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1. Introduction

During irradiation of nuclear fuel in the reactor, various isotop
of the noble gases xenon and krypton are directly created inside the
fuel grains by fission, but may also originate from decay procg§sc
Fission gas atoms can diffuse to the grain boundaries where t @
cipitate into inter-granular bubbles contributing to fuel swe
fraction of the gas that reaches the grain boundaries can evg

granular bubbles [1-6].
Hence, the ﬁrst and basic step of fission gas relea

modelling of this process is a fundamental comp
gas behaviour model in a fuel performance
port to the grain boundaries occurs by t
hanced diffusion of single gas atoms, coup
radiation-induced resolution from intr:
of intra-granular bubbles becomes rele
above ~1800 °C [2,7]. Thus, modelk

1gh temperatures,
ular fission gas re-

ion of the parameters char-
ental and theoretical work
we deal with the numerical

acterizing these mechanisms,
(e.g., [2,3,8-16]). Rather, in this
problem associated with the computational solution of the equations
describing the process. Clearly, this problem has an enormous practi-
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callimportance for fission gas behaviour calculations in fuel perfor-
nce analysis.

Spéight [17] proposed a simplified mathematical description of in-
nular fission gas release. He lumped the trapping and resolu-
rates into an effective diffusion coefficient, restating the mathe-
matical problem as purely diffusive. Such simplification implies the
assumption of equilibrium between trapping and resolution (quasi-
stationary approach). To the best of our knowledge, the formulation
of Speight is universally adopted for models employed in fuel perfor-
mance codes (e.g., [18-22]). In addition, the assumption of spherical
grain geometry [23] is applied. The solution of the diffusion equation
for constant conditions is well known. Nevertheless, time-varying
conditions are involved in realistic problems. Therefore, the solution
for time-varying conditions is the issue of interest for applications in
fuel performance analysis, which calls for the development of dedi-
cated numerical algorithms. Given the very high number of calls of
each local model (such as the fission gas behaviour model) in a fuel
performance code during the analysis of a detailed fuel rod irradiation
history, in addition to the requirement of suitable accuracy for the nu-
merical solution, there is a requirement of low computational cost. Of
course, the numerical solution of the diffusion equation in time-vary-
ing conditions may be obtained using a spatial discretization method
such as a finite difference scheme. However, the associated
high computational effort can make a space-discretization based solu-
tion impractical for application in fuel performance codes. Several al-
ternative algorithms that provide approximate solutions at high speed
of computation and can be used in fuel performance codes have been
developed [24-32]. In this work, we propose a new numerical algo-
rithm for the accurate and fast solution of the diffusion equation in
time-varying conditions, which we call PolyPole-1.
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The structure of the paper is as follows. In Section 2, we discuss
the mathematical formulation of the intra-granular fission gas release
problem. In Section 3, we provide an overview of existing numerical
algorithms for the solution of the problem. In Section 4, we describe
the concept of the PolyPole-1 algorithm and provide a theoretical
comparison with other algorithms used in fuel performance codes. In
Section 5, we verify the PolyPole-1 algorithm through an extensive
numerical analysis. Also, we compare PolyPole-1 to other state-of-
the-art algorithms in terms of accuracy and computational efficiency.
Conclusions are drawn and suggestions for further development are
outlined in Section 6.

2. Mathematical problem

The problem of gas atom diffusion during trapping and resolution
can be stated mathematically with a system of partial differential
equations

% =DV2c—gc+bm+p

M — gc—bm

ot 8¢ @)
where ¢ (at. m™) is the concentration of single gas atoms dis-
solved in the lattice, m (at. m ) is the concentration of gas atoms in
intra-granular bubbles, D (m? s ") is the single gas atom diffusion co-
efficient, g (s™") is the trapping rate, b (s ') is the resolution rate, and
B (at. m > s!) is the gas production term. Intra-granular bubbles are
considered as immobile. The processes described by Eq. (1) are rep-
resented in Fig. 1.

