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Abstract

Most previous development of the peridynamic theory has assumed a Lagrangian

formulation, in which the material model refers to an undeformed reference con-

figuration. In the present work, an Eulerian form of material modeling is devel-

oped, in which bond forces depend only on the positions of material points in the

deformed configuration. The formulation is consistent with the thermodynamic

form of the peridynamic model and is derivable from a suitable expression for

the free energy of a material. It is shown that the resulting formulation of peri-

dynamic material models can be used to simulate strong shock waves and fluid

response in which very large deformations make the Lagrangian form unsuit-

able. The Eulerian capability is demonstrated in numerical simulations of ejecta

from a wavy free surface on a metal subjected to strong shock wave loading.

The Eulerian and Lagrangian contributions to bond force can be combined in

a single material model, allowing strength and fracture under tensile or shear

loading to be modeled consistently with high compressive stresses. This capa-

bility is demonstrated in numerical simulation of bird strike against an aircraft,

in which both tensile fracture and high pressure response are important.
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1. Introduction

Nearly all work on peridynamics up to now has assumed material models

that are Lagrangian, meaning that the bond forces depend not only on the cur-

rent (deformed) configuration of the body, but also on a reference (undeformed)

configuration. An exception is the class of structureless material models that

were considered in [1]. These materials have bond force densities that are inde-

pendent of any reference configuration, but, due to additional assumptions in

what is now called the bond-based peridynamic theory, the structureless mate-

rials were found to have very restrictive properties and are generally not useful

in applications.

In the present work, we re-examine the possibility of peridynamic material

models that depend only on the deformed configuration, but do so within the

state-based theory. It is shown that the greater generality of the state-based the-

ory compared with the earlier bond-based theory avoids all of the limitations

of the structureless materials. When incorporated within the thermodynamic

statement of peridynamics, material models in the state-based theory can use

any equation of state from the standard (local) theory. Futhermore, the re-

sulting material models, which will be called Eulerian, can be combined in a

straightforward way with Lagrangian models. This provides a convenient way

to model solids in applications that involve fracture and fragmentation under

tensile or shear loading, in which a Lagrangian formulation is the natural ap-

proach, with high pressures and large deformations, in which an Eulerian model

has advantages. The capabilities of the Eulerian approach to peridynamic ma-

terial modeling are demonstrated with examples from shock wave physics and

impact mechanics of soft materials.

In Section 2 we provide a brief overview of the peridynamic theory, including

mechanics and thermodynamics. In Section 3 we introduce a peridynamic Eu-

lerian model equipped with a Mie-Grüneisen equation-of-state. Application to

shockwave ejecta in a metal subjected to a detonation wave is presented in Sec-

tion 3.4, along with comparison with experiment. Combination of Eulerian and
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Lagrangian contributions to bond force density in a material model is discussed

in Section 4. This approach is demonstrated in a problem involving comminu-

tion of a material followed by large compression in Section 4.1. Simulation of

birdstrike, along with validation of the predicted centerline pressure history, is

described in Section 5. It is shown that the contribution of the Lagrangian

terms, even though the problem appears to be dominated by large pressures at

the point of impact, significantly improve the prediction of how the projectile

shape evolves.

2. Peridynamic theory summary

Here we review key features and equations of the peridynamic theory, includ-

ing the mechanical theory and thermodynamics. A more detailed discussion may

be found in the review article [2]. The numerical discretization method used for

all the examples in the present paper is described in the Appendix.

2.1. Mechanics

The classical momentum equation for solid mechanics in Lagrangian form is

ρ0(x)ÿ(x, t) = ∇ · σ(x, t) + b(x, t) (1)

where ρ0 is the mass density in the reference configuration, x is a material point

in the reference configuration, y is the deformation map, ∇· is the divergence

operator, σ is the Piola stress tensor field, and b is the body force density field.

The primary motivations for development of the peridynamic theory arise

from the inapplicability of the PDE (1) at cracks or crack tips due to the nonexis-

tence of the necessary spatial derivatives on these singularities, and the inability

of this equation to include long-range forces. Since (1) cannot be applied directly

on discontinuites, special techniques such as XFEM [3] have been proposed to

insert cracks into discretized regions that are assumed to undergo smooth de-

formation elsewhere. Although these special techniques have achieved many
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successes, they require additional complexity, including supplemental equations

that dictate the crack growth velocity and direction.

In contrast, the peridynamic theory of solid mechanics is based on integral

equations, for which discontinuous solutions present no difficulty [1, 4]. In peri-

dynamics, cracks nucleate, grow, branch, merge, and arrest when and where it

is energetically favorable for them to do so according to the basic field equations

and material model. This capability for autonomous crack growth avoids the

need for the special techniques of fracture mechanics. See [5] for a comparison of

peridynamics with cohesive zone methods and XFEM. Peridynamics has been

successfully applied to model fracture in polycrystals [6], failure and fracture

in composites [7], dynamic brittle fracture in glass [8], and failure in electronic

packages due to drop-shock [9], among other applications. As a multiscale mate-

rial model, peridynamics has been demonstrated to be an upscaling of molecular

dynamics [10]. It has been implemented within a massively parallel open-source

molecular dynamics code [11], demonstrating scalable computational perfor-

mance on a computer with 65,000 processors.

In the peridynamic model, any material point x interacts through the ma-

terial model with its neighbors q within a prescribed distance δ of itself in the

reference configuration. This maximum interaction distance δ is called the hori-

zon, and the material within the horizon of x in the reference configuration is

called the family of x, denoted Hx. The vector between x and any point q

in its family is called a bond , denoted q − x. Figure 1 illustrates the horizon

and family of x. Associated with each bond is a pairwise bond force density

vector (force per unit volume squared) that q exerts on x, denoted f(q,x, t).

