

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Characterization of a novel, ubiquitous fungal endophyte from the rhizosphere and root endosphere of *Populus* trees

Jessica M. Vélez^{1*}, Timothy J. Tschaplinski¹, Rytas Vilgalys², Christopher W. Schadt¹, Gregory Bonito^{2,3},
Khalid Hameed², Nancy Engle¹, Cyd E. Hamilton^{1,4*§}

¹ Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA,

² Department of Biology, Duke University, Durham, NC 27708, USA

³ Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
USA

⁴ Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN. 37996

* These authors contributed equally to this work

§Corresponding Author (email: cehdoework@gmail.com, Phone: 865 574 9046, Fax: 865 574 5353)

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (<http://energy.gov/downloads/doe-public-access-plan>).

1 **1 Abstract**

2 We examined variation in growth rate, patterns of nitrogen utilization, and competitive interactions of
3 *Atractiella* sp. isolated from the roots of *Populus* hosts. *Atractiella* grew significantly faster on media
4 substituted with inorganic nitrogen sources and slower in the presence of another fungal genus. To
5 determine plausible causal mechanisms we used metabolomics to explore competitive interactions
6 between *Atractiella* strains and *Fusarium oxysporum* or *Leptosphaerulina chartarum*. Metabolomic
7 screening of potential microbial inhibitors showed increased levels of glycosides produced *in vitro* by
8 *Atractiella* when grown with a different fungal genus, relative to when grown alone. Cumulatively, these
9 results suggest *Atractiella* is a poor competitor with other fungi via direct routes e.g. faster growth rates,
10 but may utilize chemical interactions and possibly nitrogen sources to defend itself, and niche partition its
11 way to abundance in the plant host root and rhizosphere.

12 **Key Words**

13 *Atractiella*, fungal endophytes, competition, metabolomics, organic and inorganic nitrogen, symbiosis,
14 pathogen, mutualist

15 **Introduction**

16 The microbiome associated with the rhizosphere of any given plant species is highly diverse and includes
17 at least some microbial species capable of spanning the symbiotic spectrum from antagonist to mutualist.
18 Plant-fungal interactions are well-documented as complex, with many fungal species demonstrating the
19 capability of shifting from plant mutualists to antagonists based on environmental context (Craven et al.
20 2001, Wicklow et al. 2005, Hartmann et al. 2008, Peay et al. 2008, Hamilton et al. 2009, Rodriguez et al.
21 2009, Hamilton et al. 2010, Kennedy et al. 2011, Wyrebek et al. 2011, Davidson et al. 2012, Hamilton
22 and Bauerle 2012, Hamilton et al. 2012, Bonito et al. 2014). The ability of a fungal endophyte to regulate
23 facets of the plant's microbiome, and therefore impact the plant host phenotype, has not been explored.
24 *In vitro* competitive experiments between fungal endophytes are a means of determining plausible
25 mechanisms by which interactions may occur and possibly impact plant-fungal symbiotic outcome. For
26 example, a slow-growing fungal endophyte or one with reduced competitive capabilities may be

1
2
3
4 27 overwhelmed by a faster growing species when competing for space and nutrient availability within
5
6 28 limited host niche space (Garrett 1951, Arora and Upadhyay 1978, Bennett and Lynch 1981, Whipps
7
8 29 2001, Bais et al. 2006, Jones et al. 2009, Taylor et al. 2014). The plant host is also capable of expressing
9
10 30 selective preference by favoring specific fungal species, thus influencing the microbiome diversity
11
12 31 present in the rhizosphere and plant roots (Grayston et al. 1998, Raynaud et al. 2008, Saunders and Kohn
13
14 32 2008, Gottel et al. 2011, Hafidh et al. 2011).

17 33 The order *Atractiellales* is housed in the Pucciniomycotina and consists of three families, ten
18
19 34 genera, and 34 species identified to date (Oberwinkler and Bandoni 1982, Aime et al. 2006, Bauer et al.
20
21 35 2006, Kottke et al. 2010). Our recent studies have identified several *Atractiella* strains as prominent root
22
23 36 endophytes of *Populus* and other woody plants sampled from across a broad geographic range, including
24
25 37 from studies of Eastern Cottonwood (*P. deltoides*) in Tennessee and North Carolina, and Black
26
27 38 Cottonwood (*P. trichocarpa*) in Oregon and California (Gottel et al. 2011, Shakya et al. 2013, Bonito et
28
29 39 al. 2014). *Atractiella* species also appear to be enriched within the root endosphere compartment, as
30
31 40 compared to the surrounding rhizosphere. Though the Atractiellomycetes have been placed
32
33 41 phylogenetically within the Pucciniomycotina, an order containing many rust fungi (Kottke et al. 2010),
34
35 42 little is currently known about their ecology, and the limited evidence to date suggests these fungi may
36
37 43 have variable life history strategies (Oberwinkler and Bandoni 1982, Oberwinkler 1989, Kottke et al.
38
39 44 2010, Avila-Diaz et al. 2013). For example, species of *Atractiellales* were first isolated from
40
41 45 decomposing matter such as decaying potatoes (Oberwinkler and Bandoni 1982), suggesting a
42
43 46 saprophytic life-strategy. More recently, a potential mycorrhizal-like role has been observed between
44
45 47 Atractiellomycetes and orchids (Kottke et al. 2010, Avila-Diaz et al. 2013). This supports research
48
49 48 showing multiple fungal genera in fungal-plant interactions are variable and dynamic in terms of the life-
50
51 49 strategy employed (Hamilton and Bauerle 2012, Hamilton et al. 2012). This is illustrated by organisms in
52
53 50 the *Fusarium oxysporum* complex as well as the *Epichloë/Neotyphodium* complex (Craven et al. 2001,
54
55 51 Clay and Schardl 2002). *Fusarium oxysporum* have been shown to reduce tomato plant damage caused
56
57 52 by the pathogenic fungus *Meloidogyne incognita* (El-Fattah Adnan Dababat and Sikora 2007), but also

1
2
3
4 53 serve as mutualistic endophytes to banana plants (Mendoza and Sikora 2009). Other *F. oxysporum* are
5 known to be pathogenic to members of numerous plant families, such as the Malvaceae, Solanaceae, and
6
7 54 Fabaceae (Windels 1991, Kistler 1997). *Epichloë* foliar endophytes can range from mutualistic to
8 pathogenic depending upon the clade (Craven et al. 2001) as well as in response to host species colonized.
9
10 55 They can also change life-strategy in response to as yet unknown triggers, within the same symbiotum
11 56 (Clay and Schardl 2002). Thus, there is a precedent in the literature supporting both mutualistic as well as
12 57 pathogenic roles for a fungal species (Veldre et al. 2013), in this case *Atractiellales*, to be both closely
13 58 related to a pathogenic order, Pucciniomycotina, and to show diverse symbiotic outcomes. The impact of
14 59 competition between species within the rhizosphere must also be explored, as competitors may influence
15 60 growth via metabolite secretions (Whipps 2001, Demirci et al. 2011). Two or more species may naturally
16 61 segregate to occupy separate and distinct niches which they are adapted to, decreasing competitive
17 62 interactions with each other (Elton 1946, Hutchinson 1957, Leibold 1995, Al-Naimi et al. 2005, Neubert
18 63 et al. 2006).
19
20 64
21 65

22 66 Limited resource availability may drive speciation and in turn alter observable species-species
23 67 interactions (Hutchinson 1959, Connell 1981, Leavitt et al. 2013, Winkelmann et al. 2014). The
24 68 efficiency and type of nitrogen (N) used by fungi can be important for several reasons including: (1)
25 69 agricultural production (Reynolds et al. 2005, Jones et al. 2009, Hamilton et al. 2016), (2) understanding
26 70 how resource utilization impacts plant-microbial interactions (Bais et al. 2006, Harrison et al. 2007,
27 71 Raynaud et al. 2008, Johnson et al. 2010, Kennedy et al. 2011), and (3) increasing our understanding of
28 72 how microbial members of the plant microbiome interact via resource utilization (Porter and Carter 1938,
29 73 Bais et al. 2006, Raynaud et al. 2008, Kennedy et al. 2011, Engelmoer et al. 2014). To better understand
30 74 rhizosphere community dynamics, both the nitrogen used and the efficiency with which it is used by fungi
31 75 can be important. For example, the effects of inorganic or organic N sources on the growth of various
32 76 fungi have been repeatedly studied (Baar et al. 1997, Baar and Stanton 2000, Hodge et al. 2001, Digby et
33 77 al. 2010, Whiteside et al. 2012, Taylor et al. 2014) as has the impact of organic versus inorganic N forms
34 78 on fungal species biomass (Baar et al. 1997, Baar and Stanton 2000, Hodge et al. 2001, Reynolds et al.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 79 2005, Digby et al. 2010). Hawkins et al. (2000) demonstrated both N transport and uptake by arbuscular
5 fungi was positively correlated with the amount of N available in the soil environment and that organic N
6
7 80 forms were preferred in *in vitro* studies.
8
9