Speight [17] solved Eq. (1) in spherical geometry, for constant
conditions (i.e., constant D, &, b, ) and with zero initial conditions
for ¢ and m. He then simplified the analytic solution assuming that,
for times of engineering interest, trapping and resolution are in equi-
librium, i.e., g¢ — bm = 0 (quasi-stationary approach). This leads to
simplification of Eq. (1) into a single diffusion equation for the tot:
concentration of gas in the grain ¢; = ¢ + m (at. m>)

dc, 5
i P+ Desr Vo,

Eq. (2) is formally identical to the diffusion equati
derived by Booth [23] for the case of diffusion of single

atoms due to the trapping and resolution effects in
bile intra-granular bubbles. Van Uffelen et a

Fig. 1. Sketch representing the main mechanisms of intra-granular fission gas release.

formulation for D to account for the contribution of Brownian bub-
ble motion while preserving the form of Eq. (2).

The analytic solution of Eq. (2) for constant conditions (constant 3

and D g) in spherical grain geometry is well known
the purpose of modelling intra-granular fission gas

¢; (a,t) = 0 with a (m) being the radius of t
initial condition ¢ (0) = ¢, are considered.
of ¢; (t) for constant conditions is obtained b

The full derivation of Eq. (3) is¥eported in the Appendix. This so-
lution is not directlyg@ppligable to realistic problems, for which time-
varying conditiong e considered. Therefore, the mathemati-
cal problem of it fission gas release of interest for fuel
sidered in the present work is

“4)

undary condition ¢, (a,t) =0 and the symmetry
¢,/ 0r]0 = 0. Eq. (4) needs to be solved numerically

Overview of numerical algorithms

computational problems of interest here, time is discretised in
ime-steps, dr (t;,.; = t; + dt), with the initial conditions known at f;
. With reference to Eq. (4), a numerical solution algorithm is defined
as (a) incremental if it determines an (average) approximate solution,
o (ti +1), given the initial condition & (ti), or (b) non-incremental
if it requires the knowledge of the entire previous history. Generally,
non-incremental algorithms require higher computer storage and
time.

As mentioned, numerical algorithms used in fuel performance
codes need to be applicable to time-varying conditions and to allow
for low computational cost. Also, these algorithms need to be verified
for accuracy as stand-alone against reference solutions. In this Sec-
tion, we therefore delineate the background of the present research
through an overview of existing numerical algorithms for the solution
of Eq. (4). Both algorithms used as reference and used in fuel perfor-
mance codes are included. In particular, we consider:

®  The ANS-5.4 algorithm [34], which has been applied as refer-
ence solution in several numerical experiments (Section 3.1.1).

e A finite difference algorithm that we developed and used as ref-
erence solution in this work (Section 3.1.2).

®  Two state-of-the-art algorithms for fuel performance codes, i.e.,
the URGAS algorithm developed in [28,29] and the FORMAS
algorithm from [26,31] (Sections 3.2.1, 3.2.2). We refer to these
methods as URGAS and FORMAS following the nomenclature
in [29]. These two algorithms are widely used in modern fuel
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performance codes (e.g., [18,20-22]) and will be compared to
our new algorithm PolyPole-1 later in this paper.

3.1. Reference algorithms

3.1.1. ANS-5.4 quasi-exact algorithm

The ANS-5.4 algorithm [34] is derived directly from the analytic
solution of the diffusion equation for constant conditions (Eq. (3)).
The main drawback of this algorithm is that it is non-incremental,
thus it requires a computational effort exponentially increasing with
the number of time steps. Nevertheless, the ANS-5.4 solution is exact
for piecewise-constant conditions. The ANS-5.4 algorithm is thus
only affected by errors due to discretization of a real operation his-
tory into piecewise-constant conditions. For this reason, it has been
used as reference solution in several numerical experiments based on
piecewise-constant operation histories [29,30,32].

3.1.2. Finite difference reference algorithm

In this work, a finite difference (FD) algorithm is developed to
provide a reference numerical solution of Eq. (4). Such reference so-
lution will be used to evaluate the accuracy of alternative algorithms
that are intended to allow for lower computational effort.

