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Abstract Using quantum annealing to solve an optimization problem requires
minor embeddings of a logic graph into a known hardware graph. In an effort
to reduce the complexity of the minor embedding problem, we introduce the
minor set cover (MSC) of a known graph G: a subset of graph minors which
contain any remaining minor of the graph as a subgraph. Any graph that can
be embedded into G will be embeddable into a member of the MSC. Focusing
on embedding into the hardware graph of commercially available quantum
annealers, we establish the MSC for a particular known virtual hardware,
which is a complete bipartite graph. We show that the complete bipartite
graph Ky n has a MSC of N minors, from which Ky, is identified as the
largest clique minor of K, n. The case of determining the largest clique minor
of hardware with faults is briefly discussed but remains an open question.

Keywords minor embedding, adiabatic quantum computing, quantum
annealing, clique minor, graph theory

1 Introduction

Adiabatic quantum computation uses a continuous-time process to evolve the
state of a quantum register [I]. Whereas the register elements are represented
by quantum physical subsystems that can store qubits of information, the
continuous-time evolution depends explicitly on a Hamiltonian that defines the
interactions between register elements [2]. An ideal Hamiltonian may allow for
arbitrary interactions between elements, but physical and technological limita-
tions often prevent fabrication of arbitrary interactions or forms of connections
in actual devices. A prominent example is found in the quantum annealer
developed by D-Wave Systems, Inc. [3], which uses a well-defined hardware
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connectivity graph called the Chimera lattice and implements problems which
can be described using the Ising Hamiltonian with two-body interactions.

The problem of expressing an arbitrary Hamiltonian in the presence of
limited connections poses a prominent concern for quantum annealing appli-
cations [4]. Presently we consider the input to this programming process to
be a well-defined logical Ising Hamiltonian. The logical Ising model is known
to capture a broad class of different problems and may also be presented
in quadratic unconstrained binary optimization (QUBO) form [5]. Choi origi-
nally formulated the process of programming a logical problem as graph minor
embedding, in which a graph representing the dependency of the input Hamil-
tonian is mapped into the targeted hardware graph [6] [7]. In general, graph
minor embedding requires each logical vertex to be mapped into a connected
subtree of the hardware graph, and Choi’'s TRIAD algorithm yielded a de-
terministic method for embedding a complete graph into the Chimera lattice.
There are many approaches for determining if a graph can be embedded into
another graph, including: identifying useful graph qualities[8], [0} [10], establish-
ing a set of known embeddings as a “lookup table” [11], 2] or other heuristic
methods [13, [14].

More recently, Cai, Maccready, and Roy (CMR) have presented a random-
ized algorithm for generating an embedding [13]. Their approach is based on
employing Djikstra’s algorithm to find the shortest-path between randomly
mapped logical vertices. The CMR algorithm has proven useful for embed-
ding arbitrary input graphs in current hardware because it can find smaller
embeddings than using either the TRIAD algorithm [7] or maximal minor
embedding [I1]. However, the method is not guaranteed to succeed and has
a worst case complexity that scales as O(n®) with the input graph order n
(though average case behavior appears to be O(n?)). The CMR, embedding
algorithm represents a significant portion of the time needed for a quantum
annealing workflow, and for even modest problem sizes it can far exceed the
time required for executing a quantum annealing schedule [I5]. Problem in-
stances represented by large but incompletely connected input graphs must
use embeddings that are both resource efficient and time efficient in order to
ensure fast and correct solutions. Examples include dynamic job scheduling
[16] and route planning [I7], as well as time-dependent fault-detection [I8].
Alleviating the classical processing bottleneck while retaining the resource ef-
ficiency of the CMR algorithm is therefore an important problem for solving
optimization problems with quantum annealing and integrating these quantum
processing units into future computing systems [19].

In this contribution, we present a quasi-deterministic method for graph
minor embedding that takes advantage of a virtual hardware abstraction. Our
method builds upon two recent embedding concepts: “maximal minor embed-
ding” developed in [II], which characterizes finding the most efficient embed-
ding with respect to the minimal number of hardware nodes used in the em-



MSC of Ky, n via random matching edge sets 3

bedded graph; and recent ideas developed by Goodrich and collaboratorsﬂ that
uses the complete bipartite (biclique) minor of the Chimera graph as a virtual
hardware (as shown in Fig. . The full embedding of a problem graph in the
hardware graph is found by first embedding into a chosen virtual hardware
or one of its minors. Our choice of a bipartite virtual representation for the
hardware is motivated in part by the simplicity of the structure as well as its
balance between size and order of the virtual representation, and additionally
for its connection to associative memory recall and other variants of machine
learning applications [20]. We note that alternative virtual representations are
equally valid, e.g., a square grid.

Klymko et al.[T1] established tight bounds on the largest complete graph
that can be minor embedded in a Chimera graph as well as demonstrating
methods for embedding into faulty hardware graphs and introduced the con-
cept of “maximal minor” embedding. We rename the set of “maximal minors”
as the minor set cover (MSC): this is the set of minors for a given graph G
where any subgraph or minor of G will either be a member of the MSC or is
a subgraph contained in one of the members. The MSC of the biclique virtual
hardware is a finite set of embeddable graph minors which can be precomputed
without reference to the input problem, and can act as a lookup table. This
reframes the problem of graph minor embedding as a subgraph isomorphism
search: an input graph is compared against each key, if it is found to be con-
tained in a given key, the problem graph is now embedded into a member of
the MSC, and then an embedding in the hardware is found. It has been pro-
posed previously that reducing the problem complexity of graph embedding
from graph homomorphism to subgraph isomorphism can lead to substantial
speedup in processing time [21], 22].