10
11 82 Here we explore: (1) growth characteristics of a collection of *Atractiella* strains isolated from
12
13 83 *Populus deltoides* and *P. trichocarpa*, (2) N source utilization patterns in a model isolate, *Atractiella* sp.
14
15 84 (PMI 95), and (3) competitive potential of *Atractiella* against a panel of co-isolated *Populus* rhizosphere
16 fungi. In addition, we explore the potential chemical basis for competition observed from these
17
18 85 treatments via metabolomics.
19
20

21 87 **Materials and Methods**

22 88 *Fungal strain collection and characterization*

23
24 89 Twenty-three distinct strains of *Atractiella* species were isolated from trap-plants (Bonito et al. 2014)
25
26 90 grown in soils originating from under *P. trichocarpa* in a common garden experiment in Placerville,
27
28 91 California, USA (Evans et al. 2014), and wild populations of *P. deltoides* on the Yadkin River in North
29
30 92 Carolina, USA (Shakya et al. 2013). We selected a subset of *Atractiella* isolates to grow with a panel of
31
32 93 other potential competitor fungi isolated from the same *Populus* roots (Table 1). Fungal isolates were
33
34 94 obtained and maintained on Modified Melin-Norkrans (MMN) media (Marx 1969) at 20°C. The
35
36 95 *Atractiella* sp., *F. oxysporum* and *L. chartarum* isolates were verified based on sequence identity of the
37
38 96 ITS1 and ITS2 region and morphological characteristics (e.g. shape of conidia, colony color). The
39
40 97 species description, systematics and population structure of the new *Atractiella* sp. are described in
41
42 98 Bonito et al. (2016).

43 99 *Radial growth screening media preparation and experimental design*

44
45 100 Two kinds of culture media were employed to compare fungal growth rates: PDA and P5 (Kottke et al.
46
47 2010, Avila-Diaz et al. 2013) agar. The P5 agar is composed of 0.5 g l⁻¹ di-ammonium tartrate, 1 g l⁻¹
48
49 101 potassium dihydrogen phosphate, 1 g l⁻¹ magnesium sulfate heptahydrate, 5 g l⁻¹ D(+)-maltose, 20 g l⁻¹
50
51 102 D(+)-glucose, 1000 µL l⁻¹ thiamine-HCl solution at 100 mg l⁻¹, 1000 µL l⁻¹ Kanieltra stock solution, and
52
53 103 20 g l⁻¹ of agar. HIMEDIA© brand PDA mix composed of 200 g infusion from potatoes, 20 g dextrose
54
55 104
56
57
58
59
60
61
62
63
64
65

1
2
3
4 105 and 15 g agar was used to prepare media by suspending 30 g in one liter of deionized water. Cultures
5
6 106 were grown in the dark at room temperature (~25°C). A flame-sterilized, metal palm inoculator was used
7
8 107 to pull a five mm diameter fungal disc-shaped plug, centered in a 25 mL Petri dish for single colony
9
10 108 growth rates.

12
13 109 *Qualitative competition screening of Atractiella with a panel of Populus rhizosphere isolates*
14

15 110 Pairwise interaction experiments were conducted between three *Atractiella* strains and a panel of 30 fungi
16
17 111 co-isolated from the endosphere and rhizosphere of the same greenhouse trap-plant studies. Isolates were
18
19 112 chosen due to the high frequency at which they were co-isolated with *Atractiella*. Those chosen were
20
21 113 inoculated onto MMN media with a 0.5 cm diameter agar plug extracted with a cork borer from pure
22
23 114 colonies of each fungal genus or *Atractiella* strain. Agar plugs of distinct genera were placed one to two
24
25 115 cm apart. Interactions were then classified as negative, positive or none between *Atractiella* and each of
26
27 116 the isolates assayed.

30
31 117 *Quantitative competition studies between Atractiella and Fusarium or Leptosphaerulina*
32

33 118 To identify potential competitive interactions, each petri dish was inoculated separately with *Atractiella*
34
35 119 alone or in combination with either *F. oxysporum* or *L. chartarum*. A flame-sterilized, metal palm
36
37 120 inoculator was used to pull a five mm diameter fungal disc-shaped plug, centered in a 25 ml Petri dish for
38
39 121 single colony growth rates. In order to explore fungal growth in paired fungal interactions, the five mm
40
41 122 plugs were placed equidistant from each other and the petri dish wall. To accommodate the relatively
42
43 123 faster radial growth rates of pathogenic fungi, mycelial plugs were added after approximately one week of
44
45 124 *Atractiella* growth. Fungal colonies were measured every two to three days using an ordinal grid system
46
47 125 to quantify rate of growth by recording growth distance from the plug's perimeter.

50
51 126 *Metabolomic profiling of interactions with Fusarium and Leptosphaerulina*
52

53 127 To explore differences in metabolic profiles of fungi growing alone or with a putative competitor, sample
54
55 128 plugs of agar media were taken following the final growth measurements of *Atractiella* and the
56
57 129 competitor species. Agar fungal plugs were frozen and stored at -80°C prior to processing. Frozen
58
59 130 samples were weighed into vials containing the extraction solvent, 2 ml of 80% ethanol and 30 µl of

1
2
3
4 131 sorbitol (1 mg ml⁻¹ aqueous solution), and the sample weight recorded. Using internal standard
5
6 132 differences in extraction efficiency and derivatization efficiency we corrected accordingly, and changes in
7
8 133 sample volume during heating were included in data analysis. Samples were vortexed for several minutes
9
10 134 until finely dispersed. Samples were allowed to extract for two hours at room temperature, after which
11
12 135 they were syringe filtered through 0.2 µm nylon filters. One ml was dried under a stream of N₂ and then
13
14 136 dissolved in 500 µl of silylation-grade acetonitrile, followed by the addition of 500 µl N-methyl-N-
15
16 137 trimethylsilyltrifluoroacetamide (MSTFA) with 1% trimethylchlorosilane (TMCS) (Restek, Bellefonte,
17
18 138 PA), and then heated for one hour at 70°C to generate trimethylsilyl (TMS) derivatives (Li et al. 2012,
19
20 139 Tschaplinski et al. 2012). After two days, 1 µl aliquots were injected into an Agilent Technologies Inc.
21
22 140 (Santa Clara, CA) 5975C inert XL gas chromatograph-mass spectrometer, fitted with a Restek Rtx-5MS
23
24 141 with Integra-guard (5% diphenyl/95% dimethyl polysiloxane) 30 m x 250 µm x 0.25 µm film thickness
25
26 142 capillary column. The standard quadrupole GC-MS was operated in the electron impact (70 eV)
27
28 143 ionization mode with gas (helium) flow set at 1 ml per min and the injection port configured in the
29
30 144 splitless mode. The injection port, MS Source, and MS Quad temperatures were set to 250°C, 230°C, and
31
32 145 150°C, respectively. The initial oven temperature was held at 50°C for 2 min and was programmed to
33
34 146 increase at 20°C per min to 325°C and held for another 11 min, before cycling back to the initial
35
36 147 conditions. The GC-MS total ion current outputs for plugs taken from the same plate were overlapped to
37
38 148 identify putative inhibitors produced by either of the fungi. Metabolite peak extraction, identification, and
39
40 149 quantification were as described previously (Tschaplinski et al. 2012), and unidentified metabolites were
41
42 150 denoted by their retention time as well as key mass-to-charge (m/z) ratios. Ratios of metabolites were
43
44 151 determined with the data from the plug of the closest fungus used as the numerator and the more distant
45
46 152 fungus used as the denominator, assuming that if a metabolite is higher on the side of the plate closest to
47
48 153 one fungus, it was likely produced by that fungus.

55
56 154 *Screening to determine the impact of organic or inorganic N sources*

57
58 155 To determine N content and source impacts on *Atractiella* 95 growth rate, the C:N ratio of P5 media was
59
60 156 adjusted using five separate N source stock solutions to 100:1 in order to mimic standard P5 media C:N

1
2
3
4 157 ratio, and 10:1 in order to mimic standard PDA media C:N ratio. Three inorganic and two organic N
5
6 158 source stock solutions were used to adjust the C:N ratio of P5 media to either 100:1 or 10:1 for a total of
7
8 159 two C:N ratios per N source. Inorganic N sources used included ammonium chloride, sodium nitrate, and
9
10 160 ammonium nitrate. Organic N sources used included glycine and glutamate. For a 100:1 and 10:1 ratio, a
11
12 161 total of 0.006 mol L⁻¹ and 0.06 mol L⁻¹ of ammonium chloride, sodium nitrate, glycine and glutamate
13
14 162 were added to P5 media. For the same ratios with ammonium nitrate, a total of 0.003 mol L⁻¹ and 0.03
15
16 163 mol L⁻¹ were added to P5 media.