The peridynamic equation of motion is

ρ0(x)ÿ(x, t) =

∫
Hx

f(q,x, t) dVq + b(x, t). (2)

The pairwise bond force density function is antisymmetric:

f(x,q, t) = −f(q,x, t), (3)

which ensures that linear momentum is globally balanced.

4



𝐪
𝐱

𝛀

Figure 1: A typical material point x interacts with its neighbors q within its horizon.
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The bond forces are determined jointly by the collective deformation of Hx

and the collective deformation of Hq. To precisely describe these collective

deformations, a mathematical formalism involving objects called states is used.

States are operators that act on bonds. For present purposes, states are vector

valued, that is, if A is a state, then A〈q− x〉 is a vector. The inner product of

any two states A and B is defined by

A •B =

∫
Hx

A〈q− x〉 ·B〈q− x〉 dVq.

States are the nonlinear analogues of second order tensors in linear algebra,

which are linear transformations that map vectors to vectors. For functions

of states, Fréchet derivatives are used instead of tensor gradients. To define

the Fréchet derivative, let Ψ be a scalar-valued function of a vector state A.

Suppose there is a state denoted ΨA such that for any increment ∆A,

Ψ(A + ∆A) = Ψ(A) + ΨA •∆A + o(‖∆A‖) (4)

where

‖∆A‖ =
√

∆A •∆A.

Then ΨA is the Fréchet derivative of Ψ. For a more complete discussion of

states, see [4].

For purposes of material modeling, the basic kinematical quantity is the

deformation state Y, defined at any [x, t] by

Y[x, t]〈q− x〉 = y(q, t)− y(x, t). (5)

The deformation state maps bonds onto their images under the deformation and

is analogous to the deformation gradient tensor in the classical theory.

Pairwise bond force densities are assigned through the force state T:

f(q,x, t) = T[x, t]〈q− x〉 −T[q, t]〈x− q〉.

In this equation, there are contributions from the force states at both endpoints

of the bond q − x. Clearly this expression for f satisfies the required antisym-

metry (3). The material model T̂ prescribes the force state as a function of the
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deformation state:

T[x, t] = T̂(Y[x, t]), T[q, t] = T̂(Y[q, t]). (6)

The equations (6) show the main motivation for using the state formalism:

instead of a material model that gives a tensor-valued function of a tensor, in

peridynamics we have a state-valued function of a state. The material model

may include dependencies on other variables such as temperature or the time

derivative of Y. A particularly useful material model is the elastic material:

T = T̂(Y) = WY(Y)

where W is the strain energy density function for the material. Elastic peri-

dynamic material models conserve energy in the usual sense: the total strain

energy plus total kinetic energy in a body equals the net work done on the body

through external loading.

Many peridynamic analogues of classical material models have been devel-

oped, including isotropic linear elastic [4], elastic-plastic [12], and viscoelas-

tic [13] models. It can be shown that any material model in the classical theory

can be used within the peridynamic theory [4].

In the limit as the peridynamic horizon approaches zero, the first term on the

right-hand side of (2) has been proven to converge to the divergence of a Piola

stress tensor that is a function only of the local deformation gradient tensor, as

in the classical theory [14]. This limiting Piola stress tensor field is differentiable

and obeys the classical partial differential equation for the equation of motion.

The limiting, or collapsed, stress-strain model is elastic and obeys the conditions

in the classical theory for angular momentum balance, isotropy, and objectivity,

provided the original peridynamic material model satisfies these conditions. In

this sense, peridynamics is a nonlocal extension of classical continuum mechan-

ics.

In the peridynamic theory, damage is incorporated directly into a material

model. For application to crack growth in solids, damage is included in the

material model by allowing bonds to break. For example, a peridynamic bond
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failure rule may specify that bonds are broken irreversibly when their elongation

exceeds a prescribed critical value. After a bond breaks, the endpoints of the

bond are effectively disconnected from each other, and the force that the bond

was carrying is redistributed to other bonds that have not yet broken. This

increased load makes it more likely that these other bonds will break, leading to

progressive failure and crack propagation when this is energetically favorable.

The work required to break a bond is determined by the critical energy release

rate, an experimentally determinable quantity for brittle solids.

2.2. Thermodynamics

In the peridynamic formulation of thermodynamics, the first law expression

at any material point x is given by

ε̇ = T • Ẏ + q +Q (7)

where ε is the internal energy density (per unit volume in the reference config-

uration), q is the rate of heat transport to x from other material points in the

body, and Q is the source rate. The term T • Ẏ is called the absorbed power

density, the peridynamic equivalent of the classical stress power. The second

law expression for peridynamics is given by

θη̇ ≥ q +Q

where η is the entropy density and θ is absolute temperature. The first and sec-

ond laws can be combined to yield restrictions on peridynamic material models;

see [2] for details.

In the next section, we will use the free energy defined by

ψ = ε− θη.

The force state can be decomposed into equilibrium and dissipative parts:

T = Tequil(Y) + Tdiss(Y, Ẏ) (8)
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in which only the dissipative part contains rate dependence. It can be shown

that the following identities hold:

Tequil = ψY, η = −∂ψ
∂θ
. (9)

3. Eulerian peridynamic material modeling

In this section, we discuss a specialization of the peridynamic equations that

yields, in effect, an Eulerian model for compressible fluids. The implementation

of a Mie-Grüneisen equation of state is also described. The model contains both

equilibrium and dissipative contributions according to the decomposition (8).

3.1. Computing bond forces from an equation of state

A nonlocal mass density ρ(x, t) is evaluated based on the proximity of ma-

terial points in the deformed configuration, as opposed to the reference con-

figuration. The model uses this nonlocal mass density to compute pressure,

which it then translates into the force state. Let δ̄ denote the horizon in the

deformed configuration: if points are separated by a distance greater than δ̄ in

the deformed configuration, they do not interact.