The question of whether a graph is minor-embeddable has been explored
through many different approaches, such as: forbidden minors and extremal
graph theory. Forbidden minors are minors which a class of graphs is known to
exclude [23]: Wagner’s theorem established that planar graphs cannot contain
K5 or K33 minors [24], while the works of Robertson and Seymour [25] [26]
277, 28] 29] develop the theory of forbidden minors for planar and non-planar
graphs (see also the review in Ref. [30]). Extremal graph theory identifies what
classes of graphs, or graph qualities, ensure certain minors are contained by
a graph [31], B2] B3] 34, [35]. We will show that the final minor in the MSC
of a complete bipartite graph is always the K41 graph, and in establishing
the robustness of this minor for more general bipartite graphs, we turn to
research on the development of theorems for the existence of complete minors:
[36, 37, B8, [39, [40]. However the class of bipartite graphs under consideration
are not particularly sparse, nor are they random, of large order, size, girth or
degree. In focusing on the K11 minor, we are searching for conditions that
ensures a graph has the largest possible complete minor.

1 Work presented at the Society for Industrial and Applied Mathematics Workshop on
Network Science 2016, manuscript in progress.
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Currently our method for constructing the MSC of a graph is only applied
to the case of complete or near-complete bipartite graphs and in this paper
we focus on covering non-planar bipartite graphs which are undirected and
contain no multiple edges or self-loops. This excludes several cases of bipartite
graphs which have a trivial MSC that only contains the original graph. For
example, simple paths, cycles, and the star graph S,,. We also identify leaves
(terminal vertices) as graph edges which do not contribute to the formation
of a member of the MSC.

We derive the necessary requirements to build an edge set which generates
a MSC beginning with the simplest case of the complete (fully connected) bi-
partite graph (Sec. . A complete bipartite graph Ky n which has minimum
partition order N has a MSC which contains the complete graph Ky 1. This
is the largest complete graph that can be embedded into the original graph as
no other set of edge contractions can lead to a minor with a completely discon-
nected graph complement. For the Chimera(n,n,c) hardware graph,the MSC
identifies K, .11 as the largest complete graph which can be minor embedded
into the virtual hardware K, .. This agrees with results found by Choi [7]
and results given in [IT] based on treewidth arguments.

Incomplete bipartite graphs are those graphs which are missing edges be-
tween partitions. We discuss the case of a complete bipartite graph missing
a small number of edges in Sec. [5] and focus on the Kx; minor robustness
on a general incomplete bipartite graph. Criteria are derived which identify
bipartite graphs of minimum partition order N which lack the minor Ky 1.

2 Definitions and notations

A graph G = G(V, E) is defined by a vertex set {v;} = V and an edge set
{e;;} = E. In this paper we only consider simple, undirected graphs: the edges
have no orientation (the edge e;; = (z;,x;) is equivalent to the edge ej; =
(xj,%;)), and multiple edges and self-loops are not allowed. When counting
the degree of a vertex set resulting from the contraction of an edge e;;, the
in-degree of vertex x; counts all edges which connect to z; but excludes the
edge e;;, and the out-degree of vertex z; counts all edges which connect to x;
but excludes the edge e;;.

For any graph G on n vertices, the complement graph G¢ is also defined
on the vertex set V(G) and contains an edge €;; only if €;; does not exist on
G. Thus the union of G and its complement G¢ form the complete graph on
V(G). For example, the complete graph G = K,, has a complement of order
[V(G)| = |V(G)| = n vertices but |E(G°)| = 0 edges.

A graph G’ is minor embeddable in G if for each vertex v of a graph G’ a
mapping ¢g(v) can be found which takes v to a connected subtree of G. The
individual vertex sets of ¢g(v) do not overlap, and ¢g(z), ¢g(y) are adjacent if
there exists vertices z; € ¢g(z) and y; € ¢g(y) which are adjacent on G. The
order of a given subtree is the number of vertices it contains. An isomorphic
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embedding maps each vertex v to a single vertex of G (i.e. ¢g(v) = v), i.e.
each vertex is mapped to a subtree of order 1.

Generating a minor (M) from a given graph G is done by edge contraction
or edge removal, and G may have a large number of minors. For finite graphs,
there exists a set of graph minors M = {M®} which we define as the MSC.
The minors M®) € M are unique in that they are not isomorphically embed-
dable in the original graph, nor are they contained in any other minor as a
subgraph. As a result, the set M covers the entire set of minors (i.e for any
minor m of G, m is either a member of the MSC or is contained in a minor of
the set cover as a subgraph). By definition any minor formed by edge deletion
cannot be a included in the MSC. When searching for possible members of the
MSC only minors formed by edge contraction are considered.

This work focuses on the MSC for bipartite graphs (K n+). A bipartite
graph is a graph with a vertex set which can be partitioned into two non-
overlapping subsets: v, C V(G),v, C V(G),va Uvy = V(G),v, Ny = .
Complete bipartite graphs Ky n/ are those graphs of size |E(Kn n/)| = NN,
with all edges existing between vertices in different partitions. Incomplete
bipartite graphs Ky n/ are graphs with missing edges between partitions,
|E(IN(N,N/)| < NN’. On a complete bipartite graph, all vertices in a parti-
tion have the same degree, which is equal to the order of the other partition.
For the case of incomplete bipartite graphs, we define vertices which are not
fully connected to the opposite partition as incomplete vertices.

A subset of the edge set of a graph, is called an edge matching if all edges
are non-adjacent (do not share a vertex). A perfect matching is an edge set
which leaves no vertex of the graph uncoupled. The size of the perfect matching
set for a complete bipartite graph Ky x is N and is an upper bound for the
size of the perfect matching on an incomplete bipartite graph K ~.N. For a
complete bipartite graph with unequal partition orders, Ky n, the size of the
perfect matching set is min(N, N').