19
20 164 *DNA extraction and PCR*

21
22 165 To verify the identity of the *Atractiella* and competitors, isolates were grown on standard PDA topped
23
24 166 with sterilized Millipore© 0.45 µm membranes, allowing removal of pure fungus without agar
25
26 167 contamination. Inoculation of plates and fungal growth on the filters was as above described. The
27
28 168 Powerplant Pro DNA Isolation Kit© was used to extract DNA samples as per kit instructions, and DNA
29
30 169 samples were stored at -20°C. Ribosomal DNA (rDNA) was amplified using fungal-specific internal
31
32 170 transcribed spacer (ITS) primers ITS1 and ITS4 using the ProMega GoTaq © Master Mix kit, and cleaned
33
34 171 using the Affymetrix, USB ExoSAP-IT © kit. Samples were Sanger sequenced on an ABI3730 Genetic
35
36 172 Analyzer at the University of Tennessee at Knoxville (UTK), and sequences generated were analyzed
37
38 173 against the NCBI database using BLASTN to verify identity.

41
42 174 *Data analysis of each experimental design*

43
44 175 All fungal growth rate analyses were completed using SAS© software. Data were tested for normality
45
46 176 and assumptions of heteroscedasticity both within and between treatments. When necessary, data were
47
48 177 transformed to achieve assumptions of normality and variance distributions. A repeated-measures,
49
50 178 generalized linear model (GLM) was used with all effects being fixed, i.e., fungal identity (Strain), date
51
52 179 measured (Time), and media substrate (Media). Effects were evaluated individually and in all possible
53
54 180 combinations.

55
56 181 **Results and Discussion**

57
58 182 *Growth rate comparisons between Atractiella strains*

1
2
3
4 183 Radial growth rates among the nine *Atractiella* strains varied significantly from 1.58 to 3.18 mm
5
6 184 day⁻¹ ($F_{6,10} = 4.63$, $p = 0.0166$; Table 2) . All fixed effects and some interactions between them were
7
8 185 significant; Media and Strain ($F_{6,10} = 4.2$, $p = 0.0226$; Table 2), Media ($F_{1,10} = 228.08$, $p < 0.0001$; Table
9
10 186 2). On average, all *Atractiella* strains displayed a faster radial extension rate on PDA compared to growth
11
12 187 on P5 media (Table 2). Time and Strain did not produce significant interaction effects ($F_{30,50} = 1.35$, $p =$
13
14 188 0.1733; Table 2).

17
18 189 The slower growth rate on P5 media suggests nutrient limitation or auxotrophy. Interestingly, a
19
20 190 visual assessment of *Atractiella* suggested comparatively faster growth rates on a nitrate-rich cellulose
21
22 191 membrane versus a C-rich cellulose membrane, a pattern similar to that observed by Reeslev and Kjöller
23
24 192 (1995). This suggests either *Atractiella* requires nitrate inputs or other chemical(s) present in the nitrate-
25
26 193 rich membrane, or C-rich cellophane membranes are inhibitory. This led us to test impacts of N forms
27
28 194 available to *Atractiella* grown on P5 media. More work needs to be done in field experiments, but this
29
30 195 supports the hypothesis that *Atractiella* is, in general, a poor competitor with other fungi, yet is found in
31
32 196 relatively high percentages in plant host roots (Bonito et al. 2014) possibly through mechanisms such as
33
34 197 resource partitioning (Rajala et al. 2011).

37
38 198 Quantitative and qualitative assessments of rate of diameter change (proxy for growth rate) in *Atractiella*
39
40 199 grown solo or in the presence of a putative competitor produced interesting results. For example, both
41
42 200 *Mortierella* and *Fusarium* grew faster than the *Atractiella* strains they were paired with (Table 3),
43
44 201 eventually overgrowing *Atractiella* colonies. Many pairings led to growth stalemates (Table 3) in which
45
46 202 strains of *Atractiella*, particularly PMI 95, often produced zones of inhibition when paired with other
47
48 203 genera (Table 3). In most interactions explored, *Atractiella* growth, regardless of strain, was slowed in
49
50 204 the presence of another fungal genus (Table 3).

52
53 205 *Growth of Atractiella with organic versus inorganic N sources using two C:N ratios*

55
56 206 Most N and C:N ratio treatments had a significant effect on the growth rate of *Atractiella* relative
57
58 207 to control treatments (Table 4). Organic versus inorganic N treatments were significantly different ($F_{6,48}$
59
60 208 = 5.46, $p = 0.0002$; Table 4), as was the treatment, C:N ratio ($F_{1,48} = 16.69$, $p = 0.0002$; Table 4). After 15

1
2
3
4 209 d of growth on P5 ‘control’ (no N source additions), the *Atractiella* strain 95 had a 76.14 mm colony
5
6 210 diameter while NH₄Cl treatments at a 10:1 C:N ratio averaged 68.79 mm (Fig. 1). In contrast, treatments
7
8 211 at C:N 100:1 NH₄Cl resulted in slightly slower growth, 76.05 mm (Fig. 1). When NaNO₃ was provided as
9
10 212 the N source it increased relative colony diameters at both ratios (10:1, 100:1). When substituted with an
11
12 213 inorganic N source NH₄NO₃ at 10:1 and 100:1 C:N ratios, average colony diameters were lower, relative
13
14 214 to P5 control (75.33 mm and 75.8 mm, respectively; Fig. 1).

17 215 Glycine was not correlated with increased colony diameter of *Atractiella* at either C:N ratio (Fig.
18
19 216 1), and instead significantly reduced colony diameter (Fig. 1). When glycine was added at ratios of 10:1
20
21 217 and 100:1 C:N, the average colony diameters were 75.3 mm and 74.37 mm, respectively (Fig. 1).
22
23 218 Glutamate at a 10:1 ratio resulted in a much slower growth rate relative to the P5 control; an average
24
25 219 colony diameter of 66.35 mm (Fig. 1), and a 78.22 mm average colony diameter at 100:1 C:N ratio (Fig.
26
27 220 1).

30
31 221 *Competition results*
32
33 222 The significant interaction effect between focal fungus and competitor (Table 5) suggested that regardless
34
35 223 of competitor identity, focal fungal growth was slowed (Fig. 2), indicative of competitive interaction.
36
37 224 Tests of individual growth responses using Tukey’s Significantly Different (TSD) test showed *Atractiella*
38
39 225 growth was significantly and negatively impacted by putative competitors (Table 5). In addition,
40
41 226 qualitative analyses of interactions with multiple fungal genera support the conclusion that *Atractiella*, at
42
43 227 least *in vitro*, is not a strong competitor. Both *Mortierella* and *Fusarium* grew comparatively rapidly and
44
45 228 overgrew the *Atractiella* they were paired with (Table 2). Conversely, many pairings led to growth
46
47 229 stalemates (Table 2). Isolates of *Atractiella* strains often produced zones of inhibition when paired with
48
49 230 other fungal genera, including the basidiomycete *Flagelloscypha*, while melanized barrage zones were
50
51 231 also evident in many inter-genera pairings, e.g. with *Lechythophora* and *Ilyonectria* (Table 2), suggesting
52
53 232 *Atractiella* is capable of recognizing and responding to the presence of other fungal genera.

54
55 233 When grown solo, both *F. oxysporum* and *L. chartarum* reached colony diameters of 80 mm at 16
56
57 234 d (Fig. 3). While there were no significant differences between *Atractiella* strains in response to the

1
2
3
4 235 presence of a competitor, all strains showed arrested development in the presence of different fungal
5
6 236 genera (Tables 2, 5; Figs. 2, 3, 4). In the presence of *Atractiella*, both *F. oxysporum* and *L. chartarum*
7
8 237 decreased in growth rate initially (at 3 d) but recovering by the 5 d (Fig. 2). In addition, both competitor
9
10 238 fungi adjusted morphologically to the presence of *Atractiella* by producing zones of inhibition (Figs. 2,
11
12 239 3). *Fusarium* displayed the least inhibition in response to the presence of *Atractiella* (Fig. 2, 3; Table 5).
13
14
15 240 Whether competitive interactions resulted from competition for space, substrate resources, allelopathic
16
17 241 interactions or some other mechanism (Porter and Carter 1938, Raynaud et al. 2008, Kennedy et al. 2011,
18
19 242 Engelmoer et al. 2014) remains to be tested. Plausible causal mechanisms for changes in growth rate and
20
21 243 morphology include airborne or media-infused inhibitory compounds (Garrett 1950, Arora and Upadhyay
22
23 244 1978, Tejesvi et al. 2007, Aly et al. 2010, Dwivedi 2013), competition for resources present in the media
25
26 245 indirectly inhibiting growth of the adjacent fungus (Johnson et al. 2010, Engelmoer et al. 2014) or faster
27
28 246 growth leading to a spatial impediment (Porter and Carter 1938, Raynaud et al. 2008, Kennedy et al.
29
30 247 2011, Engelmoer et al. 2014).
31
32
33 248 While all *Atractiella* colonies remained translucent when grown on P5 media, thicker aerial
34
35 249 growth developed in the presence of some N sources and concentrations. Previous reports indicated
36
37 250 bioavailability and resulting fungal biomass generated *in vitro* is based on N-source present in the media
38
39 251 (Baar et al. 1997, Digby et al. 2010). Experiments with liquid media to compare fungal biomass
40
41 252 produced in response to N manipulations are warranted. Growth in sterile, soilless and soil mix, using
42
43 253 ergosterol techniques to measure fungal biomass, is another means of unravelling the impacts of N source
44
45 254 and concentration directly and indirectly on *Atractiella*'s growth (Zill et al. 1988, Ekblad et al. 1998,
46
47 255 Mille-Lindblom et al. 2004, Kennedy et al. 2005). Additional lines of research include isotopic analysis
48
49 256 to determine how much of the N from various N sources is directly taken up by *Atractiella*'s hyphae, and
50
51 257 how alterations in substrate or media pH correlate with fungal biomass production with and without
52
53 258 competition from plant roots (Six et al. 2002, Treseder et al. 2014).
54
55
56 259 *Metabolomic profiles resulting from competitive interactions between either F. oxysporum or L.*
57
58
59 260 *chartarum in the presence of Atractiella*