To shorten the notation, denote a generic bond vector by ξ:

ξ = q− x.

Let ω(r) be a non-negative valued, continuously differentiable function on [0,∞).

Assume further that

ω′(δ̄) = 0 and 0 ≤ r < δ̄ =⇒ ω′(r) < 0, (10)

where ω′ = dω/dr, and

ω(r) = 0, r ≥ δ̄. (11)

Specifically, in the following discussion we set

ω(r) = (δ̄ − r)2, 0 ≤ r < δ̄. (12)
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This definition of ω is chosen because it has positive second derivative; see the

remarks following (21).

Let ρ0 be the reference density of the material. Define the nonlocal mass

density by

ρ(x, t) =
ρ0

γ

∫
Ω

ω(r〈ξ〉) dVq (13)

where the deformed bond length r〈ξ〉 is given by

r〈ξ〉 =
∣∣∣Y[x, t]〈ξ〉

∣∣∣ (14)

and

γ =

∫
Ω

ω (|ξ|) dVq.

In (13), ρ is computed from the deformed bond lengths, since, from (5) and

(14),

r〈ξ〉 = |y(q, t)− y(x, t)|.

Because of (11), the integrand in (13) is nonzero only for points q within a

distance δ̄ of the position of x in the deformed configuration. In contrast to

Lagrangian material models, this may include bonds that are longer in the

reference configuration than δ̄.

For any nonlocal mass density ρ, define the relative volume v and the com-

pression ζ by

v =
ρ0

ρ
, ζ =

ρ

ρ0
− 1. (15)

Let the pressure, internal energy density, and absolute temperature of the fluid

in the reference configuration be denoted p0, ε0, and θ0 respectively. Assume

there is a free energy function ψ(v, θ) for the material such that

p = −∂ψ
∂v

. (16)

The first of (9), together with the chain rule, leads to

Tequil = ψY =
∂ψ

∂v

∂v

∂ρ
ρY. (17)

To evaluate the Fréchet derivative ρY, first observe that for an incremental

change ∆Y,

∆r〈ξ〉 = M〈ξ〉 ·∆Y〈ξ〉 (18)
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where M〈ξ〉 denotes the deformed bond direction unit vector, defined by

M〈ξ〉 =
Y〈ξ〉
r〈ξ〉

. (19)

From (13), (18), and (19), it follows that

∆ρ =
ρ0

γ

∫
Ω

ω′(r〈ξ〉) ∆r〈ξ〉 dVq

=
ρ0

γ

∫
Ω

ω′(r〈ξ〉) M〈ξ〉 ·∆Y〈ξ〉 dVq.

From the last equation and (4), the Fréchet derivative of the nonlocal mass

density is found to be

ρY〈ξ〉 =
ρ0

γ
ω′(r〈ξ〉) M〈ξ〉. (20)

Returning to (17), and using (15), (16), and (20), we have

Tequil〈ξ〉 = tequil〈ξ〉M〈ξ〉, tequil〈ξ〉 =
pv2ω′(r〈ξ〉)

γ
(21)

where tequil is the scalar force state due to Eulerian (fluid-like) interactions.

Note that the bond force is parallel to the deformed bond direction, implying

that this peridynamic material model is an ordinary state-based model [4]. This

implies that the requirement for balance of angular momentum (nonpolarity)

is automatically satisfied without further restrictions. Since, in the second of

(21), the bond force depends linearly on ω′, the convexity of ω defined in (12)

influences the deformation. If ω has a positive second derivative, material points

that are close together tend to repel each other more strongly than those that

are farther apart. This tends to help maintain equal spacing between nodes in

a numerical simulation and improves stability.

Because of (10), it follows from (21) that for any bond,

Tequil〈ξ〉 ·M〈ξ〉 < 0 whenever p > 0.

That is, the bond forces are compressive if the pressure is positive. Further, by

(11), the bond forces vanish if the deformed bond length exceeds δ̄. Therefore,

in evaluating the integral in (13), only bonds within a neighborhood of y(x, t)
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with a deformed length less than or equal to δ̄ need to be included in the

integration. In this sense, the material model is Eulerian in character although

all the formalism is Lagrangian.

The internal energy density ε is found by integrating the energy balance (7)

over time at each material point x. The pressure p defined through (16) and the

temperature θ are computed through the material model in the form p = p(ρ, ε),

θ = θ(ρ, ε), where ρ is the nonlocal mass density defined in (13). In Section 3.3,

we describe the particular expressions for p and θ used in the present study.

3.2. Rate-dependent bond forces

The rate-dependent term Tdiss in (8) primarily has the purpose of dissipating

energy so that steady-state shocks can be modeled. Without these terms, a

shock wave with a constant profile, thickness, and velocity could not satisfy the

Rankine-Hugoniot relation. The dissipative term in the material model is given

by

Tdiss〈ξ〉 =
v2

γ

(
Cqρ0D2 − C`ρ0c0Ẏ〈ξ〉 ·M〈ξ〉

)
M〈ξ〉 (22)

where Cq and C` are dimensionless constants, the bulk wave speed c0 is found

from

c0 =

√
−1

ρ0

∂p

∂v
(0),

and the effective velocity change within the family D is defined by

D =
1

γ

∫
Ω

ω(r〈ξ〉) Ẏ〈ξ〉 ·M〈ξ〉 dVξ. (23)

The dissipative terms after discretization are similar to artificial viscosity [15].

By testing various combinations of values of the coefficients in (22), we find that

Cq = 8 and C` = 0.1 usually give acceptable results.