The developed FD algorithm is fully implicit first order in time
and second order in space. An adaptive time step control is included,
as illustrated in Fig. 2. The output solution is calculated with a fully
implicit scheme (backward Euler, (p?+ 1). At each time step, also the

explicit solution (forward Euler, F ) is calculated, and the absolute
Piv1

difference between the explicit and the implicit solutions is used to
obtain an estimation of the second-order error, €;4+1. The next time
step, dt; 1, is then computed based on this estimation. This time step
criterion ensures that the second-order error of the FD solution is kept
below a fixed tolerance, yp/. Details of this method can be found in
[35].

This algorithm can be applied to obtain a reference solution of Eq.
(4) (in principle, up to any tolerance) for piecewise-linear operatio
histories, for which algorithms such as ANS-5.4 are not applicable®
As further discussed in Section 4, piecewise-linear histories are
sidered in this work.

3.2. State-of-the-art algorithms used in fuel performance co,

3.2.1. URGAS algorithm

[29]. The algorithm is based on the assumption th
aged concentration at previous time step, c_t* (t[),
tious irradiation for a time ffjc ; with constan S, €q
conditions during the time-step under con eration’Then, based on

the analytic solution for constant conditions (Eq. (3)), the fictitious
time is determined by solving

N\ 2
DL

€0 = Cereated (ti) -p (ti) T 5)

In Eq. (5), &, =B (1; 5D (1;), and f, and f4 are ap-
proximations for the series with a elative error less than 6:1077 [29].

The system is solvedfbyithe Newton method. The average concentra-
e calculated as

+ oo fa (Ticis1) (©6)

.2. FORMAS algorithm
The FORMAS algorithm has been developed by Forsberg and
i , then revised by Lassmann and Benk [29] and later by
rmansonn and Massih [31]. A variant of the algorithm, which is
iewed here for brevity, considers also the resolution of gas
e grain boundaries by applying a different boundary condition
q. (4) [27].
The first step in the derivation of the FORMAS algorithm is the
coordinate transformation

Tiyl
T = / Deff (t) dr
fi )

Writing Eq. (4) in terms of 7z, and expanding it in terms of the
eigenfunctions of the Laplacian operator, for the perfect sink bound-
ary condition, one obtains

tol

Eip1 = |§0?+1 - ‘p:F+1| }44{ dtiyy ]|

B
Piv1

ot |

Fig. 2. Schematic of the adaptive time step criterion for the finite difference reference algorithm [35].
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_ _ i ’ -1 ’ ’
c(r)—4”0K< — >S(r)dr ©
where S (z/) =B (¢ (z")) /Desr (1 (")) The kernel K (x) is ap-
proximated by

I
K (x)~ ZA:‘ exp (—Bikx)
i=1 ©))

Various approximations (i.e., various sets of values for the coeffi-
cients Al{‘ and Bik ) have been proposed, considering different number

of terms, J [26,29,31,36]. Inserting the approximate kernel (Eq. (9))
into Eq. (8) and assuming .§ (T' ) = constant, one gets the incremen-

tal algorithm

_ A_f( [3612 >exp <_B,]€Deffdt)‘|
k 2
Bj Deir ¢ (10)

The FORMAS algorithm is stable and fast, and is implemented in
several fuel performance codes, e.g., FALCON [18],
TRANSURANUS [20], BISON [21], FRAPCON [22]. In the last two
instances, correction for grain-boundary resolution [27] is also con-
sidered.

4. PolyPole-1 algorithm
In this Section, we present the new numerical algorithm for t

solution of Eq. (4) in fuel performance codes, called PolyPole-1. The
objective of the PolyPole-1 development is twofold and com

(1) the obtainment of improved accuracy and similar compug
cost relative to state-of-the-art algorithms, and (2) the construc
a solution concept that is not inherently limited to the quasi
approach, but in perspective can be potentially applied
eral formulations. The importance of such a further de
been pointed out in, e.g., [7,37].