1
2
3
4 261 To test for plausible competitive mechanisms, GC-MS was used to explore metabolite signatures. We
5
6 262 focused the exploratory metabolite analysis on putative microbial inhibiting metabolites. Interestingly,
7
8 263 *Atractiella* down-regulated all of the metabolites determined to be present (Table 6) when grown with *F.*
9
10 264 *oxysporum*, but down-regulated metabolites by orders of magnitude in the presence of *L. chartarum*.
11
12 265 Metabolite profiling indicated increased production of glycosides (Table 6) by *Atractiella* in response to
13
14 266 the presence of other fungi and *F. oxysporum* and *L. chartarum* in response to the presence of *Atractiella*
15
16 267 (Table 6). *Leptosphaerulina chartarum* and *Atractiella* both produced greatly elevated levels of 2,3-
17
18 268 butanediols, glycosides and uric acid when interacting with another fungal genera, especially *F.*
19
20 269 *oxysporum* (Table 6). Glycosides are involved in a variety of metabolic activities (KEGG Orthology;
21
22 270 <http://www.genome.jp/kegg/ko.html>), and have been specifically identified in plant-pathogen interactions
23
24 271 (PATH:ko04626) involving fungal pathogen-associated molecular pattern (PAMP), and specifically
25
26 272 PAMP-triggered immunity (Das et al. 2013). *Atractiella* and *F. oxysporum* both increased *a-e*-
27
28 273 diaminopimelic acid when interacting (Table 6), with the highest level closest to *F. oxysporum*,
29
30 274 suggesting that this fungus was likely the major source of the metabolite. These results suggest that
31
32 275 *Atractiella* strain 95 is stressed by the presence of *F. oxysporum* and *L. chartarum*, and also provide
33
34 276 initial data with which to explore specific metabolites plausibly causal to competitive interactions through
35
36 277 the PAMP pathway.
37
38
39
40
41

42 278 There were four related benzoxazin-3-one-like metabolites, including 2,4-dihydroxy-5-methoxy-
43
44 279 2H-1,4-benzoxazin-3-one (tentative ID), and three unknowns, including those with retention time and key
45
46 280 mass-to-charge (m/z) ratios of 12.52 234 324 194 249, 13.52 324 412 163 193 222, and 11.08 234 193
47
48 281 180 91 (Table 6). These were produced by all three fungi, but comparatively more so by *F. oxysporum*
49
50 282 (Table 6). *Fusarium oxysporum* and *L. chartarum* also produced 3-deoxy-D-ribo-hexitol in general,
51
52 283 which appeared to be upregulated when interacting with *Atractiella* (Table 6). Specific fungal metabolic
53
54 284 activities could potentially include ustilagic acid biosynthesis (Eveleigh et al. 1964, Teichmann et al.
55
56 285 2010) and antibacterial effects (Tian et al. 2016), as well as cell wall remodeling and reproduction (van
57
58
59
60
61
62
63
64
65

1
2
3
4 286 Munster et al. 2012, van Munster et al. 2015), all common responses of fungi to stress (Fuchs and
5
6 287 Mylonakis 2009).

7
8 288 In contrast, *Fusarium oxysporum* secreted several metabolites in response to the presence of
9
10 289 *Atractiella* (Table 6). These metabolites, which include glycosides, butanediols and 2,4-dihydroxy-5-
11
12 290 methyl-2H-1,4-benzoxazin-3-one, are not secreted when *F. oxysporum* is incubated alone (Table 6),
13
14 291 indicating these were secreted in direct response to *Atractiella*. Benzoxazin compounds are involved in
15
16 292 plant stress responses and provide plants with pathogen and pest resistance (Niemeyer 1988, Morrissey
17
18 293 and Osbourn 1999, Niemeyer 2009). There is a possibility that these same compounds serve a similar
19
20 294 function in competitive interactions between *F. oxysporum* and *Atractiella*. This response may be
21
22 295 indicative of a broader defense compound arsenal, which would explain the faster growth rate of *F.*
23
24 296 *oxysporum* and positive competitive performance *in vitro* (Figs. 2, 3; Table 5).

25
26 297 Future research on *Atractiella*'s role in the plant microbiome should focus on substrate
27
28 298 requirements by the fungus, plant phenotype responses (i.e., plant growth, biomass, and metabolic profile)
29
30 299 to colonization both by *Atractiella* alone and in combination with pathogenic fungi, as well as potential
31
32 300 survival responses to competition employed by *Atractiella*, which remains abundant and ubiquitous in the
33
34 301 *Populus* microbiome despite presenting as a poor competitor. Such research will help determine the
35
36 302 impact of *Atractiella* on host organisms, as well as move forward the understanding of how poor
37
38 303 competitors in a diverse microbiome remain viable and abundant.

39
40 304 **Acknowledgements**

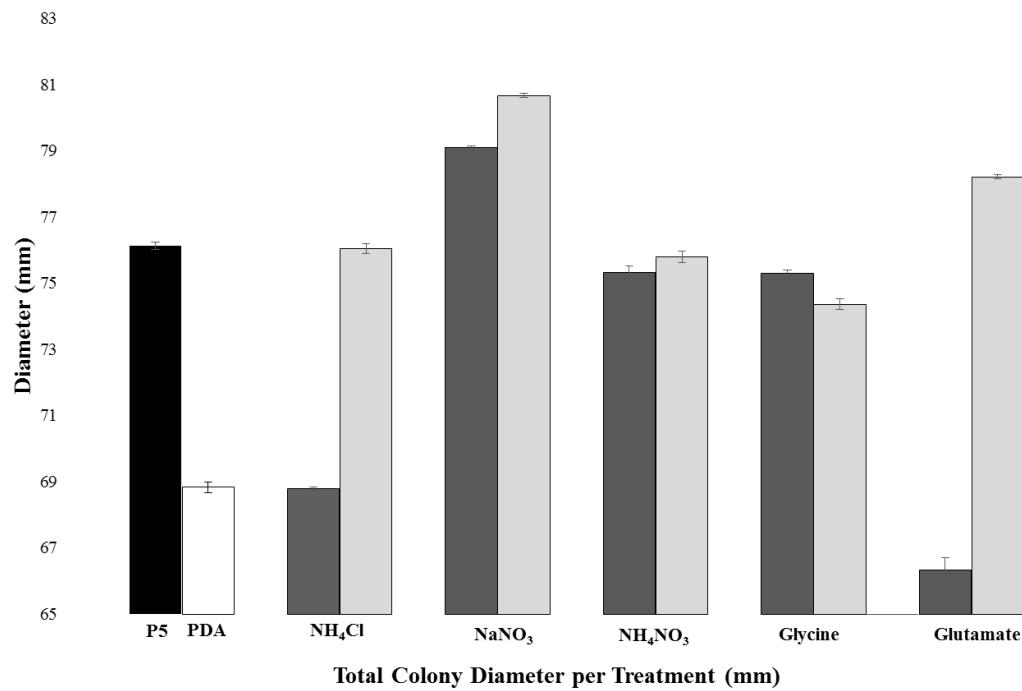
41
42 305 We thank Jessy Labb  , Stephanie Soldano, Arneisha N. Jones Murray, and Zamin K. Yang for their field
43
44 306 and laboratory work contributions. This research was sponsored by the Genomic Science Program, U.S.
45
46 307 Department of Energy, Office of Science, Biological and Environmental Research as part of the Plant
47
48 308 Microbe Interfaces Scientific Focus Area (<http://pmi.ornl.gov>). The participation of Cyd E. Hamilton was
49
50 309 supported by a Visiting Scientist Fellowship provided by the Bioenergy Technology Office – U.S.
51
52
53
54
55
56
57
58
59
60
61
62 13
63
64
65

