OPENMP = '201307‘ !
OMP_DYNAMIC = 'FALSE‘ !
OMP_NESTED = 'FALSE‘ !
OMP_NUM_THREADS = '2‘ !
OMP_SCHEDULE = 'DYNAMIC‘ !
OMP_PROC_BIND = 'TRUE‘ !
OMP_PLACES = '{0},{1}’ !
... !
OPENMP DISPLAY ENVIRONMENT END !
!
--- OMP_PLACES for all ranks --- !
 Rank 0      Rank 1       Rank 2        Rank 3 !
'{0},{1}’   '{2},{3}’   '{18},{19}’   '{20},{21}'!

Rank 0 Thread 0 pinned to core 0 
Rank 0 Thread 1 pinned to core 1 
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The End 