3 Minor embedding in the ideal Chimera hardware graph

The quantum annealer from D-Wave Systems, Inc. uses a lattice of coupled
superconducting flux qubits. The topology for the connections and interac-
tions between the qubits is represented by a hardware graph referred to as the
Chimera(n, m, ¢) graph [411 [3] [42] [43]. This graph has a fixed topology: it is an
n X m square lattice of K. . unit cells with intercell connections column-wise
between left bipartite partitions and row-wise between right bipartite parti-
tions (see Chimera(3,3,4) in Fig. . The Chimera(n,m,c) is bipartite, and
the largest biclique is the unit cell K. .. Few problems can be isomorphically
embedded into the D-Wave processor. In general, optimizing a given logical
Hamiltonian requires the use of minor embedding into the hardware graph,
which creates a significant bottleneck in the quantum annealing workflow.
Rather than enumerate the entire MSC of the Chimera graph, we use an
intermediate embedding step to construct a virtual hardware graph of the
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original hardware graph. We assume the Chimera graph is ideal, with all
qubits operational (no hard faults). Contracting all intercell connections on
a Chimera(n,m, c) hardware results in a virtual hardwardﬂ which is a com-
plete bipartite graph K¢ me (see Fig. . For this virtual hardware, we then
construct the MSC. The remainder of this paper studies the construction of
the MSC and establishes that the largest complete graph embeddable in a
Kyeme virtual hardware is Kiin (n,m)et1- These results agree with lemmas
presented in Ref. [II] which showed the treewidths of K., and K. coincide,
T (K.,) =7 (Kcq1) = c. The approach of Klymko et al. was to use the maximal

\':A M\h;

Fig. 1 [Color online] The Chimera graph and virtual hardware construction:
(a) the unit cell of a Chimera graph is the K44 graph, (b) the 3 x 3 grid
of unit cells for Chimera(3,3,4), vertex bags are defined along each row or
column of intercell connections (highlighted in grey), (c) contraction along
all edges in a bag results in the K212 virtual hardware. The left partition
consists of vertex bags with 3 physical qubits, formed by contracting vertical
intercell connections (red), the right partition consists of vertex bags with
3 physical qubits, formed by contracting all horizontal intercell connections
(blue, dashed)

minor set of the Chimera unit cell to define an iterative embedding process. In
this work we consider a two-step embedding procedure which first generates
a complete bipartite virtual hardware then identifies the MSC of the virtual
hardware. An embeddable complete graph K, is embedded into the virtual
hardware through an isomorphic mapping into (at least) one of the minors in
the minor set.

For an ideal Chimera(n,n,c) the two-step embedding and the Klymko
embedding identify the largest embeddable complete graph as Kj,.+1. Gen-
eralizing to a Chimera(n,m,c) hardware, the largest embeddable graph is
Kiin (n,m)et1- Using the two-step embedding results in a final embedding for
Kin (n,m)e+1 Which embeds each logical qubit into a chain of length m, n or
length m + n. With the MSC construction, the embedding of K, 41 into a
Chimera hardware graph with n x n square grid of K. . unit cells will require

2 See footnote
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2 chains of order n and c¢n — 1 chains of order 2n. The distribution of chain
lengths for the embedding of Kj3 on a 3 x 3 square Chimera is: 2 chains of
order £ = m = 3 and 11 chains of order ¢ = 2m = 6. Comparison to the em-
beddings shown in Ref. [I1], where the maximal minor set of the Chimera unit
cell was used to define an iterative embedding process, shows that the two-step
embedding finds the same embeddings for K13 and K77 as the iterative minor
extension embeddings.
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Fig. 2 [Color online] Example of embedding K3 in the Chimera(3, 3, 4) virtual
hardware construction: (a) the embedding of a logical qubit into 6 physical
qubits is highlighted (dark green), (b) of the 13 vertices on Kj3, 11 are chains
of order 6 (various colors) while 2 are chains of order 3 (black)

In Ref. [7], Choi gave a lower bound of [2=2] on the minimum number
of qubits needed to embed each logical qubit, and a lower bound on the total
number of qubits needed to embed a graph of order n: £2(n?/d) qubits, where
d = ¢+ 2 is the number of couplings per physical qubit. Our embedding on
Chimera(n, n,4) for K4,41, by embedding each logical qubit into ether n or
2n physical qubits, saturates the lower bound [’ZC__231 = [%1 = n. The ideal
Chimera(12,12,4) hardware contains 1152 qubits, while the minimum number
of qubits needed to embed K9 is 400 qubits. In this work we show that by
embedding into the Kyg 4g virtual hardware, the largest embeddable clique is
K49.

The remainder of this section is centered around proving the following
theorem:

Theorem 1 On the ideal Chimera(n, m,c) hardware (n x m grid of K. . unit
cells) the largest complete graph which can be embedded through the two-step
process is Kg, . c+1, where dp, = min (n,m).

Proof Through the construction of a bipartite virtual hardware, each physical
qubit is contained in a virtual qubit, which is a chain of length n. It will be
shown in the construction of the MSC that each logical qubit eventually is



8 Kathleen E. Hamilton, Travis S. Humble

embedded into a single virtual qubit (final embedding into a subtree of order
n) or at most a pair of virtual qubits (final embedding into a subtree of order
2n).

Lemma 1 On the ideal Chimera(n,n,c) hardware, embedding the complete
graph Kye41 will have nc — 1 subtrees of order 2n and 2 subtrees of order n.

The dimensions of the quantum hardware can be used to minimize the order
of the vertex subtrees. A graph Ky1 can be embedded in Chimera(n’,n’, )
hardware if n’¢’ > N but the order of each subtree is only dependent on n'. For
example, Ky ; can be embedded in a Chimera(10,10,4) hardware with maxi-
mum embedding subtree of order 20, or can be embedded in Chimera(2, 2, 20)
hardware with maximum embedding subtree of order of 4.

