

LA-UR-17-24390

Approved for public release; distribution is unlimited.

Title: Transplant rejection and tolerance – advancing the field through integration of computational and experimental investigation

Author(s): Raimondi, Giorgio
Wood, Kathryn
Perelson, Alan S.
Arciero, Julia C

Intended for: Editorial in Frontiers in Immunology

Issued: 2017-05-31

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

1 **Editorial: Transplant rejection and tolerance – advancing the field**
2 **through integration of computational and experimental**
3 **investigation**

4
5 Giorgio Raimondi^{1,*}, Kathryn Wood², Alan Perelson³, and Julia C. Arciero^{4,*}
6

7 ¹ Vascularized and Composite Allotransplantation Laboratory, Department of Plastic and
8 Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA

9 ² University of Oxford, Oxford, United Kingdom

10 ³ Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos,
11 NM, USA

12 ⁴ Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis,
13 Indianapolis, IN, USA

14

15

16 *Correspondence:

17 Dr. Julia Arciero

18 jarciero@iupui.edu

19

20 Dr. Giorgio Raimondi

21 g.raimondi@jhmi.edu

22

23

24

25

26

27

28

29

30

31 Seventy years after the first proof of concept that the immune system can be trained to accept
32 transplanted tissues via induction of immune tolerance, we are still waiting for a clinical
33 approach that could be used routinely in transplant patients. Transplantation is a life-saving
34 surgical procedure that is still only successful when paired with life-long administration of
35 immunosuppressive drugs. However, the debilitating side effects of the long-term use of these
36 drugs, together with their incomplete control of the immune system, compromise the quality of
37 life and survival of transplant recipients. Thus, there is a strong push to find new therapeutic
38 strategies that promote indefinite acceptance of a transplanted tissue without compromising the
39 effectiveness of the patient's immune system. Although many exciting ideas have been explored,
40 none of the resulting strategies have been successfully converted into a widely applicable
41 therapeutic approach.

42
43 Our knowledge of the complex immunological processes leading to transplant rejection
44 continues to grow, and our understanding of the limitations associated with experimental models
45 deepens. There is a great opportunity to foster a different approach to identify novel
46 interventions. New tools of genomics, proteomics, and metabolomics are being implemented in
47 powerful analyses that promise the development of better and safer personalized treatments. In
48 parallel, theoretical modeling is slowly but progressively being welcomed among
49 experimentalists due to its ability to unravel relevant mechanisms of complex systems and
50 generate new hypotheses (1). The successful employment of these promising tools requires
51 effective communication and collaboration among immunologists, data-driven modelers, and
52 system biologists.

53
54 This Research Topic provides a venue for stimulating these interdisciplinary conversations in the
55 context of transplantation. The articles collected under this Research Topic introduce new
56 theoretical and experimental studies that describe novel techniques and methods for
57 understanding the interactions between the immune response and transplants and for establishing
58 more effective strategies of diagnosis and intervention that will promote transplant tolerance.
59 The contributions of this Research Topic can be divided into two main groups according to the
60 approaches they implement: (i) big data and bioinformatics and (ii) mechanistic and equation-
61 based models of rejection.

62
63 To identify correlations and sensitivities from large data sets, various statistical methods and
64 bioinformatics approaches are needed. Wang and Sarwal (2) offer a concise review of the current
65 uses and advances in statistical approaches and high-dimensional data applications for
66 identifying possible transplant biomarkers. Identifying markers of injury, causative markers, and
67 predictive markers is key for monitoring, managing patients, and identifying the re-purposing
68 potential of existing drugs. Mastoridis et al. (3) review current techniques (transcriptomic
69 technologies) and propose future ideas for identifying biomarkers predictive of tolerance in the
70 context of liver transplantation. They also explore how this knowledge could offer great insight
71 into studying tolerance to other organs. In their perspective article, Stegall and Borrows (4) argue
72 that more accurate and mechanistic mathematical models can be designed to predict (renal)
73 allograft loss or chronic injury, but they note that this will require access to more detailed
74 molecular, histologic, and serologic data. Mechanistic studies conducted in parallel to focused

75 clinical trials also would be tremendously useful for understanding why grafts fail and for
76 designing tailored intervention.