Applying a modal expansion, we write the so
solution of Eq. (4) in the form

+o0

i ()= Yz (O, ()
n=1 (11)

where z: (t) are the time coefficients an (r) are the spatial
¢ analytic solution for
(A.1)). The time coeffi-
dependency of the ap-

poles of the system). The

cients contain the information abou
proximated solution (i.e., th
spatial modes are the same of't i¢’ solution for constant condi-
tions and are the orthonormal eigenfunctions of the radial part of the
spherical Laplacian (i.e., normalized cardinal sins, with the ansatz
that they are basis for the solution). A complete derivation of the ana-
lytic solution for constant conditions is given in the Appendix.

The other fundamental assumption of the proposed method is that
the time coefficients, z: (1), may be expressed as the time coefficients
of the analytic solution for constant conditions, z, (f) (Eq. (A.10)),
multiplied by an appropriate polynomial factor. Thus, wéwrit,

Z: (ti+1) =2z, (ti+1) Py (ti+1’dt) (12)
where P is a polynomial factor of degree J
— J J
Pp=1+..+adt +..+a;dt 13)

The time dependency of the diffifsie nt and of the source
term is thus addressed by the polyn @ A To calculate the coeffi-
ations are needed. This set of equations

is obtained by sampling the tin arameters, Depy (£) and B (7),
at J uniformly distributed j @ along the time-step 4¢. The sets of
sampled values, Dg¢s [j] andi[4]. contain the information on the vari-
ation of the parameters along thetime step and are used to calculate the
corrective polynomial, as follows.
The time coeffici ed by Eq. (12) are assumed to satisty Eq.

(A.6) at the samplifig Lt <tljl <t
% REAan)
- i1z, (t[j
o |y (14)

,4j, and is used to determine the polynomial, P; (ti+1, dt). The

time coefticients of the analytic solution for constant conditions, Z,,, are
alculated through Eq. (A.10), for which the parameters f3,, and 6,, are
needed (see the Appendix). These are taken as the time averages along
the time step of the sampled values, Degg [j] and B [j]. Then, the poly-
nomial corrective factor is calculated (through Eq. (15)) and applied to
each time coefficient (through Eq. (12)). For time-varying conditions,
the accuracy of the approximated (PolyPole-1) solution increases with
the degree of the corrective polynomial, J .

The spatial modes, y,, (r), are calculated as per Eq. (A.3). The Poly-
Pole-1 solution is then reconstructed as a linear combination of the spa-
tial modes with the corrected time coefficients using Eq. (11). The se-
ries is approximated by a finite number of terms (number of modes), N.
The value of N is determined based on the D' Alembert remainder crite-
rion, bounded by an a priori limiting value, |

|Z}’<VII/N - Z}_1WN—1|

%
ZNYN (16)
To summarize, the steps of the PolyPole-1 algorithm to find the ap-
proximate solution of Eq. (4) are:

1. Sample the time-varying effective diffusion coefficient, D¢ (%),
and source term, B(z), at J sampling times #[j] along the
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time-step length ;. This gives the set of values
BLI

2. Calculate the time coefficients of the analytic solution for con-
stant conditions at each sampling time, z, (f[j]), using Eq.
(A.10) and the time averages of D, [j] and B[] along the
time step.

3. Solve the system of equations defined by Eq. (15) to obtain the
coefficients 4; of the corrective polynomial P; (ti 1 dt).

D¢ [/] and

4.  Evaluate the corrective polynomial and calculate the approxi-
mate time coefficients as zZ (tl.+1) =z, (tl.+1) Py (ti+1,dt).
5. Reconstruct the volume-averaged solution, Et* (t,- +1), using

Egs. 11, A.12. The infinite series is approximated with a finite
number of modes based on the criterion defined by Eq. (16).