3.3. Mie-Grüneisen equation of state

Assume that the Hugoniot has a linear dependence of the particle velocity

Up on the shock velocity Us:

Us = c0 + SUp (24)
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where S is a constant and c0 is the bulk wave speed. The Mie-Grüneisen equa-

tion of state then takes the following form [16]:

pmg(ρ, ε) =
ρ0c

2
0ζ[1 + (1− Γ0/2)ζ]

[1− (S − 1)ζ]2
+ Γ0(ε− ε0), (25)

θ(ρ, ε) = θ0 +
1

ρ0Cv
(ε− ε0) (26)

where ζ is the compression defined in (15), Γ0 is Grüneisen’s parameter, and Cv

is the specific heat at constant volume.

A simple way to account for damage that is useful when the stress level

overwhelms significant effects from material strength, for example in a liquid, is

to use a tensile pressure cutoff. The pressure found from the equation of state

is modified according to

p = max
{
pmg(ρ, ε), pf

}
where pf is the fracture pressure. For most liquids, pf < 0 because the mate-

rial can sustain a finite tensile hydrostatic stress without cavitating, although

this stress is usually small in magnitude. An alternative approach to fracture

modeling uses peridynamic bond breakage, as described below in Section 4.

3.4. Example: Ejecta from a shockwave at a free surface

An important aspect of shockwave propagation in fluids and solids is the

spall and ejection of material at high velocity when the wave interacts with a

free surface. Of particular interest is an irregular surface, due to the subtle inter-

actions of incident and reflected waves that have a large effect on the breakup of

material and the velocity distribution of the ejecta. This phenomenon presents

challenges in computational modeling because it combines the effects of large

deformations, high strain rates, and fracture. Ejection under shock loading has

been studied experimentally for many years. Among the first experimental work

is that of Asay [17]. Recent experimental work includes [18-22]. See [18] for a

summary of the literature on experimental results. Computationally, problems

of this type have been modeled successfully using the DMK-UP technique [19],
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Figure 2: Diagram of the shock ejecta example problem. All spatial dimensions are in mm.

cluster dynamics [20, 21], molecular dynamics [18], and an Eulerian hydrocode

[22].

In this example problem, we model an experiment by Ogorodnikov et al.

[19] in which a shock created by an explosive plane wave generator enters an

aluminum block. The shock pressure inside the block is 30GPa. The shock goes

through the aluminum and reflects off the wavy free surface opposite the impact

surface (Figure 2). We model this problem with the meshless Emu peridynamic

code [23] modified to implement the Eulerian Mie-Grüneisen equation of state

as described above. Details of the numerical method are given in the Appendix.

Since Emu does not have a capability to model detonation, the shock wave is

created by the symmetric impact of an aluminum flier plate on an aluminum

target. The Emu model uses a square grid with a node spacing of 0.2mm and

a horizon of 0.62mm. The entire two-dimensional grid contains 49,504 nodes.

The time step size is h = 0.02µs. The material properties are listed in Table 1.

14



Parameter Value Units

c0 5220 m/s

ρ0 2700 kg/m3

S 1.37

Γ0 1.97

pf -500 MPa

Table 1: Material properties used in the ejecta simulation.

The initial velocity of the flier plate is 3000m/s. The impact creates a shock

wave that propagates into the target with a pressure of 30GPa, a particle velocity

of Up=1500m/s, and a shock velocity of Us=7140m/s (Figure 3). This value

is acceptably close to the expected value of shock velocity from (24), which is

7230m/s, indicating that the mechanical and thermodynamic states behind the

shock are being computed correctly.

The reflection of the shock from the wavy free surface creates a horizontal

component of particle velocity in addition to a much larger vertical component

as material is accelerated into the void. The reflected wave fronts, because

they are curved, reinforce each other at some locations, causing damage to form

preferentially where the surface profile was initially convex. The horizontal

velocities induced near the wavy surface lead to the formation of jets. The jets

form along the initially concave parts of the surface. The computed jet tip

velocity is 4000m/s, compared with the measured value of 3700m/s. By the end

of the calculation at 20µs, the tips of the jets start to break up.

Contours of relative density ρ/ρ0 are plotted in Figure 4 alongside radio-

graphs from [19]. The times of these images cannot be compared directly be-

tween the experiment and the calculation, because the initial conditions are

different between the two. Nevertheless, there are clear similarities between

the shapes of the jets in experiment and the model. It is also interesting that

between the jets, there is low-density, low-velocity debris present in both the

radiographs and the images from the model.

15



p=30GPa 

p=0 

p=0 𝑈𝑠=7140m/s 

Impact surface 

𝑈𝑠=7140m/s 

Figure 3: Shock waves in the ejecta example problem. Colors indicate pressure.
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Figure 4: Left: radiographs of ejecta from an aluminum plate [19]. Right: Computed contours

of relative density (ρ/ρ0).
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4. Combining Eulerian and Lagrangian components of a material

model

Recall that the Eulerian formulation of the material response developed in

Section 3 is really a Lagrangian formulation in which the bond force densities

depend only on the current configuration. This approach makes it easy to

combine the traditional form for peridynamic interactions, such as spring-like

interactions between material points, with the Eulerian version. This combined

approach provides a way to model phenomena such as the growth of discrete

cracks with high-pressure post-failure response. As will be illustrated in an

example below, this permits us to model the fragmentation of a solid followed

by compression of the fragments to very high relative density.

The Eulerian contribution to the force state consists of terms in the material

model that do not explicitly involve the underformed bond configurations. In

the fluid model derived in Section 3, both the equilibrium and dissipative terms

are Eulerian in this sense, and we write

TE = tEM = Tequil + Tdiss

where Tequil and Tdiss are given by (21) and (22) respectively.

The Lagrangian contribution to the force state is included by summing the

force states for the Eulerian and Lagrangian terms:

T = βTE + (1− β)TL (27)

where β is a scalar parameter that determines the relative weighting between

the Eulerian and Lagrangian terms. The Eulerian term is weighted more heavily

when the compression is large; in this case, for most materials, the response is

dominated by the pressure. If the Lagrangian term is ordinary (bond forces

parallel to the deformed bond vectors) then we write

TL = tLM.