4 MSC of complete bipartite graphs

The MSC of a complete bipartite graph Ky n contains exactly /N minors, and
creates a graph sequence which converges to a complete graph K, (N’ < 2N).
The edges which one must contract in order to form minors of the MSC are a
set of (N — 1) non-adjacent edges. We prove our construction of the MSC, and
the identification of the set of edges to contract in terms of an edge matching
set and the graph complement of the complete bipartite graph.

Based on our definition of the MSC as the minors which covers all possible
minors which can be constructed from a graph, we expect each set member to
be the densest connected graph on N’ vertices. As each MSC minor is denser
than the previous minor, the corresponding sequence of graph complements
will become sparsely connected. The final minor in the set cover of a complete
bipartite graph K. . is found to be the complete graph K., whose complement

graph is of order (¢ + 1) but size 0.
*—o
o
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Fig. 3 Top row: the construction of the MSC for a complete bipartite graph
K5 5. Bottom row: the evolution of the complement for each minor. The final
MSC minor is the complete graph Kg which has a corresponding complement
graph which has an empty edge set
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Theorem 2 For a complete bipartite graph G = K. ., contracting a single
edge will result in a minor M(gl) which is a member of the MSC.

Proof By definition, a bipartite graph does not have connections between ver-
tices contained in the same vertex partition. Contracting any edge on a com-
plete bipartite graph will result in a vertex bag which is connected to both
bipartite partitions. Consider an edge on the bipartite graph e;; connecting
vertex v; in the left partition and vertex v; in the right partition. We also de-
fine the sets of (N — 1) neighboring vertices {v;}, {v}}. All vertices in {v;} are
in the right partition, and vice versa for {v}. The contraction of e;; creates
the vertex bag ¢(z;;) which is fully connected: having connections to all ver-
tices in {v;} U {v}}. Consequently, such a minor cannot exist as a subgraph of
the original graph because of its degree 2(IN — 1) and its connections between
both partitions.

It is also seen that the contraction of an edge on the original bipartite graph
and the creation of a minor with a fully connected vertex results in a dis-
connected vertex in the minor’s complement. Next we consider the action of
contracting two edges on a graph. First, considering the case of edges which
are non-adjacent on the original graph (do not share any vertices).

Corollary 1 The contraction of a pair of non-adjacent edges (e1,e3) on a
complete bipartite graph K. . will result in a MSC minor.

Proof The contraction of the first edge e; will result in a MSC minor M(gl)
by creating a fully connected vertex. Contracting the second edge es will also
create a fully connected vertex. As a result, the minor created by contracting

two non-adjacent edges Mg) is identified as a member of the MSC: it cannot
be contained in M(gl) as a subgraph due to the additional fully connected
vertex, nor is it possible for it to be a subgraph of M),

When non-adjacent edges are contracted we see that another disconnected
vertex exists on the minor’s complement. This effect is not observed for the
minor formed when two adjacent edges are chosen on the original graph and
then contracted.

Corollary 2 The contraction of a pair of adjacent edges on a complete bi-
partite graph will not result in a MSC minor. Contracting adjacent edges will
result in a graph minor which is a subgraph of the MSC minor generated by
contracting non-adjacent edges. Likewise the complement of such a minor will
contain the MSC minor complement as a subgraph.

Proof Consider two sets edges on a complete bipartite graph. Set 1 contains a
pair of non-adjacent edges (S1 = {(v§ < v}), (v§ > v5)}); the edges connect
four distinct vertices on the graph with 2 vertices in each bipartite partition.
Set 2 contains a pair of adjacent edges; they connect 3 distinct vertices on the
graph (So = {(v§ <> v}), (v} < v%)}). The first contraction in either set will
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add connections between vertices in the same partition: v{ < v3,v5,... v,

v}« v5, 08, ... v, Contracting a non-adjacent edge adds the (unique) connec-

tions: v§ <> v4,...v%, vy > v8 ... vl but contracting an adjacent edge only
a

adds the connections: v§ < v§,...v%.

The results for non-adjacent edges are extended further, establishing that
there is a finite size edge matching which will generate all minors of the MSC
for a complete bipartite graph.

Theorem 3 For a complete bipartite graph Ky n the cardinality of the MSC
is equal to n and is formed by the contraction of a set of (n — 1) non-adjacent
edges where n is the size of the mazimal edge matching set.

Proof By our definition, a MSC minor of a graph cannot be contained within
any other minor as a subgraph. Any graph has at least one minor in its MSC,
M) = G the original graph. All remaining minors in the MSC must be non-
isomorphic to each other, any other minor, or the original graph.

From Theorem , we established that contraction of a single edge on a
bipartite graph creates the first minor M) of order 2N — 1, with 1 vertex
set of degree 2N — 2 and the remaining vertices with degree N. It was shown
in Corollary that a pair of non-adjacent edge contractions will create a
second minor M) of order 2N — 2 with 2 vertex set of degree 2N — 3 and
the remaining vertices with degree N.

This argument is extended to postulate that N non-adjacent edges could
create N minors in the MSC where the value of N is determined by enforcing
the condition that all minors in the MSC are non-isomorphic. As edges are
contracted, the order of each subsequent minor is reduced by 1, while the
number of fully connected vertices is increased by 1. After contracting (N —1)
edges the minor MV=1) is of order N 41 and has (N —1) vertex sets of degree
2N — N = N and 2 vertices of degree N (the complete graph Ky .1). While
additional non-adjacent edges may exist, any further contractions will result
in minors which can be contained in the M@= minor. For the complete
bipartite graph, n = N the size of the maximal edge matching set.

