VA

.
s LonLuamos

LA-UR-17-24453

Approved for public release; distribution is unlimited.

Title:
Author(s):

Intended for:

Issued:

Compiling on Linux Clusters
Garrett, Charles Kristopher

Presentation for LANL's Parallel Computing Summer Research Internship

2017-06-02

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for

the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Los Alamos National Laboratory

Compiling on Linux Clusters

Kris Garrett

June 2017

Z
: ¥V Q@b
: | A >4
53 ' National Nuclear Security Administration
e W ST : Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Los Alamos National Laboratory

B 1sTD HNSEC

Compiling Stages

* Three stages of compiling
* Preprocessing

« Compiling to object files } Usually done in one step
 Linking

2/9/116 | 2

Los Alamos National Laboratory

B 1sTD HNSEC

Stage 1: Preprocessing

Acts only on preprocessing directives in code
 Lines that begin with #
Examples
« #include “file.h”
* Replace line with contents in file.h
« #ifdef NAME
* Only insert code if NAME is defined
- #define N 100
« Replace N with 100 everywhere below this line (string replacement)
This is a rudimentary language to change your source code
To only do preprocessing: gcc -E

2/9/116 | 3

Los Alamos National Laboratory
FE 1STD SNSEC

Stage 1: Preprocessing

 Uses
» Platform check: #ifdef _ GNUC__
* Debug version: #ifdef DEBUG
* Macros: #define MAX(a,b) ((a) > (b) ? (a) : (b))

* Include guards:
#ifndef _ FILE_H__
#define __ FILE_H__
. Code in header file ...
#endif

« Language additions with pragma:
#pragma omp parallel
#pragma ivdep

2/9/116 | 4

Los Alamos National Laboratory

B 1sTD HNSEC

Stage 2: Compiling

« Compiles each source file into an object file ending in .0
« gcc —c file.c
e Qutput: file.o
» Also calls the preprocessor

* Object files are machine code (possibly optimized)
* Missing addresses to global functions and variables

« Allows recompiling only a few files when making small changes
« Saves a lot of time for builds that take hours

2/9/116 | 5

Los Alamos National Laboratory

B 1sTD HNSEC

Stage 3: Linking

* Link together . o files to create executable
« gcc filel.o file2.0 —0 program.Xx

* This invokes the linker 1d
* You can use ld directly if you want

* You can compile and link with one command

« gcc filel.c file2.c -0 program.X
« Convenient for small programs

2/9/16 | 6

Los Alamos National Laboratory

B 1sTD HNSEC

Linking with a library

 Two library types: static and dynamic
« Static: all machine code is copied into the executable
« Name: liblibrary.a
« Dynamic: only hooks into the library are put into the executable
 When executable is run: need to know where the library is
« Name: liblibrary.so

 If dynamic link library is not in standard location: Two Options

1. Set LD_LIBRARY_PATH=<path_to_library>:$LD_LIBRARY_PATH
2. Set rpath inlink command
gcc ... -WLl,-rpath=<path_to_library>

29116 | 7

Los Alamos National Laboratory
FE 1STD SNSEC

Linking with a library

e Link command

« gcc filel.o file2.0 \
-L/path/to/library -1library —-o program.x

« —L flag: Add library path if library is not in standard location
« —1flag: link either Liblibrary.aor liblibrary.so

 Link order matters

« Library name needs to be after all source/object/library files that use the
library

« Best practice: put library after all source/object files
« gcc filel.o file2.0 —-1libl -11ib2
* Files 1 and 2 depend on libraries and lib1 depends on lib2

2/9/16 | 8

Los Alamos National Laboratory

B 1sTD HNSEC

Useful Compile Flags

* Debug
* —g (Adds source code information into executable)

* Optimize
« —02 or-03 (capital letter Oh)
« —march=... (Specify CPU architecture)

« To profile executable: enable both debug and optimize flags

2/9/116 | 9

Los Alamos National Laboratory

B 1sTD HNSEC

Useful Compile Flags

* Include directory
« —I/path/to/include (Directory to check for #1include)

« Warning flags
- -Wall —Wextra

« OpenMP

« GCC: -fopenmp
* Intel: —qopenmp

2/9/16 | 10

Los Alamos National Laboratory

B 1sTD HNSEC

Common Build Processes

« Autotools
« ./configure make make install
« Can change several options by adding parameters to configure
« May need sudo make install ifinstalling to a system directory

* cmake
« Ccmake . <change options> make make install
« Change options by
 editing CMakeCache. txt
- ccmake .

29116 | 11

Los Alamos National Laboratory

B 1sTD HNSEC

Common Build Processes

« What does configure do?
« Setup compile and link flags
* Debug vs Optimized
Set library paths
Set install directory
Make sure compiler exists and can compile up to your standard
Create makefiles

2/9/116 | 12

Los Alamos National Laboratory

B 1sTD HNSEC

Compiling with MPI

* Will need at least two modules
« Load compiler and then MPI (in this order)
 Example: module load gcc openmpi

« Use compiler wrapper to build
« Same wrapper used for many compiler vendors: GCC, Intel, PGlI, ...
* Links to MPI libraries
* OpenMPI wrappers
 mpicc for C
e mpicxx for C++
« mpifort for Fortran