1
2
3
4 310 Department of Energy. Oak Ridge National Laboratory is managed by UT-Battelle LLC, for the U.S.
5
6 311 Department of Energy under contract DE-AC05-00OR22725.
7
8
9 312 **References**
10
11 313 Aime, M. C., Matheny, P. B., Henk, D. A., Frieders, E. M., Nilsson, R. H., Piepenbring, M., McLaughlin,
12
13 314 D. J., Szabo, L. J., Begerow, D., Sampaio, J. P., Bauer, R., Weiss, M., Oberwinkler, F., and
14
15 315 Hibbett, D. (2006) An overview of the higher level classification of Pucciniomycotina based on
16
17 316 combined analyses of nuclear large and small subunit rDNA sequences, *Mycologia* 98, 896-905.
18 317 Al-Naimi, F. A., Garrett, K. A., and Bockus, W. W. (2005) Competition, facilitation, and niche
19
20 318 differentiation in two foliar pathogens, *Oecologia* 143, 449-457.
21 319 Aly, A. H., Debbab, A., Kjer, J., and Proksch, P. (2010) Fungal endophytes from higher plants: a prolific
22
23 320 source of phytochemicals and other bioactive natural products, *Fungal Divers* 41, 1-16.
24
25 321 Arora, D. K., and Upadhyay, R. K. (1978) Effect of Fungal Staling Growth-Substances on Colony
26
27 322 Interaction, *Plant Soil* 49, 685-690.
28 323 Avila-Diaz, I., Garibay-Orijel, R., Magana-Lemus, R. E., and Oyama, K. (2013) Molecular Evidence
29
30 324 Reveals Fungi Associated within the Epiphytic Orchid *Laelia Speciosa* (Hbk) Schltr., *Bot Sci* 91,
31
32 523-529.
33 326 Baar, J., Comini, B., Elferink, M. O., and Kuyper, T. W. (1997) Performance of four ectomycorrhizal
34
35 327 fungi on organic and inorganic nitrogen sources, *Mycological research* 101, 523-529.
36
37 328 Baar, J., and Stanton, N. L. (2000) Ectomycorrhizal fungi challenged by saprotrophic basidiomycetes and
38
39 329 soil microfungi under different ammonium regimes in vitro, *Mycological research* 104, 691-697.
40 330 Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., and Vivanco, J. M. (2006) The role of root exudates in
41
42 331 rhizosphere interactions with plants and other organisms, *Annual review of plant biology* 57, 233-
43
44 332 266.
45 333 Bauer, R., Begerow, D., Sampaio, J. P., Weib, M., and Oberwinkler, F. (2006) The simple-septate
46
47 334 basidiomycetes: a synopsis, *Mycol Prog* 5, 41-66.
48 335 Bennett, R. A., and Lynch, J. M. (1981) Bacterial-Growth and Development in the Rhizosphere of
49
50 336 Gnotobiotic Cereal Plants, *J Gen Microbiol* 125, 95-102.
51
52 337 Bonito, G., Hameed, K., Toome-Heller, M., Healy, R., Yang, X., Reid, C., Liao, H.-L., Aime, M., Schadt,
53
54 338 C., and Vilgalys, R. (2016) *Atractiella rhizophila* sp. nov., an endorrhizal fungus isolated from
55
56 339 the *Populus* root microbiome, *Mycologia* in press.
57
58 340 Bonito, G., Reynolds, H., Robeson, M. S., Nelson, J., Hodkinson, B. P., Tuskan, G., Schadt, C. W., and
59
60 341 Vilgalys, R. (2014) Plant host and soil origin influence fungal and bacterial assemblages in the
61
62 342 roots of woody plants, *Mol Ecol* 23, 3356-3370.
63
64
65

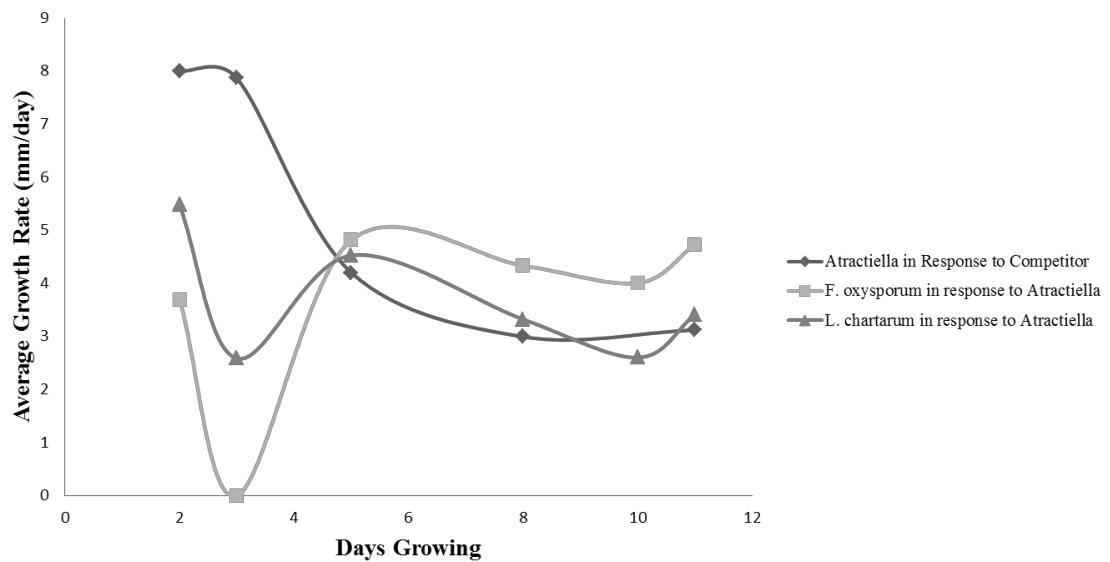
1
2
3
4 343 Clay, K., and Schardl, C. (2002) Evolutionary origins and ecological consequences of endophyte
5
6 344 symbiosis with grasses, *Am Nat* 160, S99-S127.
7
8 345 Connell, J. H. (1981) Citation Classic - the Influence of Interspecific Competition and Other Factors on
9 the Distribution of the Barnacle Chthamalus-Stellatus, *Cc/Agr Biol Environ*, 18-18.
10
11 347 Craven, K. D., Hsiau, P. T. W., Leuchtmann, A., Hollin, W., and Schardl, C. L. (2001) Multigene
12
13 348 phylogeny of Epichloe species, fungal symbionts of grasses, *Ann Mo Bot Gard* 88, 14-34.
14
15 349 Das, B. K., Pattnaik, P., Debnath, C., Swain, D. K., and Pradhan, J. (2013) Effect of beta-glucan on the
16 immune response of early stage of *Anabas testudineus* (Bloch) challenged with fungus
17
18 351 *Saprolegnia parasitica*, *SpringerPlus* 2, 197.
19
20 352 Davidson, J. A., Krysinska-Kaczmarek, M., Herdina, McKay, A., and Scott, E. S. (2012) Comparison of
21 cultural growth and in planta quantification of *Didymella pinodes*, *Phoma koolunga* and *Phoma*
22
23 354 *medicaginis* var. *pinodella*, causal agents of ascochyta blight on field pea (*Pisum sativum*),
24
25 *Mycologia* 104, 93-101.
26
27 356 Demirci, E., Dane, E., and Eken, C. (2011) In vitro antagonistic activity of fungi isolated from sclerotia
28 on potato tubers against *Rhizoctonia solani*, *Turk J Biol* 35, 457-462.
29
30 358 Digby, A. L., Gleason, F. H., and McGee, P. A. (2010) Some fungi in the Chytridiomycota can assimilate
31 both inorganic and organic sources of nitrogen, *Fungal Ecology* 3, 261-266.
32
33 360 Dwivedi, S. K. S. (2013) Fungal Succession in Composite Soil on Staled Agar Disc at different Staling
34
35 361 Periods, *Journal of Environmental Science and Technology* 1, 37-42.
36
37 362 Ekblad, A., Wallander, H., and Nasholm, T. (1998) Chitin and ergosterol combined to measure total and
38 living fungal biomass in ectomycorrhizas, *New Phytol* 138, 143-149.
39
40 364 El-Fattah Adnan Dababat, A., and Sikora, R. A. (2007) Induced resistance by the mutualistic endophyte,
41
42 365 *Fusarium oxysporum* strain 162, toward *Meloidogyne incognita* on tomato, *Biocontrol Science*
43
44 366 and *Technology* 17, 969-975.
45
46 367 Elton, C. (1946) Competition and the Structure of Ecological Communities, *J Anim Ecol* 15, 54-68.
47
48 368 Engelmoer, D. J. P., Behm, J. E., and Kiers, E. T. (2014) Intense competition between arbuscular
49 mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance,
50
51 371 Evans, L. M., Slavov, G. T., Rodgers-Melnick, E., Martin, J., Ranjan, P., Muchero, W., Brunner, A. M.,
52
53 372 Schackwitz, W., Gunter, L., Chen, J. G., Tuskan, G. A., and DiFazio, S. P. (2014) Population
54
55 373 genomics of *Populus trichocarpa* identifies signatures of selection and adaptive trait associations,
56
57 374 *Nature genetics* 46, 1089-1096.
58
59 375 Eveleigh, D. E., Dateo, G. P., and Reese, E. T. (1964) Fungal Metabolism of Complex Glycosides -
60
61 376 Ustilagic Acid, *J Biol Chem* 239, 839-&.