In the following discussion, a modified form of the microplastic model [24] that

accounts for thermal expansion is assumed for tL. For each bond ξ, the bond
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strain at temperature θ is defined by

s =
|Y〈ξ〉|
|ξ|

− 1− α(θ − θ0)

where α is the linear coefficient of thermal expansion evaluated at the reference

temperature θ = θ0. For a Mie-Grüneisen equation of state, α is given [16] by

α =
Γ0Cv
3c20

.

The bond yields under both compression and tension but breaks only in tension.

In the microplastic model, bonds respond independently of each other, like

a set of nonlinear springs. Under simple shear, some bonds extend while others

contract, resulting in forces that resist the shear deformation. The Poisson ratio

in three dimensions is restricted to 1/4 in microplastic materials. However, any

admissible Poisson ratio can be reproduced by introducing terms that explicitly

respond to volume change, as in the linear peridynamic solid model [4].

The scalar force state is given by

tL〈ξ〉 =

 cse, if se ≤ 0,

cµ(t, ξ)se, if se > 0
(28)

where µ is a history dependent term that contains the bond damage:

µ(t, ξ) =

 1, if s(t′, ξ) < s0 for all 0 ≤ t′ ≤ t,

0, otherwise.

where s0 is the critical bond strain for bond breakage. For any bond ξ, the

linear elastic part of the bond strain, denoted se(t, ξ), is computed from

se(0, ξ) = 0, ṡe =

 ṡ, if |se| ≤ sy,

0, otherwise.

where sy is the strain for bond yield (Figure 5), a constant. The spring constant

c is given by

c =
18k

πδ4

where k is the bulk modulus. Note that in the material model (28), bond damage

is ignored if the bond strain is compressive.
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Bond force 
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Figure 5: Material model for the Lagrangian component of the material response.
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The weighting term β that appears in (27) is given by

β =


4ν − 1, if ζ ′ < 0 (tension),

4ν − 1 + (2− 4ν)ζ ′/ζc, if 0 ≤ ζ ′ ≤ ζc (small compression),

1, if ζc < ζ ′ (large compression)

where ν is the Poisson ratio (for small strains), ζc is the compression above

which the material response is taken entirely from the Eulerian term, and the

compression adjusted for temperature changes is defined by

ζ ′ = ζ + 3α(θ − θ0).

In effect, the Poisson ratio changes continuously from ν to 1/2 as the compres-

sion increases from 0 through ζc.

4.1. Example: Fragmentation of a soft material followed by large compression

This example illustrates the capability described in the previous section for

making a transition between a Lagrangian material model that captures fea-

tures of solid response, including discrete fractures, and an Eulerian model for

fluid-like response under large compressions. A cylindrical sample of diameter

D = 5cm and height h = 5cm is enclosed in a rigid annular cylinder of inner

diameter 7.07cm (≈
√

2D). Thus, the sample is enclosed in a container that

has twice the cross-sectional area as itself (Figure 6). The cylinder is com-

pressed by a piston moving at constant velocity resulting in a global axial strain

rate of 1000s−1. A velocity gradient is initialized in the sample such that its

velocity where it contacts the piston is the same as that of the piston. The

material properties are given in Table 2. The material model is as described

in the previous section, with combined Eulerian and Lagrangian contributions.

The Lagrangian portion neglects plasticity, and is representative of elastomeric

materials and gels. Plasticity can be incorporated into the Lagrangian portion

of the material model, which is ordinary state-based, according to the method

described in [4]. Details of the numerical method used in the Emu code are

given in the Appendix.
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Figure 6: Initially unconfined compression of a soft brittle specimen. The sample expands

laterally and eventually fills the void. All dimensions are in cm.

Parameter Cylinder compression Wilbeck gel impact LG997 gel impact Units

c0 1000 100 100 m/s

ρ0 1000 1000 1000 kg-m−3

Sα 1.00 1.00 1.00

Γ0 1.60 1.60 1.60

s0 0.05 3.00 3.00

sy 0.10 0.04 0.04

ν 0.46 0.44 0.44

ζc 0.25 0.10 0.10

Table 2: Material properties for the soft material compression and bird strike problems.
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The initial response of the sample is to undergo nearly uniaxial compres-

sion. Stress concentrations near the corners of the specimen nucleate cone-

shaped cracks that propagate toward the center (Figure 7). After these cracks

meet each other near the center, there is no longer any radial force holding the

material outside of them together. This material therefore expands suddenly

into the void that initially surrounded the cylindrical sample. As this material

expands radially, tensile hoop stresses within it lead to extensive fracture and

fragmentation. This material failure causes a temporary drop in the net axial

stress (Figure 8). After further compression, the fragments lock up with each

other and the net force starts increasing again. After the piston has compressed

the sample to half its original height, nearly all the void has been compressed

out and further compression causes the pressure to build up more rapidly. At

still larger compression, the damage and morphology of the fragments become

irrelevant, and the response is completely dominated by the equation of state.

5. Application to bird strike on aircraft

Impact of a bird on an aircraft structure, or its ingestion by a jet engine, is

an important safety concern in aviation. Experimental testing of the response of

structures to bird strike usually uses a gelatin simulant of a roughly cylindrical

shape shot by a gas gun.