The newly developed PolyPole-1 algorithm thus combines the
physical poles of the analytic solution with a corrective polynomial to
account for the time dependency of the coefficients. In short, the idea
behind the PolyPole-1 approach is that the spatial dependency of the
solution for time-varying conditions can be approximated by the spa-
tial dependency of the solution for constant conditions, which is
known analytically. The deviation from constant conditions is fully
embodied in the time-dependent part of the solution and approxi-
mated by the time coefficients of the solution for constant conditions
multiplied by an appropriate correction. Exploiting an analytic repre-
sentation of the spatial dependency avoids using spatial discretization
and is therefore expected to allow for significantly lower computa-
tional time compared to spatial discretization methods. In view of this
concept, the algorithm may be labelled as semi-analytic, as opposed
to spatial discretization methods such as FD schemes. The URGAS
and FORMAS algorithms may also be considered as semi-analytic
methods.

It is worth comparing the PolyPole-1 approach to the problem of
time-varying conditions to other semi-analytic algorithms":

e  The URGAS algorithm addresses the problem of time-varying
conditions using a single parameter, i.e., the fictitious time f¢;
(Eq. (5)).

®  The FORMAS algorithm relies on J terms to approximai
series (thus, 2 [ parameters, Eq. (9)).

e The PolyPole-1 algorithm relies on a variable number 0
meters to satisfy the condition expressed by Eq. (16)
cisely, a variable number )y of modes times a fixg @

URGAS. In particular, it is expected tha
maintain a more consistent level of acc

diffusion equation and thus the quasi- statl
of the method to the general proble
fusion during non-equilibrium trappi
cance has been discussed in, e.g.,
will be the subject of future work.
The comparison between approach of the PolyPole-1 algo-
rithm and the ANS-5.4 algorithm es further insight. As men-
tioned in Section 3.1.1, the ANS-5.4 algorithm is derived directly
from the analytic solution of the diffusion equation for constant con-
ditions. Clearly, for constant (or piecewise-constant) conditions, the
corrective polynomial is identically Py = 1, and the PolyPole-1 solu-
tion (Eq. (11)) reduces to Eq. (A.1), hence, to the analytic solution for
constant conditions (see the Appendix). This implies that for constant

ular fission gas dif-
d resolutlon whose signifi-
principle possible and

(or piecewise-constant) conditions, the solution of the ANS-5.4 algo-
rithm and of the PolyPole-1 algorithm are both exact and equal,
within the approximations in representing infinite series,with a finite
number of terms. Minor differences arising from specific approxima-
tions of the series can always be removed by setti
remainder limiting value in Eq. (16). As mentioned 1
the ANS-5.4 algorithm has been used as a referg

e ANS-5.4

that the ANS-5.4 algorithm cannot be
verifying the accuracy of PolyPole

PolyPole-1 through a nu-
ise-linear operation histories.

5. Verification
In this Section

verify the PolyPale
PolyPole-1 soluti

THe considered operation histories are in terms of temperature and

n rate, from which the time-dependent parameters of Eq. (4),

i.e., Dogp (1) and B (1), are calculated* and applied to the numerical al-

orithms by the program. The figure of merit for testing and compar-

ing the algorithms is the fractional intra-granular fission gas release at
the end of the considered operation history, defined as

- C_t (tend)

Cereated (tend) a7

C_createa' (t end)

fi=

where €,,p00q (at. m) is the concentration of gas created (i.c.,
the time integral of § ()) and f.pq () is the final time of the operation
history. The randomly generated operation histories have the follow-

1 Among the various versions of the FORMAS algorithm, we use the FORMAS
algorithm with four exponential terms from [31].

2 For this numerical experiment, we consider a second-order corrective
polynomial (Eq. (13)) and a limiting value of 1077 for the D'Alembert remainder
(Eq. (16)).

3 For this numerical experiment, we set the tolerance of the FD algorithm to 107
(Section 3.1.2).

4 The temperature and fission rate dependent diffusion coefficient from [11] is
used as Degp (7). B (¢) is calculated as the fission rate times the yield of fission
gas atoms (~0.3). For the purpose of this numerical experiment, as long as
dependencies are realistic, the specific choices are arbitrary.
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ing characteristics:

®  Each individual history is piecewise-linear with varying tem-
perature and fission rate.

e In each individual history, the following quantities are consid-
ered as random variables (sampled from uniform distributions):

- number of linear steps (1-11);

- time duration of each linear step (0-100 h);

- temperature (500-2000 K);

- fission rate (0-3-10" fissm > s ).