From choosing (N — 1) edges to contract and including the first minor
defined by the original graph, it follows that any complete bipartite graph
Ky, n will have a MSC of cardinality N.

Corollary 3 The complete bipartite graph K; 1 has MSC of cardinality 1.

Corollary 4 A complete bipartite graph which is also a star graph Kn1 = Sy
has MSC of cardinality 1.

From the above theorems we present our final result for complete graphs.

Theorem 4 The largest clique minor of a Ky n graph is Kn41.

Proof The original bipartite graph G =Ky y has 2N total vertices of degree
d = N. The MSC of such a graph is the ordered sequence formed by contracting
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(N — 1) non-adjacent edges: {M© MDD M) MN-D} where M) =
G. The order of minor M is determined by the previous minor:

V(MD)| = VM) =1 = [V(MD)] - (). (1)

The number of vertices of degree N is reduced by 2 on each minor while the
number of fully connected vertices is increased by 1. As a result the final MSC
minor MN=1 is of order 2N — (N — 1) = N + 1 and N-degree regular, it is
the graph Ky 1. By definition the graph Ko cannot exist or it would be in
the MSC and the graph K is contained within K1 as a subgraph.

Corollary 5 The largest clique minor of a Ky N/ graph is Ky (N,N")+1-

Corollary 6 The clique number of each minor is strictly increasing over the
MSC of a complete bipartite graphs.

Proof The first minor in the MSC is the bipartite graph, which has a clique
number of 2. As non-adjacent edges are contracted, each subsequent minor
has an increasing number of vertices which are connected to both bipartite
partitions. As a result the order of the largest clique in each minor increases
by 1 vertex and the clique number increases by 1. The maximum clique number
of Ky n is N 4+ 1 and is reached on the final minor in the MSC.

Theorem 5 The treewidth of any minor in the MSC of a complete bipartite
graph Kn n is N.

Proof The proof follows from a simple treewidth argument. Each minor of the
Ky v MSC is formed sequentially, so each minor in the MSC is a minor of the
previous member. By definition, a graph H is a minor of G if the treewidth of H
is bounded from above by the treewidth of G: tw(H) < tw(G). The treewidth
of the first minor, a complete bipartite graph Ky y, is known tw(Ky n) = N.
The treewidth of the final minor K1 is known tw(Ky11) = N and thus
each minor in the remaining sequence must have treewidth N = tw(Ky n) >
tw(M@D) > tw(Kyny1) = N.

The construction of the MSC for a complete bipartite graph K y can be
implemented using a simple greedy algorithm. To add an edge to the matching
set, one is chosen at random from the existing edges of the graph. The first
edge is chosen from all edges of the graph. To ensure subsequently chosen
edges are not adjacent to any edge which already exists in the set Erq, after
adding an edge to the minor cover edge set, all edges adjacent the head and
tail of an edge e;; are removed from the graph. This process is repeated, with
edges added to the matching set until a stopping condition is met. Once all
edges in the non-adjacent edge set are contracted, and vertex sets formed, the
remaining vertices of the original graph are isomorphically mapped to vertex
sets of size 1.

As stated in Corollary |3] the K 1 graph minor has |[M| = 1. This is used
to define the stopping condition: once the removal of the head/tail vertices of
a contracted edge results in a subgraph which is K ; the procedure ends. It is
seen that this procedure constructs a set of only (N — 1) non-adjacent edges,
from which all possible members of the MSC are formed.
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5 MSC of nearly complete bipartite graphs

Most bipartite graphs encountered in real world applications are not com-
plete, it is likely that connections are absent between the partitions. For ex-
ample, a quantum processor may have faulty (inoperable) qubits, and thus the
Chimera(n, m, ¢) hardware graph may be missing vertices. In this section we
look at the MSC for the class of incomplete bipartite graphs K N,N, created by
removing a sparse subset of edges from a complete bipartite graph. The ap-
proach outlined in Sec. 4] may have limited applicability for such graphs. Ran-
domly choosing connections on a graph may not result in a set of (N — 1) non-
adjacent edges; collisions between the missing edge sets and the non-adjacent
edge set are probable and the completion of the non-adjacent edge set may re-
quire the addition of an edge which does not exist on the graph. Additionally,
even if a set of (N — 1) non-adjacent edges is found, there is no guarantee the
contractions will yield the clique minor K 1. Since random bipartite graphs,
and incomplete bipartite graphs are very common in quantum annealing (dis-
cussed in Sec. |3|) this last point is very important to investigate.

The MSC of Ky n establishes that the largest embeddable clique is K.
On an incomplete bipartite graph, the edges which contract and form members
of the MSC cannot be chosen completely at random. For K5 5 missing a single
edge, we show in Fig. [d]it still contains the clique minor Kg if the non-adjacent
edge set is chosen appropriately. However this result is not guaranteed for any
arbitrary non-adjacent edge set (as shown in Fig. . The robustness of the
Kn41 minor as edges are removed from Ky y is of importance in quantum
annealing applications (discussed in Sec. [3|) where hard faults can dramatically
affect the connectivity of the hardware graph.

We show how the results in Sec. [ can be modified and applied to the simple
case of K,y missing a single edge. From there we define three conditions
which identify graphs K ~,~ that cannot have a clique minor of order N + 1.
Only graphs with equal partition orders are discussed, but the results can be
extended to K, n-. However, a full discussion of how to mitigate the effects
of faults is left as an open question.

Most notably there exist a class of edges which will never assist in the
creation of a MSC minor. These are identified as those edges connecting to
leaves (also known as terminal vertices).

Theorem 6 Contraction of an edge which connects to a terminal vertex will
never yield a minor in the MSC.