Many computational results for bird strike are available in the literature

(see Heimbs [25]) for a comprehensive review). Computational modeling of bird

strike has largely relied on smoothed particle hydrodynamics (SPH). SPH sim-

ulations of bird strike may predict a spray of SPH nodes following impact that

may not provide a realistic representation of the deformation of the bird simu-

lant (Figure 11) [26]. From the photograph, evidently the gelatin acts somewhat

like a highly compliant rubber that sustains large tensile strains without dispers-

ing into droplets, as would be expected from a fluid. As noted in [26], the SPH

simulations tend to overpredict this dispersal. This could have a detrimental

effect on the accuracy of the predicted loads on an aircraft structure, creating
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Figure 7: Formation of fragments in the soft material compression problem. Left: Initial

fractures form from the corners of the specimen and propagate inward. Right: Fragments

that move into the void that initially surrounded the specimen.
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Figure 8: Net axial stress as a function of net axial strain in the gel compression problem.

a strong motivation to reduce this effect in simulations.

The numerical simulations presented in this Section use the PDBird code,

which is a specialized version of the Emu peridynamic code for modeling the

impact of soft projectiles. Details of the method are given in the Appendix. The

thermodynamic process is treated as adiabatic, since heat conduction occurs at

a negligibly slow rate relative to the mechanical deformation in high-velocity

impact.

5.1. Pressure at the point of impact

As a validation test, the peridynamic model was applied to a set of experi-

ments by Wilbeck [27]. In this set of experiments, a porous gelatin bird simulant

was shot from a gas gun at a thick steel target. The simulant specimens had a

variety of geometries but all were flat-ended cylinders with a length/diameter

ratio of about 2. To help preserve their shape upon launch, the specimens were

enclosed in sabots that were stripped before impact. The exact values of the
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multiple geometries and masses, as well as the impact velocities, were appar-

ently not reported. The target had a piezoelectric traction gauge at the point

of impact. (We use the term “traction gauge” here instead of the usual term

“pressure gauge” because it measures force per unit area on the target, not the

hydrostatic pressure in the sample.)

A peridynamic model of a typical test by Wilbeck is shown in Figure 9. The

specimen has a diameter of 0.114m and a length of L=0.228m. The meshless

discretization has a grid spacing of 5.7mm with 13,680 total nodes in the pro-

jectile. The density is 1000kg-m−3 resulting in a mass of 2.33kg. The impact

condition is normal impact at a velocity of V0=117m-s−1. The material prop-

erties are given in Table 2. A comparison of the model results against the test

data for the traction at the point of impact is shown in Figure 10. The plot uses

the same nondimensional variables as reported by Wilbeck in [27], which allow

measurements from a variety of initial conditions and geometries to be plotted

on the same set of axes.

5.2. Splash pattern

The capability described above to combine Lagrangian and Eulerian contri-

butions in a peridynamic material model helps to reduce the spray effect in ap-

plying a particle type discretization to the bird strike problem. Rate-dependent

material response, including Newtonian viscosity and other rheological effects,

may also influence the impact response of gelatin, but they were not included

in the peridynamic model.

Figure 12 illustrates the splash pattern predicted by a peridynamic model

of this experiment, which is called LG997 in reference [26]. The projectile is

a gelatin cylinder with a hemispherical front end, with a diameter of 0.096m

and an overall length of 0.266m. The projectile mass is 1.81kg and the impact

velocity is 170m-s−1. The numerical model has a grid spacing of 4.8mm with

17,650 total nodes in the projectile. The peridynamic simulation result at 3ms

shown in Figure 12 may be compared directly with the photograph in Figure 11.

The peridynamic result apparently tends to preserve the coherence of the body
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Figure 9: Snapshots of the computational grid in the simulation of the Wilbeck test [27]. with

an impact velocity of 117m-s−1. Colors indicate velocity magnitude.
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Figure 10: Normalized pressure at the point of impact in the simulation of the Wilbeck test,

compared with experimental data [27]. The impact velocity is 117m-s−1.
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Figure 11: Photograph (left) and SPH model (right) after 3ms in the LG997 bird strike

simulant impact test [26]. The arrow points to a reference mark on the specimen used to

measure the deformed diameter.

(freedom from disintegration) better than SPH. The diameter of the projectile

as a function of time in the peridynamic model is compared with test data and

the resuts from the same SPH model, both from reference [26], in Figure 13. The

peridynamic result for the deformed diameter agrees more closely with the test

data than the SPH prediction does, although it is possible that some other vari-

ant of SPH would give a better result in this problem. Further discussion of the

relation between SPH and particle discretization of the peridynamic equations

is given in the Appendix.

5.3. Impact on a deformable target

To demonstrate application of the method to impact on a deformable target,

the LG997 calculation was repeated with the rigid target replaced by a thin

aluminum plate as was used in the experiment (see Section 7 of [26]). The

plate was a square with a side length 1.0m and a thickness of 3.18mm. The

numerical grid had a spacing of 5.7mm in both the projectile and the target,

with a total of 9581 total nodes in the projectile and 153,784 in the target.
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Figure 12: Splash pattern predicted by the peridynamic model of the LG997 bird strike

simulant impact test.
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Figure 13: Time history of the diameter of the projectile in the LG997 bird strike simulant

impact test.
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Figure 14: Predicted plate deformation due to impact of a bird simulant at the time of

maximum plate deflection. Left: Contours of displacement. Right: Cut-away view of the

deformed materials.

The Young’s modulus of the plate was 70GPa. It was modeled as a three-

dimensional peridynamic grid using a microplastic material model with force

normalization [24] with a yield stress of 370MPa. The load cells and the steel

frame that held the plate edges in place was also modeled as microplastic. In

the model, interaction between the projectile and the target occurred through

contact forces rather than peridynamic bonds. Contact forces were computed

using short-range repulsive forces between the nodes of the projectile and target

grids [24].