With these principles, the numerical experiment approximately
covers the whole range of intra-granular fission gas release
(0 <f<1). This is demonstrated in Section 5.2.

For calculations with URGAS, FORMAS, PolyPole-1, each linear
step is subdivided into 100 time steps. For the FD calculations, the
adaptive time step control described in Section 3.1.2 is used (along
with a lower bound of 10 time steps per linear step). The spatial 1D
mesh for the FD algorithm is comprised of 500 points along the grain
radius, concentrated towards the grain boundary (where steeper gas
concentration gradients are expected) according to a fourth power
law.

5.2. Results and discussion

The results of the numerical experiment are presented in Figs. 3-5

for the URGAS, FORMAS, and PolyPole-1 algorithms. Each data
point in these figures corresponds to one of 1000 randomly generated
operation histories and represents the intra-granular fission gas re-
lease (Eq. (17)) obtained by the considered semi-analytic algorithm
versus the reference FD algorithm. The deviation from the 45° line is
a measure of the accuracy. Results of the numerical experiment indi-
cate that all the three semi-analytic algorithms may be considered as
sufficient to be used in a fuel performance code, also in view of the
uncertainties involved in the modelling of intra-granular fission gas
diffusion [29,38].

To investigate in finer detail the accuracy of the three semi-ana-
lytic algorithms, in Fig. 6 we show the relative error of the solufior
obtained with each algorithm with respect to the FD referen @
tion. The efficiency and accuracy of the URGAS and FORMA 9

rithms were previously analysed by Lassmann and B
1.0

e
0.8
1]
@ o6
g
e
2 04
SN
0.2
0.0

0.0 0.2 0.4 0.6 0.8 1.0
f, finite difference

Fia 2 Camnarican hatwean tha valnace af intra_arannlar ficcinn aac ralaaca calenlatad

1.0 p

0.8

e
o)}

f, FORMAS
o
.

o
(N}
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Fig. 4. Comparison between the val intra-granular fission gas release calculated
by the FORMAS algorithm and by the re ce finite difference algorithm. Each data

point corresponds to a Wh randomly generated conditions.

1.0 p

0.8

0.6

0.4

f, PolyPole-1

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

f, finite difference

Fig. 5. Comparison between the values of intra-granular fission gas release calculated
by the PolyPole-1 algorithm and by the reference finite difference algorithm. Each data
point corresponds to a calculation with randomly generated conditions.

though a more recent version of FORMAS is considered here, the re-
sults in Fig. 6 are consistent with the conclusions of Lassmann and
Benk [29] that (i) the FORMAS algorithm is superior to the URGAS
algorithm at fission gas release above /= 0.05, and (ii) the FORMAS
algorithm presents a deficiency for low values of f, which is ascribed
to an approximation (i.e., Eq. (9)) involved in the method. Although
both algorithms were evaluated as sufficient to be used in a fuel per-
formance code, drawbacks were attributed to each of them in line
with the conclusions above. Choice of one of the two algorithms
based on the specific application was recommended.

The results in Fig. 6 indicate that the PolyPole-1 algorithm repre-
sents a significant path forward in this respect. First, it is evident that
the overall accuracy of PolyPole-1 is vastly superior to both FOR-
MAS and URGAS. This is in agreement with the theoretical consid-
erations made in Section 4. Indeed, the accuracy of the FORMAS al-

gorithm may be improved by an increase in the number of parameters
11 A1 Wawavar tha anciransy af tha DaluDala 1 alaarithm can alona



Journal of Nuclear Materials xxx (2016) xxx-xxx 7

1)

=]

-

(]

o

=

=]

L.