2/9/116 | 13

Los Alamos National Laboratory

B 1sTD HNSEC

Compiler Wrappers are not Magic

$ mpicc ——showme

gcc
-I/usr/projects/hpcsoft/toss2/moonlight/openmpi/1.10.5-gcc-5.3.
openmpi/opal/mca/hwloc/hwlocl191/hwloc/include
-I/usr/projects/hpcsoft/toss2/moonlight/openmpi/1.10.5-gcc-5.3.
openmpi/opal/mca/event/libevent2021/libevent
-I/usr/projects/hpcsoft/toss2/moonlight/openmpi/1.10.5-gcc-5.3.
openmpi/opal/mca/event/libevent2021/1libevent/include
-I/usr/projects/hpcsoft/toss2/moonlight/openmpi/1.10.5-gcc-5.3.
-I/usr/projects/hpcsoft/toss2/moonlight/openmpi/1.10.5-gcc-5.3.
openmpi

—pthread

-W1,-rpath -W1l, /usr/projects/hpcsoft/toss2/moonlight/openmpi/1.
gcc-5.3.0/1ib
—L/usr/projects/hpcsoft/toss2/moonlight/openmpi/1.10.5-gcc-5.3.

0/include/
0/include/
0/include/

0/include
0/include/

10.5-

0/1lib -lmpi

2/9/116 | 14

Los Alamos National Laboratory

B 1sTD HNSEC

Pinning Ranks

* Depending on setup: MPI processes can float between cores

« Some applications get better performance if ranks are ‘pinned’ to a
core (or socket or hyperthread)

« Pinning means the process (rank) doesn’t change cores
 Use: on core resources don’t need to move such as cached data

* The following examples are run on:

» 2 sockets
» 18 cores per socket

2/9/116 | 15

Los Alamos National Laboratory

B 1sTD HNSEC

Pinning Ranks

./hello.x

1 [45589]: mask Oxfffffffff set
2 [45590]: mask Oxfffffffff set
3 [45591]: mask Oxfffffffff set
@ [45588]: mask Oxfffffffff set

$ srun ——cpu_bind=verbose -n 4
cpu_bind=MASK - sn@89, task 1
cpu_bind=MASK - sn@89, task 2
cpu_bind=MASK - sn@089, task 3
cpu_bind=MASK - sn@89, task 0

Rank 2 of 4 \

Rank 3 of 4

Rank @ of 4 Bit mask of possible
Rank 1 of 4 process placement

Ranks can bind to
any cores

2/9/116 | 16

Los Alamos National Laboratory

Pinning Ranks

B 1sTD HNSEC

$ srun ——cpu_bind=verbose,cores -n 4 ./hello.x

cpu_bind=MASK - sn@89, task 0 @
cpu_bind=MASK - sn@89, task 1 1
cpu_bind=MASK - sn@89, task 2 2
cpu_bind=MASK - sn@89, task 3 3
Rank @ of 4
Rank 1 of 4
Rank 2 of 4
Rank 3 of 4

[45666] :
[45667] :
[45668] :
[45669] :

mask 0x00001 set (Core 0)
mask 0x40000 set (Core 18)
mask 0x00002 set (Core 1)
mask 0x80000 set (Core 19)

\

Bit mask of possible
process placement

Ranks bind to one core

2/9116 | 17

Los Alamos National Laboratory

B 1sTD HNSEC

Threading with OpenMP

Set number of threads
« export OMP_NUM_THREADS=2

Bind threads to cores (if desired)
« export OMP_PROC_BIND=true
« export OMP_PLACES=cores

Check OpenMP bindings
« export OMP_DISPLAY_ENV=VERBOSE

Each rank should bind to at least OMP_NUM_THREADS cores (or
hyperthreads)

2/9/116 | 18

Los Alamos National Laboratory

MPI and OpenMP

B 1sTD HNSEC

$ srun ——cpu_bind=verbose,cores -n 4 -c 2 ./hello_omp.x
cpu_bind=MASK -
cpu_bind=MASK -
cpu_bind=MASK -
cpu_bind=MASK -

Rank
Rank
Rank
Rank
Rank
Rank
Rank
Rank

SO0 W W N NPRFEL B

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

sn@89, task
sn@89, task
sn@89, task
sn@89, task

P O FrRr O FPr OFrr oS

0

1
2
3

0
1
2
3

[45405]: mask 0x000003 set (Cores 0,1)
[45406]: mask 0x0c0000 set (Cores 18,19)
[45407]: mask 0x00000c set (Cores 2,3)

(

[45408] : mask 0x300000 set

\

MPI process placement
Ranks bind to two cores
One core per OpenMP thread

Cores 20,21)

2/9/116 | 19

Los Alamos National Laboratory

B 1sTD HNSEC

MPI and OpenMP

OPENMP DISPLAY ENVIRONMENT BEGIN (for rank 0)
_OPENMP = '201307°
OMP_DYNAMIC = 'FALSE®
OMP_NESTED = 'FALSE®
OMP_NUM_THREADS = '2°
OMP_SCHEDULE = 'DYNAMIC®
OMP_PROC_BIND = 'TRUE*

Rank O Thread O pinned to core 0O
OMP_PLACES = '{0},{1}’' <—

Rank O Thread 1 pinned to core 1

OPENMP DISPLAY ENVIRONMENT END
——— OMP_PLACES for all ranks —-

Rank 0 Rank 1 Rank 2 Rank 3
‘{0},{1}’ '{2},{3}’ '{18},{19}"’ '{20},{21}"

2/9/116 | 20

Los Alamos National Laboratory

The End

2/9/16 | 21