The target plate at roughly the time of peak center displacement is shown

in Figure 14. The colors represent normal displacement. The time history of

the center of the rear surface of the plate (near the point of impact) is shown in

Figure 15 along with the measured experimental data from Section 7 of [26]).
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Figure 15: Predicted and experimental time histories of centerline plate deflection. Experi-

mental data from [26].
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6. Discussion

The traditional form of peridynamics, which is Lagrangian, encounters diffi-

culties when applied to very large deformations, particularly in fluids. The root

cause of these difficulties is that families become so distorted and entangled that

Lagrangian material models no longer provide a reasonable physical represen-

tation of interactions between material particles. The method proposed here,

which, in effect, continually redefines the family of a material particle in the

deformed configuration, apparently solves this problem. The computational re-

sults demonstrate the viability of the Eulerian form of the peridynamic method

for simulating large deformations of compressible fluids under high pressure and

the spall of material due to shock waves. The meshless property of the method

has important advantages for this application, because of the very large de-

formations involved and the prevalence of fracture. The ability to seamlessly

combine Lagrangian (solid-like) and Eulerian (fluid-like) aspects of material re-

sponse provides a way to model soft materials such as gels and post-failure

response of fragmented solids.

The use of a Lagrangian and Eulerian material model in a computation

requires two neighbor lists to be supplied for each node: one in the reference

configuration, and another in the current configuration. The latter must be

updated frequently during the calculation; this results in a modest increase in

the execution time. The dual-horizon formulation of peridynamics proposed by

Ren et al. [28] appears to be applicable to the Eulerian as well as Lagrangian

parts of the model, potentially providing significant increase in computational

efficiency.

Although the examples presented in this paper involve high rate deformation

and impact, there is no apparently no fundamental reason why a peridynamic

Eulerian fluid model could not also be applied to lower rate applications. How-

ever, in such applications, the importance of the stabilizing terms described in

the Appendix would need to be evaluated relative to the physical response. Mod-

ification of the Eulerian material model to reproduce surface tension through
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the incorporation of nonlocal forces between material particles is currently under

investigation.
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[3] J. Moës, J. Dolbow, T. Belytschko, A finite element method for crack

growth without remeshing, Int. J. Numer. Meth. Eng 46 (1) (1999) 131–

150.

[4] S. A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states

and constitutive modeling, Journal of Elasticity 88 (2007) 151–184.

[5] A. Agwai, I. Guven, E. Madenci, Predicting crack propagation with peridy-

namics: a comparative study, International Journal of Fracture 171 (2011)

65–78.

[6] E. Askari, F. Bobaru, R. Lehoucq, M. Parks, S. Silling, O. Weckner, Peri-

dynamics for multiscale materials modeling, in: Journal of Physics: Con-

ference Series, Vol. 125, 2008, p. 012078.

[7] J. Xu, A. Askari, O. Weckner, S. Silling, Peridynamic analysis of im-

pact damage in composite laminates, Journal of Aerospace Engineering

21 (2008) 187–194.

[8] Y.-D. Ha, F. Bobaru, Studies of dynamic crack propagation and crack

branching with peridynamics, International Journal of Fracture 162 (2010)

229–244.

[9] A. Agwai, I. Guven, E. Madenci, Damage prediction for electronic package

drop test using finite element method and peridynamic theory, in: Elec-

tronic Components and Technology Conference, 2009. ECTC 2009. 59th,

IEEE, 2009, pp. 565–569.

35



[10] P. Seleson, M. L. Parks, M. Gunzburger, R. B. Lehoucq, Peridynamics as

an upscaling of molecular dynamics, Multiscale Modeling and Simulation

8 (2009) 204–227.

[11] M. L. Parks, R. Lehoucq, S. Plimpton, S. Silling, Implementing peridynam-

ics within a molecular dynamics code, Computer Physics Communications

179 (2008) 777–783.

[12] J. A. Mitchell, A nonlocal, ordinary, state-based plasticity model for peri-

dynamics, Tech. Rep. SAND2011-3166, Sandia National Laboratories, Al-

buquerque, NM (2011).

[13] J. A. Mitchell, A non-local, ordinary-state-based viscoelasticity model for

peridynamics, Tech. Rep. SAND2011-8064, Sandia National Laboratories,

Albuquerque, NM (2011).

[14] R. B. Lehoucq, S. Silling, Force flux and the peridynamic stress tensor,

Journal of the Mechanics and Physics of Solids 56 (2008) 1566–1577.

[15] E. Caramana, M. Shashkov, W. PP, Formulations of artificial viscosity

for multi-dimensional shock wave computations, Journal of Computational

Physics 144 (1998) 70–97.

[16] M. A. Zocher, P. J. Maudlin, S. R. Chen, E. C. Flower-Maudlin, An eval-

uation of several hardening models using taylor cylinder impact data, in:

Proc., European Congress on Computational Methods in Applied Sciences

and Engineering, Barcelona, Spain, 2000.

[17] J. R. Asay, Material ejection from shock-loaded free surfaces of aluminum

and lead, Tech. Rep. SAND-76-0542, Sandia National Laboratories, Albu-

querque, NM (1976).

[18] O. Durand, L. Soulard, Large-scale molecular dynamics study of jet

breakup and ejecta production from shock-loaded copper with a hybrid

method, Journal of Applied Physics 111 (2012) 044901.

36



[19] V. A. Ogorodnikov, A. L. Mikhailov, A. V. Romanov, A. A. Sadovoi, S. S.

Sokolov, O. A. Gorbenko, Modeling jet flows caused by the incidence of a

shock wave on a profiled free surface, Journal of Applied Mechanics and

Technical Physics 48 (2007) 11–16.

[20] V. Piskunov, I. Davydov, R. Veselov, B. Voronin, D. Demin, A. Petrov,

N. Nevmerzhitskiy, V. Sofronov, Cluster dynamics method for simulation

of dynamic processes of continuum mechanics, in: DYMAT-International

Conference on the Mechanical and Physical Behaviour of Materials under

Dynamic Loading, Vol. 2, EDP Sciences, 2009, pp. 1789–1797.