(]

& 0.1 % - URGAS
¥y * FORMAS
. * PolyPole-1

-0.2

0.0 0.2 0.4 0.6 0.8 1.0
Intra-granular fission gas release, f

Fig. 6. Comparison between the URGAS, FORMAS and PolyPole-1 algorithms in
terms of relative error with respect to the reference finite difference algorithm. Each
data point corresponds to a calculation with randomly generated conditions.

be further improved by increasing the order of the polynomial correc-
tive term (Eq. (13)) and/or by decreasing the limiting value for the
approximation of the series (Eq. (16)). Furthermore, PolyPole-1 over-
comes the deficiency at low FGR that characterizes the FORMAS al-
gorithm. Remarkably, the relative error associated with PolyPole-1 is
highly consistent over the whole range of intra-granular fission gas
release. This also confirms practically the theoretical considerations
made in Section 4 on the inherent capability of PolyPole-1 to allow
for a more consistent level of accuracy over different conditions
through automatic adaptation of the number of considered series
terms.

Besides accuracy, speed of computation is an essential feature for
an algorithm to be effectively employed in a fuel performance code.
The computational time (i.e., the time took for the analysis of a singl
operation history) for the three semi-analytic algorithms and all hist
ries considered in the numerical experiment is illustrated in Fig
PolyPole-1 requires a computational time similar to the othe:
rithms, which are successfully used in fuel performance code
efficiency of computation, combined with the demonstrated acc
makes PolyPole-1 suitable for implementation in any
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Fig. 7. Comparison between the computational times associated with the finite differ-
ence, URGAS, FORMAS and PolyPole-1 algorithms. Each data point corresponds to a

O T

mance code. The computational time for the finite difference solution
is also shown. Clearly, if a spatial discretization method such as a FD
method is used to solve the intra-granular fission gas relgase problem
in a fuel performance code, the associated higher computational time
can result in significantly decreased speed of comp
rod analysis, even with modern computational resou
lights the value of developing numerical algorith
faster computation while preserving accuracy, $

6. Conclusions and perspectives

as developed for
lar fission gas re-
was aimed at ob-
taining an accurate solution at lo
in fuel performance codes.

body the information on the devi-
This semi-analytic concept is in-

ithm was verified by comparing the re-
erence solution for a large number of

PolyPole-1
used in m

d'to two state-of-the-art algorithms widely
ormance codes, i.e., the URGAS [29] and
s. Results demonstrated that:

J e computational time associated with PolyPole-1 is similar to
otherf@lgorithms.
Diffefently from other algorithms, the accuracy of the Poly-
solution is highly consistent over the whole range of in-
tra-granular fission gas release.

nce, PolyPole-1 offers a more accurate solution than currently

algorithms, with no significant increase in computational time.
n addition, PolyPole-1 features a more flexible strategy for both the
time and the space approximations. In particular, the PolyPole-1 con-
cept involves automatic adaptation of the number of considered para-
meters at each time step in order to satisfy a remainder criterion,
which allows for the observed consistency of the solution accuracy
over widely different conditions.

The PolyPole-1 algorithm can be implemented in any fuel perfor-
mance code. PolyPole-1 is being implemented in the fuel perfor-
mance code BISON [21] of Idaho National Laboratory (INL, USA).

For this work, we considered the mathematical formulation of the
intra-granular fission gas release problem based on the hypothesis of
equilibrium between bubble trapping and resolution (quasi-stationary
approach) [17]. This formulation reduces the problem to a single dif-
fusion equation and is the one considered for models incorporated in
fuel performance codes. However, some inherent deficiencies are as-
sociated with Speight's formulation, as the quasi-stationary assump-
tion does not hold during situations such as rapid temperature tran-
sients. Indeed, the solution of the single diffusion equation is consid-
ered as a first step of the development of the new algorithm. The con-
cept of PolyPole-1 may be extended to the solution of the general
problem of intra-granular fission gas diffusion during non-equilib-
rium trapping and resolution. Furthermore, a similar numerical ap-
proach may be applied to other problems of interest. Significant ex-
amples may be the modelling of intra-granular helium release (which
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fuels in fast reactors (for which the approach would be extended to
cylindrical coordinates).