Proof In our definition of the MSC, we noted that any member of the MSC
cannot be contained in another member as a subgraph. Consider a graph G
with a leaf vertex. The edge connecting to the leaf has a head with in-degree
(d; — 1) while the tail has out-degree 0. Contraction of this edge will result in a
vertex set ¢(x) with degree (d; —1) and the resulting minor will be a subgraph
of G.

However, the Ky11 clique minor can only be generated after (N — 1) edge
contractions for either a complete bipartite graph Ky x or incomplete bipar-
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Fig. 4 [Color online] Top row: evolution of a minor set generated by a non-
adjacent edge set for I~(575 (missing a single edge) which covers the set of
incomplete vertices (heavy red lines). Bottom row: evolution of the complement
for each minor
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Fig. 5 Top row: evolution of a minor set generated by an arbitrary non-
adjacent edge set (heavy black lines) for K5 5 (missing a single edge) . Bottom
row: evolution of the complement for each minor

tite graph K ~,~- The robustness of the K,,.11 graph minor is given by the
following result:

Theorem 7 On the faulty Chimera(n,n, c) hardware, embedding the complete
graph K,.11 is not possible if the virtual hardware is missing more than m' =
(ne)(ne+1)/2+ (nc—1) edges and the set of n’ incomplete vertices cannot be
covered by (nc — 1) edges.

Our proof of the clique minor robustness is framed in terms of the comple-
ment graph. For a complete bipartite graph K n, its complement graph will
consist of two disconnected complete graphs K. As Ky ny — K ~,~ through
the removal of edges while maintaining partition orders, the complement graph
will gain edges which connect the two disconnected Ky graphs.

The first condition for a faulty Chimera graph is that it’s bipartite virtual
hardware cannot be missing more than (N + 1)N/2 + (¢ — 1) edges. This is
a resource argument, that the original graph must have a sufficient number
of edges to contract and still support the complete graph K 1. The second
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requirement is that the set of incomplete vertices on the bipartite graph must
be coverable by at most (N — 1) edges. If an incomplete vertex is not con-
tained in a larger vertex embedding, then the resulting minor will not have
the maximum degree possible. The third requirement is that throughout the
sequence of edge contractions, a disconnected dimer consisting of two vertex
embeddings joined by an edge must not be created in the minor complement.
If such a dimer exists it cannot be resolved into two disconnected vertex sets.

Ezample 1 Consider the bipartite graph formed by removing a single edge
from Kj . The clique minor K3 cannot be formed from the resulting in-
complete bipartite graph I~(272 because the original graph has 3 edges, any
contraction would result in a minor with 3 vertices and 2 edges.

Ezxample 2 The crown graph is an incomplete bipartite graph which is formed
from Ky y by removing the IV edges of a perfect matching and is an example
of a graph which does not contain a K11 minor. There are 2N incomplete
vertices, this set cannot be covered by any combination of (IV — 1) edges. The
lack of a K1 minor is further verified by treewidth argument (see [44],[45)):
a graph G contains H as a minor if the treewidth of H is bounded above by
the treewidth of G, tw(H) < tw(G). The crown graph has treewidth N — 1
and thus cannot embed K11 (tw(Kny1) = N).

6 Open problems

We close with a brief discussion of two open problems: the more full treatment
of a faulty hardware graph and the full implementation of MSC embedding.

Hard faults (inoperable qubits) can occur in a quantum annealer, which
result in missing vertices and edges on the hardware graph. There are many
approaches to mitigating the effects of hard faults: one can choose to consider
only the largest n’ x n’ square portion of the hardware graph which lacks any
faults (see [I1]) or distort the shape of vertex bags to accommodate faults (see
[12]). In our preliminary discussion, we consider simply removing any hard
faults prior to constructing a virtual hardware. The resulting virtual hardware
of a Chimera(n,n, c) with faults will remain a bipartite graph, however it will
be missing edges, the partition orders may not be equal, nor equal to nc, and
its associated MSC may be larger than that of K, n.. The robustness of the
K41 clique minor was discussed in Sec. [p| for graphs missing few edges and
the construction of edge matchings needs careful consideration to maximize
the order of embeddable clique minors.

While we have identified the MSC for a virtual representation of the
Chimera lattice, we have not discussed methods for solving the subsequent
subgraph isomorphism problem. The latter step is necessary for choosing which
member(s) of the MSC contains the input graph as a subgraph. Subgraph iso-
morphism is believed to be NP-complete and we may expect that solving this
problem also poses a significant computational task. However, the instance of
interest is strictly smaller than the original minor embedding problem. Since
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members of the MSC are known beforehand, unique properties of those graphs
(which may be used to easily reject potential matches) can be precomputed.
These properties include: order, size, degree distribution, clique number, and
treewidth. Moreover, recent work from Babai [46] has shown that graph iso-
morphism may be computable in quasipolynomial time, a result that would
have a profound implications. We defer a more detailed analysis of this step
to a subsequent publication.

7 Conclusions

Minor embedding of the logical graph describing an input Hamiltonian presents
a significant bottleneck in adiabatic quantum programming. Our aim in this
work has been to reduce the difficulty of finding an embedding for a known
input graph by exploring what graphs can be embedded into a complete bipar-
tite virtual hardware. By defining the MSC, we identify K, .y1 as the largest
clique which is minor embeddable into the K, ,. virtual hardware of the
Chimera(n,n, c).

We have developed a general method for constructing the MSC of a fully
connected bipartite graph Ky n. It was seen that the contraction of edges
belonging to a set of (N — 1) non-adjacent edges constructs all members of the
MSC. This edge set could be found using a simple greedy algorithm and the
method is also applicable to complete bipartite graphs Ky s with N # N'.