77 Several statistical methods are applied to transplant data in articles of this collection to identify
78 key biomarkers. Pike et al. (5) used principle component analysis and other tools to analyze a
79 large set of T cell immunophenotyping data before and after renal transplantation. They
80 discovered that pre-transplant frequency of **programmed** death 1 (PD-1) expressing T cell subsets
81 stratifies patients at risk of developing rejection episodes. In a study of kidney transplants,
82 Kadota et al. (6) used various statistical algorithms to analyze the transcriptome of allograft
83 biopsies and showed that histological classification of T cell mediated rejection contains multiple
84 subtypes of rejection amenable to more personalized treatments. When studying the
85 inflammatory response associated with ischemic injury, Starzl et al. (7) combined principal
86 component analysis and a regression approach to discover a cytokine-based signature to define
87 the type and severity of the inflammatory response.
88

Deleted: protein

89 In transplant modeling, identifying the key players and interactions between transplants and the
90 immune system is critical to understanding the pathway to rejection or tolerance. An agent-based
91 model presented by An (8) provides a dynamic and mechanistic understanding of transplant
92 immunology so that control strategies to induce tolerance can be built. Arciero et al. (9) provide
93 one of the first comprehensive mathematical models of mouse heart transplant rejection. This
94 ordinary differential equation-based model tracks innate and adaptive immunity and provides
95 important suggestions of new investigations to improve the understanding of rejection. Day et al.
96 (10) present an ordinary differential equation model focused on the inflammatory response to
97 surgical and ischemia/reperfusion injury. The model predicts specific conditions that lead to
98 tolerance and others that lead to an exaggerated rejection response. Best et al. (11) use a
99 computational model of T cell repertoire development to examine self/non-self discrimination
100 when incorporating features of cross-reactivity and T cell cooperativity. The resulting dynamic
101 state of tolerance suggests specific opportunities for therapeutic intervention to achieve long-
102 term tolerance.
103

104 Overall, all of the contributions to this Research Topic highlight the still largely untapped
105 potential of integrating data-driven and mechanistic modeling into the “ordinary” experimental
106 scientific approach to address key questions of transplant immunology in academic settings. As
107 noted at a recent workshop of computational and experimental immunologists convened by the
108 NIAID (12), there is still a broad divergence among researchers on how to approach fundamental
109 immunological questions. This separation between modelers and experimentalists is even deeper
110 in transplant immunology. However, all researchers share the common goal of improving the life
111 of transplanted patients by understanding how to predict the behavior of immunological
112 responses underlying graft rejection and failure. Despite the continuous growth of technological
113 advances, it is still difficult to predict how a certain molecular or cellular intervention will affect
114 the behavior of the entire system over time. This could be achieved, however, by properly
115 integrating experimentation, data-driven modeling, and mechanistic modeling to test non-
116 intuitive conditions impractical to explore using experimentation alone. The close collaboration
117

119 between experimentalists and modelers necessary to reach this result requires a novel component
120 of formal training of each part that will lead to productive communication and work integration.
121 This Research Topic encourages the research community to embrace and implement this
122 approach and witness exciting new discoveries that will ultimately benefit the patient population.

123

124

125

126 **References**

127

128 1. Germain RN, Meier-Schellersheim M, Nita-Lazar A, Fraser ID. Systems Biology in Immunology: A
129 Computational Modeling Perspective. *Annu Rev Immunol* (2010). PubMed PMID: 21219182.

130 2. Wang A, Sarwal MM. Computational Models for Transplant Biomarker Discovery. *Front Immunol*
131 (2015) 6:458. doi: 10.3389/fimmu.2015.00458. PubMed PMID: 26441963; PubMed Central PMCID:
132 PMC4561798.