1
2
3
4 377 Fuchs, B. B., and Mylonakis, E. (2009) Our Paths Might Cross: the Role of the Fungal Cell Wall Integrity
5 Pathway in Stress Response and Cross Talk with Other Stress Response Pathways, *Eukaryotic*
6
7 379 *Cell* 8, 1616-1625.
8
9 380 Garrett, S. D. (1950) Ecology of the Root Inhabiting Fungi, *Biol Rev* 25, 220-254.
10
11 381 Garrett, S. D. (1951) Ecological Groups of Soil Fungi: A Survey of Substrate Relationships, *New Phytol*
12 50, 149-166.
13
14 383 Gottel, N. R., Castro, H. F., Kerley, M., Yang, Z. M., Pelletier, D. A., Podar, M., Karpinets, T.,
15
16 384 Überbacher, E., Tuskan, G. A., Vilgalys, R., Doktycz, M. J., and Schadt, C. W. (2011) Distinct
17
18 385 Microbial Communities within the Endosphere and Rhizosphere of *Populus deltoides* Roots
19
20 386 across Contrasting Soil Types, *Appl Environ Microb* 77, 5934-5944.
21
22 387 Grayston, S. J., Wang, S. Q., Campbell, C. D., and Edwards, A. C. (1998) Selective influence of plant
23
24 388 species on microbial diversity in the rhizosphere, *Soil Biol Biochem* 30, 369-378.
25
26 389 Hafidh, R. R., Abdulamir, A. S., Vern, L. S., Abu Bakar, F., Abas, F., Jahanshiri, F., and Sekawi, Z.
27
28 391 (2011) Inhibition of growth of highly resistant bacterial and fungal pathogens by a natural
29
30 392 product, *The open microbiology journal* 5, 96-106.
31
32 393 Hamilton, C., Bever, J., Labb  , J., Yang, X., and Yin, H. (2016) An argument for increased utilization of
33
34 394 plant microbial partners for crop production: Mitigative and adaptive opportunities to climate
35
36 395 change via constructed microbial communities in review, *Agriculture, Ecosystems &*
37
38 396 *Environment*.
39
40 397 Hamilton, C. E., and Bauerle, T. L. (2012) A new currency for mutualism? Fungal endophytes alter
41
42 398 antioxidant activity in hosts responding to drought, *Fungal Divers* 54, 39-49.
43
44 399 Hamilton, C. E., Dowling, T. E., and Faeth, S. H. (2010) Hybridization in Endophyte Symbionts Alters
45
46 400 Host Response to Moisture and Nutrient Treatments, *Microb Ecol* 59, 768-775.
47
48 401 Hamilton, C. E., Faeth, S. H., and Dowling, T. E. (2009) Distribution of Hybrid Fungal Symbionts and
49
50 402 Environmental Stress, *Microb Ecol* 58, 408-413.
51
52 403 Hamilton, C. E., Gundel, P. E., Helander, M., and Saikkonen, K. (2012) Endophytic mediation of reactive
53
54 404 oxygen species and antioxidant activity in plants: a review, *Fungal Divers* 54, 1-10.
55
56 405 Harrison, K. A., Bol, R., and Bardgett, R. D. (2007) Preferences for different nitrogen forms by coexisting
57
58 406 plant species and soil microbes, *Ecology* 88, 989-999.
59
60 407 Hartmann, A., Rothballer, M., and Schmid, M. (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial
61
62 408 ecology and soil bacteriology research, *Plant Soil* 312, 7-14.
63
64 409 Hawkins, H.-J., Johansen, A., and George, E. (2000) Uptake and transport of organic and inorganic
65
nitrogen by arbuscular mycorrhizal fungi, *Plant Soil* 226, 275-285.

1
2
3
4 410 Hodge, A., Campbell, C. D., and Fitter, A. H. (2001) An arbuscular mycorrhizal fungus accelerates
5 decomposition and acquires nitrogen directly from organic material, *Nature* 413, 297-299.
6
7 412 Hutchinson, G. E. (1957) Concluding remarks, *Cold Spring Harbor Symposia on Quantitative Biology*.
8 413 22, 415-427.
9
10 414 Hutchinson, G. E. (1959) Homage to Santa-Rosalia or Why Are There So Many Kinds of Animals, *Am
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65*


415 *Nat* 93, 145-159.
416 Johnson, N. C., Wilson, G. W. T., Bowker, M. A., Wilson, J. A., and Miller, R. M. (2010) Resource
417 limitation is a driver of local adaptation in mycorrhizal symbioses, *P Natl Acad Sci USA* 107,
418 2093-2098.
419 Jones, M. D., Grenon, F., Peat, H., Fitzgerald, M., Holt, L., Philip, L. J., and Bradley, R. (2009)
420 Differences in ¹⁵N uptake amongst spruce seedlings colonized by three pioneer ectomycorrhizal
421 fungi in the field, *Fungal Ecology* 2, 110-120.
422 Kennedy, N., Connolly, J., and Clipson, N. (2005) Impact of lime, nitrogen and plant species on fungal
423 community structure in grassland microcosms, *Environmental microbiology* 7, 780-788.
424 Kennedy, P. G., Higgins, L. M., Rogers, R. H., and Weber, M. G. (2011) Colonization-Competition
425 Tradeoffs as a Mechanism Driving Successional Dynamics in Ectomycorrhizal Fungal
426 Communities, *Plos One* 6.
427 Kistler, H. C. (1997) Genetic Diversity in the Plant-Pathogenic Fungus *Fusarium oxysporum*,
428 *Phytopathology* 87, 474-479.
429 Kottke, I., Suarez, J. P., Herrera, P., Cruz, D., Bauer, R., Haug, I., and Garnica, S. (2010)
430 Atractiellomycetes belonging to the 'rust' lineage (Pucciniomycotina) form mycorrhizae with
431 terrestrial and epiphytic neotropical orchids, *P Roy Soc B-Biol Sci* 277, 1289-1298.
432 Leavitt, S. D., Lumbsch, H. T., Stenroos, S., and St Clair, L. L. (2013) Pleistocene Speciation in North
433 American Lichenized Fungi and the Impact of Alternative Species Circumscriptions and Rates of
434 Molecular Evolution on Divergence Estimates, *Plos One* 8.
435 Leibold, M. A. (1995) The Niche Concept Revisited - Mechanistic Models and Community Context,
436 *Ecology* 76, 1371-1382.
437 Li, Y. C., Tschaplinski, T. J., Engle, N. L., Hamilton, C. Y., Rodriguez, M., Liao, J. C., Schadt, C. W.,
438 Guss, A. M., Yang, Y. F., and Graham, D. E. (2012) Combined inactivation of the *Clostridium*
439 *cellulolyticum* lactate and malate dehydrogenase genes substantially increases ethanol yield from
440 cellulose and switchgrass fermentations, *Biotechnology for biofuels* 5.
441 Marx, D. H. (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to
442 pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil
443 bacteria, *Phytopathology* 59, 153-163.

1
2
3
4 444 Mendoza, A. R., and Sikora, R. A. (2009) Biological control of *Radopholus similis* in banana by
5 combined application of the mutualistic endophyte *Fusarium oxysporum* strain 162, the egg
6 pathogen *Paecilomyces lilacinus* strain 251 and the antagonistic bacteria *Bacillus firmus*,
7
8 446 *Biocontrol* 54, 263-272.
9
10 447
11 448 Mille-Lindblom, C., von Wachenfeldt, E., and Tranvik, L. J. (2004) Ergosterol as a measure of living
12 fungal biomass: persistence in environmental samples after fungal death, *J Microbiol Meth* 59,
13 253-262.
14
15 450
16 451 Morrissey, J. P., and Osbourn, A. E. (1999) Fungal resistance to plant antibiotics as a mechanism of
17 pathogenesis, *Microbiol Mol Biol R* 63, 708-+.
18
19 452 Neubert, K., Mendgen, K., Brinkmann, H., and Wirsel, S. G. R. (2006) Only a few fungal species
20 dominate highly diverse mycofloras associated with the common reed, *Appl Environ Microb* 72,
21 1118-1128.
22
23 455
24 456 Niemeyer, H. M. (1988) Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the
25 gramineae, *Phytochemistry* 27, 3349-3358.
26
27 457
28 458 Niemeyer, H. M. (2009) Hydroxamic Acids Derived from 2-Hydroxy-2H-1,4-Benzoxazin-3(4H)-one:
29 Key Defense Chemicals of Cereals, *Journal of Agricultural and Food Chemistry* 57, 1677-1696.
30
31 460 Oberwinkler, F., and Bandoni, R. J. (1982) Studies in Heterobasidiomycetes .13. A Taxonomic Survey of
32 the Gasteroid, Auricularioid Heterobasidiomycetes, *Can J Bot* 60, 1726-1750.
33
34 461 Oberwinkler, F. B. R. (1989) The systematics of gasteroid, auricularioid Heterobasidiomycetes, *Sydowia*
35 56, 224-256.
36
37 463
38 464 Peay, K. G., Kennedy, P. G., and Bruns, T. D. (2008) Fungal Community Ecology: A Hybrid Beast with a
39 Molecular Master, *Bioscience* 58, 799-810.
40
41 465
42 466 Porter, C. L., and Carter, J. C. (1938) Competition among fungi, *The Botanical Review* 4, 165-182.
43
44 467 Rajala, T., Peltoniemi, M., Hantula, J., Mäkipää, R., and Pennanen, T. (2011) RNA reveals a succession
45 of active fungi during the decay of Norway spruce logs, *Fungal Ecology* 4, 437-448.
46
47 468 Raynaud, X., Jaillard, B., and Leadley, P. W. (2008) Plants may alter competition by modifying nutrient
48 Bioavailability in rhizosphere: A modeling approach, *Am Nat* 171, 44-58.
49
50 471 Reeslev, M., and Kjoller, A. (1995) Comparison of Biomass Dry Weights and Radial Growth-Rates of
51 Fungal Colonies on Media Solidified with Different Gelling Compounds, *Appl Environ Microb*
52 61, 4236-4239.
53
54 473
55 474 Reynolds, H. L., Hartley, A. E., Vogelsang, K. M., Bever, J. D., and Schultz, P. A. (2005) Arbuscular
56 mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under
57 low nitrogen supply in glasshouse culture, *New Phytol* 167, 869-880.
58
59
60
61
62
63
64
65