For the case of an incomplete bipartite graph, the simple greedy algorithm
is of limited use as the number of minors in the MSC can be very large. We
focus on the largest clique minor, and determine two criteria that identify
graphs which does not have a K1 clique minor: first, any incomplete bipar-
tite graph which does not meet a minimum size |E| < (N + 1)2 + (N — 1)
and second, any incomplete bipartite graph on which the set of incomplete
vertices cannot be covered by (N — 1) edges. These two criteria are enough
to determine that a graph does not have a Ky clique minor, but they are
insufficient to determine if a graph does have a K1 minor.

By identifying the MSC of an ideal Chimera hardware, we have a solution
to the problem of complete graph embedding. If the graph K,.+1 can be
embedded, then any graph of order n’ < mc + 1 can be embedded, but the
actual vertex map is not known. Determining the robustness of the K11
clique minor on a Chimera hardware with faulty qubits is still an open ended
question.

8 Acknowledgements

This work was supported by the United States Department of Defense and
used resources of the Computational Research and Development Programs
at Oak Ridge National Laboratory. This manuscript has been authored by
UT-Battelle, LLC, under Contract No. DE-AC05000R22725 with the U.S.



16

Kathleen E. Hamilton, Travis S. Humble

Department of Energy. The United States Government retains and the pub-
lisher, by accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this manuscript, or allow
others to do so, for the United States Government purposes. The Department
of Energy will provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan.

References

1.

10.

Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, An-
drew Lundgren, and Daniel Preda. A quantum adiabatic evolution algo-
rithm applied to random instances of an NP-complete problem. Science,
292(5516):472-475, 2001.

William M. Kaminsky and Seth Lloyd. Scalable architecture for adiabatic
quantum computing of NP-hard problems. In Quantum computing and
quantum bits in mesoscopic systems, pages 229-236. Springer, 2004.

M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dick-
son, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple,
C. Enderud, J. P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh,
I. Perminov, C. Rich, M. C. Thom, E. Tolkacheva, C. J. S. Truncik,
S. Uchaikin, J. Wang, B. Wilson, and G. Rose. Quantum annealing with
manufactured spins. Nature, 473(7346):194-198, 05 2011.

. Travis S. Humble, Alex J. McCaskey, Ryan S. Bennink, Jay Jay Billings,

EF. D’Azevedo, Blair D. Sullivan, Christine F. Klymko, and Hadayat
Seddigi. An integrated programming and development environment for
adiabatic quantum optimization. Computational Science & Discovery,
7(1):015006, 2014.

Andrew Lucas. Ising formulations of many NP problems. Frontiers in
Physics, 2:5, 2014.

Vicky Choi. Minor-embedding in adiabatic quantum computation: I. The
parameter setting problem. Quantum Information Processing, 7(5):193—
209, 2008.

Vicky Choi.  Minor-embedding in adiabatic quantum computation:
II. Minor-universal graph design. Quantum Information Processing,
10(3):343-353, 2011.

Alexander Grigoriev and Hans L. Bodlaender. Algorithms for graphs em-
beddable with few crossings per edge. Algorithmica, 49(1):1-11, 2007.
Michael D. Coury. Embedding graphs into the extended grid. arXiv
preprint ¢s/0703001, 2007.

Fedor V. Fomin, Bart M. P. Jansen, and Michat Pilipczuk. Preprocess-
ing subgraph and minor problems: When does a small vertex cover help?
Journal of Computer and System Sciences, 80(2):468-495, 2014.



MSC of Ky, n via random matching edge sets 17

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Christine Klymko, Blair D. Sullivan, and Travis S. Humble. Adiabatic
quantum programming: minor embedding with hard faults. Quantum in-
formation processing, 13(3):709-729, 2014.

Arman Zaribafiyan, Dominic J. J. Marchand, and Seyed Saeed Changiz
Rezaei. Systematic and deterministic graph-minor embedding for cartesian
products of graphs. arXiv preprint arXiv:1602.04274, 2016.

Jun Cai, William G. Macready, and Aidan Roy. A practical heuristic for
finding graph minors. arXiv preprint arXiv:1406.2741, 2014.

Tomas Boothby, Andrew D. King, and Aidan Roy. Fast clique minor
generation in chimera qubit connectivity graphs. Quantum Information
Processing, 15(1):495-508, 2016.

Travis S. Humble, Alexander McCaskey, Jonathon Schrock, Keith Britt,
Hadayat Seddiqi, and Neena Imam. Performance models for split-
execution computing systems. 18th Workshop on Advances in Parallel
and Distributed Computational Models, 2016.

Davide Venturelli, Dominic J. J. Marchand, and Galo Rojo. Quan-
tum annealing implementation of job-shop scheduling. arXiv preprint
arXiv:1506.08479, 2015.

Eleanor G. Rieffel, Davide Venturelli, Bryan O’Gorman, Minh B. Do, Eli-
cia M. Prystay, and Vadim N. Smelyanskiy. A case study in programming
a quantum annealer for hard operational planning problems. Quantum
Information Processing, 14(1):1-36, 2015.

Alejandro Perdomo-Ortiz, Joseph Fluegemann, Sriram Narasimhan, Ru-
pak Biswas, and Vadim N. Smelyanskiy. A quantum annealing approach
for fault detection and diagnosis of graph-based systems. The European
Physical Journal Special Topics, 224(1):131-148, 2015.

Keith A. Britt and Travis S. Humble. High-performance Computing with
Quantum Processing Units. ACM Journal on Emerging Technologies in
Computing, in press, 2016.

Hadayat Seddiqi and Travis S. Humble. Adiabatic quantum optimization
for associative memory recall. Frontiers in Physics, 2:79, 2014.