[21] I. A. Davydov, V. N. Piskunov, R. A. Veselov, B. L. Voronin, D. A. Demin,

A. M. Petrov, N. V. Nevmerzhitskiy, V. N. Sofronov, Cluster dynamics

method for simulation of dynamic processes of continuum mechanics, Com-

putational Materials Science 49 (2010) S32–S36.

[22] B. A. Kullback, G. Terrones, M. D. Carrara, M. R. Hajj, M. L. Elert, W. T.

Buttler, J. P. Borg, J. L. Jordan, T. J. Vogler, Quantification of ejecta from

shock loaded metal surfaces, in: AIP Conference Proceedings, Vol. 1426,

AIP, 2012, pp. 995–998.

[23] S. A. Silling, E. Askari, A meshfree method based on the peridynamic

model of solid mechanics, Computers and Structures 83 (2005) 1526–1535.

[24] R. W. Macek, S. A. Silling, Peridynamics via finite element analysis, Finite

Elements in Analysis and Design 43 (2007) 1169–1178.

[25] S. Heimbs, Computational methods for bird strike simulations: A review,

Computers and Structures 89 (2011) 2093–2112.

[26] G. Olivares, Simulation and modeling of bird strike testing – phase II,

Tech. Rep. NIS 09-039, National Institute for Aviation Research, Wichita,

KS (2010).

[27] J. S. Wilbeck, Impact behavior of low strength projectiles, Tech. Rep.

AFML-TR-77-134, US Air Force Materials Laboratory, Dayton, OH (1978).

37



[28] H. Ren, X. Zhuang, Y. Cai, T. Rabczuk, Dual-horizon peridynamics, Inter-

national Journal for Numerical Methods in Engineering 108 (2016) 1451–

1476.

[29] J. Von Neumann, R. D. Richtmyer, A method for the numerical calculation

of hydrodynamical shocks, Journal of Applied Physics 21 (1950) 232–237.

[30] M. Bessa, J. Foster, T. Belytschko, W. K. Liu, A meshfree unification: re-

producing kernel peridynamics, Computational Mechanics 53 (2014) 1251–

1264.

[31] G. C. Ganzenmüller, S. Hiermaier, M. May, On the similarity of meshless

discretizations of peridynamics and smooth-particle hydrodynamics, Com-

puters and Structures 150 (2015) 71–78.

7. Appendix. Numerical method

In this study we use the meshless numerical approximation for the equation

of motion (2) described by Silling and Askari [23], extended to state-based ma-

terial models and to include the energy balance. Explicit central differencing in

time is used:

yn+1
i = yni + hv

n+1/2
i ,

v
n+1/2
i = v

n−1/2
i + hani

where i is the node number, n is the time step number, and h is the time step

size. In the following,

ξij = xj − xi, rij = yj − yi, vij = vj − vi, rij = |rij |,

tij = T̂[xi]〈ξij〉, tji = T̂[xj ]〈ξji〉.

All terms in the material model T̂ are evaluated at time step n. Volume integrals

over Ω can be restricted to a smaller volume Eni , which is the set of nodes j

38



within a distance δ̄ of node i in the deformed configuration at time step n. (A

search must be performed at each time step to determine Eni for each node.)

For example, the nonlocal density defined in (13) at node i is approximated by

ρni =
ρ0

γi

∑
j∈Eni

ω(rnij)Vj (29)

and the equation of state takes the form

pni = p(ρni , ε
n
i ).

The discretized equation of motion (2) takes the form

ρ0a
n
i =

∑
j∈Eni

(tnij − tnji)Vj + bni (30)

where Vi and Vj are the volumes in the reference configuration of nodes i and j

respectively. The first law expression (7) is discretized according to

εn+1
i = εni + h

∑
j∈Eni

tnij · v
n+1/2
ij + q

n+1/2
i +Q

n+1/2
i

 .

The dissipative terms in the material model are discretized as follows. From

(22),

(Tdiss)nij =
(vni )2

γi

(
Cqρ0(Dni )2 − C`ρ0c0v

n−1/2
ij ·Mn

ij

)
Mn

ij (31)

where the effective velocity change within a family defined in (23) is approxi-

mated by

Dni =
1

γi

∫
Ω

ω(rnij)v
n−1/2
ij ·Mn

ijVj .

The term in (31) involving (Dni )2 is simply an adaptation to peridynamics of

the quadratical artificial viscosity proposed by Von Neumann and Richtmyer

[29] that is standard in modern hydrocodes. The linear term involving the

term v
n−1/2
ij is different from the usual linear artificial viscosity, because it

is computed according to the rate of stretch for each bond, rather than the

volumetric strain rate. This linear term stabilizes the method with respect to

zero-energy modes and other unphysical modes of deformation.
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The discretized expression for nonlocal density (29) is essentially the same

as is used in smoothed particle hydrodynamics (SPH), raising the question of

whether the present method is related to SPH. Recent work [30, 31] has ex-

amined the relationship between peridynamics and other meshless methods,

including SPH, Moving Least Squares (MLS), and the Reproducing Kernel Par-

ticle Method (RKPM). These studies show that the particle type discretization

of the peridynamic continuum equations, under certain severe restrictions, is es-

sentially the same as these earlier methods. These restrictions include the use of

a special class of peridynamic material models (correspondence materials, which

are a subclass of the non-ordinary state-based materials). The restrictions also

include that there be no bond damage, and no bond forces of the type described

in Section 4. Since the fluid model proposed in Section 3 is a type of ordinary,

rather than non-ordinary, state-based material model, it is not yet clear whether

the results in [30, 31] apply in this case. The peridynamic model rigorously en-

forces the balance of angular momentum. Also, since the thermodynamic form

of peridynamics discussed in Section 2.2 is fully consistent with the mechanical

theory, the particle discretization inherits this consistency.
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