Besides the numerical problem, calculations of intra-granular fis-
sion gas release involve the physical problem of characterizing the in-
tra-granular bubble population, in order to determine the values of the
parameters in Eqs. (1)—(4) [3,8,17]. Clearly, a physical model for
bubble evolution would need to be validated against experimental
data along with the overall fission gas behaviour model to demon-
strate the fidelity of calculations to reality, with the prerequisite that
the numerical solution is accurate. While the present paper focused
only on the numerical problem, the development of a new physical
model for intra-granular bubble evolution is also of interest in per-
spective. This would be combined with an algorithm providing nu-
merical solution of the diffusion problem (such as PolyPole-1 or an
extended one) to further improve modelling of intra-granular fission
gas release, as well as the coupled intra-granular bubble swelling, in
fuel performance calculations.

These further developments will be the subject of future work.
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Appendix

Analytic solution of the effective diffusion equatio t
conditions

Hereinafter, the well-known analytic
equation for constant conditions, Eq. (2), i
{3, and the effective diffusion coefficie
stant in time and uniform in space.

First, the total concentration of
¢4, 1s written as a linear combination

s per unit volume,
atial modes

+00
¢ () =Yz Oy (1)
Je=1 (A.1)

where r is the spatial coordinate in the grain, ¢ is the time, y; (r)
are the spatial modes, and z;, () are the time coefficients (in the fol-
lowing, the dependences on f and r are omitted). Substituting Eq.
(A.1) into Eq. (2) and using Einstein notation (i.e., implicitly sum-

ming over repeated indices) leads to

02 B+ z;Dypr V2
—_— = z
Vi ot kPeff V Wik (A2)
From now on, the hypothesis of spherical g with r
representing the radial position and a being adius. The

spatial modes are chosen as the eigenfunctions
cian [17], considering the Dirichlet boundary conditi
and the symmetry condition at the centre

. Thus

1 sindgr

2ra (A3)
with the eigenvalues

2.2
z_kﬂ,’
A=

a2

and the ansatz tha

(A.5)

(A.6)
B, = (W,lB). and §, = Dy (n?z%) /a*. Eq. (A.6) is a lin-

ar first order ordinary differential equation in time. Projecting initial
conditions ¢, (r,0) = ¢ on the spatial modes

zO,n = <Wn |c_0>

(A7)
and Laplace-transforming, & (-), Eq. (A.6), one obtains
Bn
sZ,—29,=——0,Z
n 0,n P n“n (A8)
where Z, = & (zn). Eq. (A.8) is solved for
_ S ZO,n + ﬁn
s (s + 6,,) (A.9)
The inverse transform of Eq. (A.9) is
o
z, (1) = % [1 - <1 - zo,,,ﬁ—"> exp (—5nt)]
" " (A.10)
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Note that in Eq. (A.10), the term 3, /8, is the asymptotic solution [11]

of the time coefficient, and that 6, is the pole governing the time-

evolution of the mode. Combining Egs. A.1, A.3 and A.10, the solu- [12]
tion ¢, (r, f) results
[13]
+o0
14
¢ (r,t)= Zznwn (14]
n=1 [15]
Q1 sinTTp, [1
- T . 5 16
i\ 2za T O el
o,
- (1 Zon, )e"p( )]
n (A.11) (7]
which is the solution in spherical geometry of the diffusion equa- [18]
tion for constant conditions. Eq. (A.11) can be written in terms of the
volume average of the fission gas atom concentration inside a spheri-
cal grain, namely (9]
a [20]
/ 47rr26, (r,t)dr
= 0
G (= - 4 5 [21]
374 (A.12)
.. [22]
Combining Eqgs. A.11 and A.12 leads to
0=c +Z°«'; 1 ( n2 12Dyt 23]
ct)=cy— ) —=exp| ————
t 0 77,'2 =~ n2 p (12

b [ _0§ 1
7[4n=1n4

n n2ﬂ2Defft >
P — _ [25
15 Def f a? (
6]
which is the spatially-averaged solution in spherical geomet
the diffusion equation for constant conditions. ]
[29]
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