Pavol Hell and Jaroslav Nesetfil. On the complexity of h-coloring. Journal
of Combinatorial Theory, Series B, 48(1):92 — 110, 1990.

Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Ku-
likov, Ivan Mihajlin, Jakub Pachocki, and Arkadiusz Socata. Tight lower
bounds on graph embedding problems. arXiv preprint arXiv:1602.05016,
2016.

Martin Cera, Ana Didnez, Pedro Garcia-Véazquez, and Juan Carlos Valen-
zuela. Graphs without minor complete subgraphs. Discrete Mathematics,
307(11):1276-1284, 2007.

K. Wagner. Uber eine eigenschaft der ebenen komplexe. Mathematische
Annalen, 114(1):570-590, 1937.

Neil Robertson and P. D. Seymour. Graph minors. I. Excluding a forest.
Journal of Combinatorial Theory, Series B, 35(1):39 — 61, 1983.

Neil Robertson and P. D. Seymour. Graph minors. V. Excluding a planar
graph. Journal of Combinatorial Theory, Series B, 41(1):92 — 114, 1986.



18

Kathleen E. Hamilton, Travis S. Humble

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Neil Robertson and P. D. Seymour. Graph minors. VIII. A Kuratowski
theorem for general surfaces. Journal of Combinatorial Theory, Series B,
48(2):255 — 288, 1990.

Neil Robertson and P. D. Seymour. Graph minors. XVI. Excluding a non-
planar graph. Journal of Combinatorial Theory, Series B, 89(1):43 — 76,
2003.

Neil Robertson and P. D. Seymour. Graph minors. XX. Wagner’s conjec-
ture. Journal of Combinatorial Theory, Series B, 92(2):325 — 357, 2004.
Special Issue Dedicated to Professor W.T. Tutte.

Ken-ichi Kawarabayashi and Bojan Mohar. Some recent progress and
applications in graph minor theory. Graphs and Combinatorics, 23(1):1-
46, 2007.

Zi-Xia Song and Robin Thomas. The extremal function for K9 minors.
Journal of Combinatorial Theory, Series B, 96(2):240-252, 2006.
Nikolaos Fountoulakis, Daniela Kiihn, and Deryk Osthus. The order of
the largest complete minor in a random graph. Random Structures &
Algorithms, 33(2):127-141, 2008.

Nikolaos Fountoulakis, Daniela Kiihn, and Deryk Osthus. Minors in ran-
dom regular graphs. Random Structures & Algorithms, 35(4):444-463,
2009.

Gwenaél Joret and David R Wood. Complete graph minors and the graph
minor structure theorem. Journal of Combinatorial Theory, Series B,
103(1):61-74, 2013.

David Eppstein.  Grid minors in damaged grids. arXiv preprint
arXiw:1303.1136, 2013.

A. V. Kostochka. Lower bound of the Hadwiger number of graphs by their
average degree. Combinatorica, 4(4):307-316, 1984.

Andrew Thomason. The extremal function for complete minors. Journal
of Combinatorial Theory, Series B, 81(2):318-338, 2001.

Reinhard Diestel and Christof Rempel. Dense minors in graphs of large
girth. Combinatorica, 25(1):111-116, 2004.

Andrew Thomason. Disjoint unions of complete minors. Discrete Mathe-
matics, 308(19):4370-4377, 2008.

Thomas Bohme, Ken-ichi Kawarabayashi, John Maharry, and Bojan Mo-
har. Linear connectivity forces large complete bipartite minors. Journal
of Combinatorial Theory, Series B, 99(3):557-582, 2009.

D-wave  publications. http://www.dwavesys.com/resources/
publications. Accessed: 2016-05-12.

N. G. Dickson, M. W. Johnson, M. H. Amin, R. Harris, F. Altomare,
A. J. Berkley, P. Bunyk, J. Cai, E. M. Chapple, P. Chavez, F. Cioata,
T. Cirip, P. deBuen, M. Drew-Brook, C. Enderud, S. Gildert, F. Hamze,
J. P. Hilton, E. Hoskinson, K. Karimi, E. Ladizinsky, N. Ladizinsky,
T. Lanting, T. Mahon, R. Neufeld, T. Oh, I. Perminov,C. Petroff,
A. Przybysz, C. Rich, P. Spear, A. Tcaciuc, M. C. Thom, E. Tolkacheva,
S. Uchaikin, J. Wang, A. B. Wilson, Z. Merali, and G. Rose. Thermally
assisted quantum annealing of a 16-qubit problem. Nat Commun, 4:1903,


http://www.dwavesys.com/resources/publications
http://www.dwavesys.com/resources/publications

MSC of Ky, n via random matching edge sets 19

43.

44.

45.

46.

05 2013.

Helmut G. Katzgraber, Firas Hamze, and Ruben S. Andrist. Glassy
chimeras could be blind to quantum speedup: Designing better bench-
marks for quantum annealing machines. Phys. Rev. X, 4:021008, Apr
2014.

Hans L. Bodlaender. A tourist guide through treewidth. Acta cybernetica,
11(1-2):1, 1994.

Fedor V. Fomin and Dimtirios M. Thilikos. Dominating sets and lo-
cal treewidth. In Giuseppe Di Battista and Uri Zwick, editors, Algo-
rithms - ESA 2003: 11th Annual European Symposium, Budapest, Hun-
gary, September 16-19, 2003. Proceedings, pages 221-229. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2003.

Laszl6 Babai. Graph isomorphism in quasipolynomial time. arXiv preprint
arXiv:1512.08547, 2015.



	Introduction
	Definitions and notations
	Minor embedding in the ideal Chimera hardware graph
	MSC of complete bipartite graphs
	MSC of nearly complete bipartite graphs
	Open problems
	Conclusions
	Acknowledgements