133 3. Mastoridis S, Martinez-Llordella M, Sanchez-Fueyo A. Emergent Transcriptomic Technologies
134 and Their Role in the Discovery of Biomarkers of Liver Transplant Tolerance. *Front Immunol* (2015)
135 6:304. doi: 10.3389/fimmu.2015.00304. PubMed PMID: 26157438; PubMed Central PMCID:
136 PMC4476276.

137 4. Stegall MD, Borrows R. Computational Biology: Modeling Chronic Renal Allograft Injury. *Front*
138 *Immunol* (2015) 6:385. doi: 10.3389/fimmu.2015.00385. PubMed PMID: 26284070; PubMed Central
139 PMCID: PMC4522871.

140 5. Pike R, Thomas N, Workman S, Ambrose L, Guzman D, Sivakumaran S, et al. PD1-Expressing T
141 Cell Subsets Modify the Rejection Risk in Renal Transplant Patients. *Front Immunol* (2016) 7:126. doi:
142 10.3389/fimmu.2016.00126. PubMed PMID: 27148254; PubMed Central PMCID: PMC4827377.

143 6. Kadota PO, Hajjiri Z, Finn PW, Perkins DL. Precision Subtypes of T Cell-Mediated Rejection
144 Identified by Molecular Profiles. *Front Immunol* (2015) 6:536. doi: 10.3389/fimmu.2015.00536. PubMed
145 PMID: 26594210; PubMed Central PMCID: PMC4635852.

146 7. Starzl R, Wolfram D, Zamora R, Jefferson B, Barclay D, Ho C, et al. Cardiac Arrest Disrupts
147 Caspase-1 and Patterns of Inflammatory Mediators Differently in Skin and Muscle Following Localized
148 Tissue Injury in Rats: Insights from Data-Driven Modeling. *Front Immunol* (2015) 6:587. doi:
149 10.3389/fimmu.2015.00587. PubMed PMID: 26635801; PubMed Central PMCID: PMC4653302.

150 8. An G. Introduction of a Framework for Dynamic Knowledge Representation of the Control
151 Structure of Transplant Immunology: Employing the Power of Abstraction with a Solid Organ Transplant
152 Agent-Based Model. *Front Immunol* (2015) 6:561. doi: 10.3389/fimmu.2015.00561. PubMed PMID:
153 26594211; PubMed Central PMCID: PMC4635853.

154 9. Arciero JC, Maturo A, Arun A, Oh BC, Brandacher G, Raimondi G. Combining Theoretical and
155 Experimental Techniques to Study Murine Heart Transplant Rejection. *Front Immunol* (2016) 7:448. doi:
156 10.3389/fimmu.2016.00448. PubMed PMID: 27872621; PubMed Central PMCID: PMC5097940.

157 10. Day JD, Metes DM, Vodovotz Y. Mathematical Modeling of Early Cellular Innate and Adaptive
158 Immune Responses to Ischemia/Reperfusion Injury and Solid Organ Allograft Transplantation. *Front Immunol*
159 (2015) 6:484. doi: 10.3389/fimmu.2015.00484. PubMed PMID: 26441988; PubMed Central PMCID:
160 PMC4585194.

161 11. Best K, Chain B, Watkins C. Immune Tolerance Maintained by Cooperative Interactions between
162 T Cells and Antigen Presenting Cells Shapes a Diverse TCR Repertoire. *Front Immunol* (2015) 6:360. doi:
163 10.3389/fimmu.2015.00360. PubMed PMID: 26300880; PubMed Central PMCID: PMC4528093.

164 12. Vodovotz Y, Xia A, Read EL, Bassaganya-Riera J, Hafler DA, Sontag E, et al. Solving Immunology?
165 *Trends Immunol* (2017) 38(2):116-27. doi: 10.1016/j.it.2016.11.006. PubMed PMID: 27986392.

166

167