1
2
3
4 477 Rodriguez, R. J., White, J. F., Arnold, A. E., and Redman, R. S. (2009) Fungal endophytes: diversity and
5 functional roles, *New Phytol* 182, 314-330.
6
7 479 Saunders, M., and Kohn, L. M. (2008) Host-synthesized secondary compounds influence the in vitro
8 interactions between fungal endophytes of maize, *Appl Environ Microb* 74, 136-142.
9
10 481 Shakya, M., Gottel, N., Castro, H., Yang, Z. M. K., Gunter, L., Labbe, J., Muchero, W., Bonito, G.,
11 Vilgalys, R., Tuskan, G., Podar, M., and Schadt, C. W. (2013) A Multifactor Analysis of Fungal
12 and Bacterial Community Structure in the Root Microbiome of Mature *Populus deltoides* Trees,
13 *Plos One* 8.
14
15 485 Six, J., Feller, C., Denef, K., Ogle, S. M., Sa, J. C. D., and Albrecht, A. (2002) Soil organic matter, biota
16 and aggregation in temperate and tropical soils - Effects of no-tillage, *Agronomie* 22, 755-775.
17
18 487 Taylor, D. L., Hollingsworth, T. N., McFarland, J. W., Lennon, N. J., Nusbaum, C., and Ruess, R. W.
19 (2014) A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale
20 niche partitioning, *Ecol Monogr* 84, 3-20.
21
22 490 Teichmann, B., Liu, L. D., Schink, K. O., and Bolker, M. (2010) Activation of the Ustilagic Acid
23 Biosynthesis Gene Cluster in Ustilago maydis by the C2H2 Zinc Finger Transcription Factor
24 Rua1, *Appl Environ Microb* 76, 2633-2640.
25
26 493 Tejesvi, M. V., Kini, K. R., Prakash, H. S., Subbiah, V., and Shetty, H. S. (2007) Genetic diversity and
27 antifungal activity of species of Pestalotiopsis isolated as endophytes from medicinal plants,
28 *Fungal Divers* 24, 37-54.
29
30 496 Tian, J.-F., Li, P.-J., Li, X.-X., Sun, P.-H., Gao, H., Liu, X.-Z., Huang, P., Tang, J.-S., and Yao, X.-S.
31 (2016) New antibacterial isocoumarin glycosides from a wetland soil derived fungal strain
32 *Metarhizium anisopliae*, *Bioorganic & Medicinal Chemistry Letters* 26, 1391-1396.
33
34 499 Treseder, K. K., Bent, E., Borneman, J., and McGuire, K. L. (2014) Shifts in fungal communities during
35 decomposition of boreal forest litter, *Fungal Ecology* 10, 58-69.
36
37 501 Tschaplinski, T. J., Standaert, R. F., Engle, N. L., Martin, M. Z., Sangha, A. K., Parks, J. M., Smith, J. C.,
38 Samuel, R., Jiang, N., Pu, Y., Ragauskas, A. J., Hamilton, C. Y., Fu, C., Wang, Z. Y., Davison,
39 B. H., Dixon, R. A., and Mielenz, J. R. (2012) Down-regulation of the caffeic acid O-
40 methyltransferase gene in switchgrass reveals a novel monolignol analog, *Biotechnology for
41 biofuels* 5, 71.
42
43 506 van Munster, J. M., Nitsche, B. M., Akeroyd, M., Dijkhuizen, L., van der Maarel, M. J. E. C., and Ram,
44 A. F. J. (2015) Systems Approaches to Predict the Functions of Glycoside Hydrolases during the
45 Life Cycle of *Aspergillus niger* Using Developmental Mutants $\Delta brlA$ and $\Delta flbA$, *Plos One* 10,
46 e0116269.
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 510 van Munster, J. M., van der Kaaij, R. M., Dijkhuizen, L., and van der Maarel, M. J. E. C. (2012)
5 511 Biochemical characterization of *Aspergillus niger* Cfcl, a glycoside hydrolase family 18 chitinase
6 512 that releases monomers during substrate hydrolysis, *Microbiology* 158, 2168-2179.
7 513 Veldre, V., Abarenkov, K., Bahram, M., Martos, F., Selosse, M.-A., Tamm, H., Kõljalg, U., and
8 514 Tedersoo, L. (2013) Evolution of nutritional modes of Ceratobasidiaceae (Cantharellales,
9 515 Basidiomycota) as revealed from publicly available ITS sequences, *Fungal Ecology* 6, 256-268.
10 516 Whipps, J. M. (2001) Microbial interactions and biocontrol in the rhizosphere, *Journal of experimental
11 517 botany* 52, 487-511.
12 518 Whiteside, M. D., Digman, M. A., Gratton, E., and Treseder, K. K. (2012) Organic nitrogen uptake by
13 519 arbuscular mycorrhizal fungi in a boreal forest, *Soil Biology and Biochemistry* 55, 7-13.
14 520 Wicklow, D. T., Roth, S., Deyrup, S. T., and Gloer, J. B. (2005) A protective endophyte of maize:
15 521 *Acremonium zeae* antibiotics inhibitory to *Aspergillus flavus* and *Fusarium verticillioides*,
16 522 *Mycological research* 109, 610-618.
17 523 Windels, C. E. (1991) Current Status of *Fusarium* Taxonomy, *Phytopathology* 81, 1048-1051.
18 524 Winkelmann, K., Genner, M. J., Takahashi, T., and Ruber, L. (2014) Competition-driven speciation in
19 525 cichlid fish, *Nat Commun* 5.
20 526 Wyrebek, M., Huber, C., Sasan, R. K., and Bidochka, M. J. (2011) Three sympatrically occurring species
21 527 of *Metarhizium* show plant rhizosphere specificity, *Microbiol-Sgm* 157, 2904-2911.
22 528 Zill, G., Engelhardt, G., and Wallnofer, P. R. (1988) Determination of ergosterol as a measure of fungal
23 529 growth using Si 60 HPLC, *Zeitschrift fur Lebensmittel-Untersuchung und -Forschung* 187, 246-
24 530 249.
25
26 531
27
28 532
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62 20
63
64
65

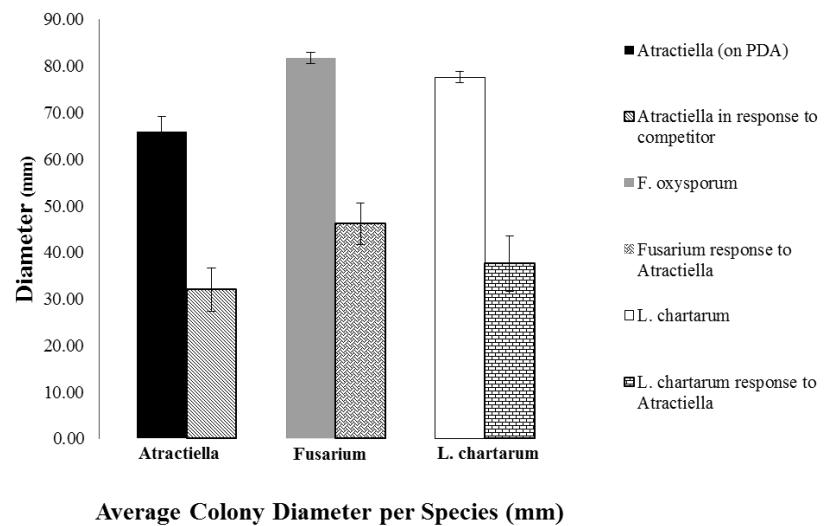


Fig 1

Fig 2

Fig 3

Fig 4

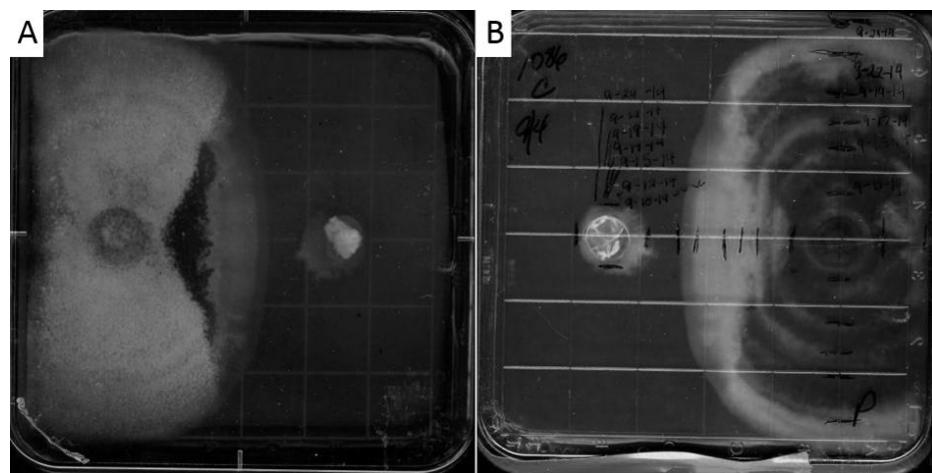


Table 1: Geographic origin and *Populus* trap plant hosts from which the Atractiella strains were collected from root tissues. Strains used in this study are bolded.

Strain	Origin of Soil	Trap Plant Host
95	North Carolina (with <i>P. deltoides</i>)	<i>P. deltoides</i>
152	North Carolina (with <i>P. deltoides</i>)	<i>P. deltoides</i>
1054	California (with <i>P. trichocarpa</i>)	<i>P. trichocarpa</i>
1086	California (with <i>P. trichocarpa</i>)	<i>P. trichocarpa</i>
1114	California (with <i>P. trichocarpa</i>)	<i>P. trichocarpa</i>
1119	California (with <i>P. trichocarpa</i>)	<i>P. trichocarpa</i>
1138	California (with <i>P. trichocarpa</i>)	<i>P. trichocarpa</i>
1140	California (with <i>P. trichocarpa</i>)	<i>P. trichocarpa</i>
1142	California (with <i>P. trichocarpa</i>)	<i>P. trichocarpa</i>
1145	California (with <i>P. trichocarpa</i>)	<i>P. trichocarpa</i>
1148	California (with <i>P. trichocarpa</i>)	<i>P. trichocarpa</i>
1152	California (with <i>P. trichocarpa</i>)	<i>P. trichocarpa</i>
1165	California (with <i>P. trichocarpa</i>)	<i>P. trichocarpa</i>
1165.2	California (with <i>P. trichocarpa</i>)	<i>P. trichocarpa</i>
1176	California (with <i>P. trichocarpa</i>)	<i>P. trichocarpa</i>
1180	California (with <i>P. trichocarpa</i>)	<i>P. trichocarpa</i>
1199	California (with <i>P. trichocarpa</i>)	<i>P. trichocarpa</i>
1210	California (with <i>P. trichocarpa</i>)	<i>P. trichocarpa</i>

1580	North Carolina (with <i>P. deltoides</i>)	<i>P. ponderosa</i>
1587	North Carolina (with <i>P. deltoides</i>)	<i>P. trichocarpa</i>
1645	North Carolina (with <i>P. deltoides</i>)	<i>P. trichocarpa</i>
1649	North Carolina (with <i>P. deltoides</i>)	<i>P. trichocarpa</i>
1656	North Carolina (with <i>P. deltoides</i>)	<i>P. trichocarpa</i>
1678	North Carolina (with <i>P. deltoides</i>)	<i>P. trichocarpa</i>

Table 2: All strains of *Atractiella* produced significantly different growth rates in response to media type.

Effect	Num df	den df	F	P
Time	5	50	12.88	<0.0001
Strain	6	10	4.63	0.0166
Time X Strain	30	50	1.35	0.1733
Media	1	10	228.08	<0.0001
Strain X Media	6	10	4.2	0.0226

Table 3: A summary of the single pair interactions performed between *Atractiella* and co-isolated fungal taxon from *Populus*. A + designation indicates *Atractiella* out-competed the co-isolate, a – indicates *Atractiella* was out-competed by the co-isolate, and 0 indicates no observed effect on growth of either *Atractiella* or the co-isolate.

Paired Species	Single Pair Interactions Table of <i>Atractiella</i> versus a Co-Isolate		
	Atractiella - PMI 152	Atractiella - PMI	Atractiella -
		95	PMI252
<i>Pleosporales</i> - PMI 150	-	-	-
<i>Ilyonectria</i> - PMI 151	0	0	0
<i>Ilyonectria</i> - PMI 153	+	+	0
<i>Ilyonectria</i> - PMI 154	+	+	+
<i>Pleosporales</i> PMI 155	-	0	-
<i>Phialocephala</i> - PMI 193	+	+	+
<i>Mortierella</i> PMI 93	-	-	-
<i>Thelephoraceae</i> PMI 130	+	+	+
<i>Sordariomycete</i> PMI 145	+	0	0
<i>Pleosporales</i> - PMI 146	+	+	+
<i>Fusarium</i> - PMI 11	-	-	-
<i>Umbelopsis</i> - PMI 12	0	0	0
<i>Corticiales</i> - PMI 14	0	0	0
<i>Ilyonectria</i> - PMI 122	-	0 / -	-
<i>Mariannaea</i> - PMI 123	0	0	0
<i>Sordariomycete</i> - PMI 1	0	0	0
<i>Sordariomycete</i> - PMI 3	0	0	0
<i>Sordariales</i> - PMI 4	0	0	0
<i>Ilyonectria</i> - PMI 6	-	-	-

<i>Ilyonectria</i> - PMI 7	-	-	-
<i>Ilyonectria</i> - PMI 83	-	0	0 / -
<i>Mortierella</i> PMI 85	-	0 / -	-
<i>Mortierella</i> PMI 86	-	-	-
<i>Ilyonectria</i> - PMI 91	0	0	0
<i>Heliotiales</i> - PMI 350	+	+	+
<i>Clavulina</i> - PMI 390	0 / -	0	0 / -
<i>Leptodontidium</i> - PMI 454	0	0 / +	0
<i>Sordariomycete</i> - PMI 493	0 / -	0	0 / -
<i>Flagelloscypha</i> - PMI 526	0 / -	0 / -	0 / -
<i>Sordariomycete</i> - PMI 527	0	0	0

Table 4: All effects were significant separately and in combination, with the C:N ratio having the largest impact on *Atractiella* growth rate.

Effect	DF	F Value	p Value
Treatment	6	5.46	0.0002
C:N Ratio	1	16.69	0.0002
Treatment x C:N Ratio	4	3.51	0.0137

Table 5: Comparison of growth rate in response to identity of focal fungus (*Atractiella*, *F. oxysporum* or *L. chartarum*) and competitor presence or absence.

Effect	df	T	Tukey's adjusted p
<i>Atractiella/F. oxysporum</i> versus <i>Atractiella</i> alone	10	-2.76	0.0201
<i>F. oxysporum/Atractiella</i> versus <i>F. oxysporum</i> alone	10	-2.49	0.0322
<i>Atractiella/L. chartarum</i> versus <i>Atractiella</i> alone	10	-3.3	0.008
<i>L. chartarum/Atractiella</i> versus <i>L. chartarum</i> alone	10	-2.52	0.0303
<i>Atractiella</i> alone	10	-2.4	0.037
<i>F. oxysporum</i> alone	10	-3.71	0.004
<i>L. chartarum</i> alone	10	-4.29	0.0016

Table 6: Metabolite prevalence in mg g⁻¹ as determined by GC-MS analysis. Determination of significant differences was not tested on account of a small total sample size.

Sample ID	Identified Metabolites						Unidentified Metabolites		
	3-deoxy-D-ribo-hexitol	2,4-dihydroxy-5-methyl-2H-1,4-benzoxazine-3-one	uri-c-acid	a-e-diaminopimelic acid	butanediols	523 538 glycosides	1 ^a	2 ^b	3 ^c
<i>F. oxysporum/Atractiella</i>	50.4	17.3	1.7		19	25.9	143	33.9	27.1
<i>Atractiella/F. oxysporum</i>	21	8.4	1	37.1	56.4	76.9	14.2	12.4	1.6
<i>F. Oxysporum</i>	15.1	62.5	0		0	0	113.9	120.8	31.3
<i>L. chartarum/Atractiella</i>	13.3	0	0.3		0	3	424	0	0.2
<i>Atractiella/L. chartarum</i>	3.7	0	0.3		0	2.3	426.7	0	0.2
<i>L. chartarum</i>	6	1.1	0.3		0	15.4	109.8	1.1	1.2
<i>Atractiella</i>	0	0.9	0.1		0	0.4	0.5	1.3	0.8
									0.2

^aUnidentified metabolite 1 ID number: 12.52 234 324 194 249. ^bUnidentified metabolite 2 ID number:

13.52 324 412 163 193 222. ^cUnidentified metabolite 3 ID number: 11.08 234 193 180 9.