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1 Introduction

Conformal Field Theories (CFT’s) often come in a continuous family labeled by their
exactly marginal couplings. This family, known as the conformal manifold M, is endowed
with a canonical metric, the Zamolodchikov metric [1]. The Zamolodchikov metric is
determined by the two-point functions of the exactly marginal operators. The general
Riemannian structure of conformal manifolds was first discussed in [2, 3].

Such conformal manifolds appear in theories with extended symmetries, such as su-
persymmetry or current algebra (e.g., the ¢ = 1 models), and in certain large N theories.!
These conformal manifolds also play an important role in the AdS/CFT correspondence
and on string worldsheets. In the former case, the conformal manifold of the boundary
CFT maps to the space of vacua in the bulk Anti-de Sitter space (AdS). In the latter
case, the conformal manifold of the worldsheet theory maps to the space of solutions of the
equations of motion in spacetime.

One of the fundamental properties of the conformal manifold of two-dimensional N =
(2,2) superconformal field theories (SCFT’s) is that it factorizes locally? into the product

!Some general arguments about when such families may exist can be found in [4].
2There are examples where the conformal manifold is modded out by a discrete symmetry, which prevents
it from being a product globally [5, 6]. We thank D. Morrison for a useful discussion about this point.



of two Kéahler manifolds,

M X My . (1.1)
Coordinates of M. and M;,. are the coupling constants of the exactly marginal operators
constructed from the dimension (%, %) operators in the chiral and twisted chiral rings [7] of
the SCFT. When the Virasoro central charge is ¢ = 9 and the SCFT is realized as a non-
linear sigma model with a Calabi-Yau threefold as its target space, the factorization (1.1)
was proven in [8] by combining string theory worldsheet SCFT and target space arguments.?
For other early papers on the A/ = (2,2) conformal manifold from the target space and the
worldsheet view points, see [9, 10] and [8, 11-13], respectively.

More recently, in [14] the Weyl anomaly on the conformal manifold of N' = (2,2)
theories was used to rederive the factorization (1.1). The argument in [14] applies to
any N = (2,2) SCFT, with no restriction on the Virasoro central charge. An assump-
tion made in [14] was that the coupling constants parameterizing M, and M. could be
promoted to supersymmetric dimension (0,0) background chiral and twisted chiral mul-
tiplets, in the spirit of [15]. Factorization of the conformal manifold (1.1) then followed
from the classification of anomalies of the partition function under super-Weyl transforma-
tions. Alternatively, one can also easily provide an argument for factorization (1.1) in the
spirit of [16].

On the other hand, it is well-known that the conformal manifold of the n-dimensional
torus 7™ SCFT is locally [17],

O(n,n)
— 1.2
O(n) x O(n)’ (12)
while the conformal manifold of the K3 SCFT is locally [2] ,
0(4,20
(4,20) (1.3)

0(4) x 0(20)

More generally, the conformal manifold of N = (4,4) SCFT’s is locally of the form [18]
(see also [19]),
O(4,n)

01 x O(n) (14)

for some n.* These examples appear to be at odds with the factorization (1.1) of the confor-
mal manifold of V' = (2,2) SCFT’s proven in [14]. Indeed, with the exception of the n = 2
case in (1.2), these conformal manifolds do not factorize locally into a product of Kéhler
manifolds. In fact, they are not even Kahler manifolds. This is in spite of the fact that the
T™ SCFT with n even and the other SCFT’s enjoy N = (2,2) superconformal symmetry.

Another way of presenting this puzzle is the following. Normally, when a particular
global symmetry of a theory implies some special properties, extending that symmetry
does not ruin those properties. Here, we see a counter-example to that. Specifically, if
we consider a theory with N' = (4,4) supersymmetry and view it as a special case of a

3For SCFT’s realizing Calabi-Yau compactifications, M. and M. parameterize the moduli space of
complex structure and complexified Kéhler class.
4For a sigma model with a hyper-Kéhler target space M, n = hl’l(M).



N = (2,2) theory, we might conclude that the conformal manifold should be Kéhler and
that it should factorize as in (1.1) . This conclusion turns out to be wrong. Later we will
discuss additional properties of N' = (2,2) theories that do not hold true in theories with
extended supersymmetry.

In this note we resolve this tension. In a generic N' = (2,2) SCFT, the operator product
expansion (OPE) between a chiral multiplet @ and a twisted chiral multiplet O of scaling

dimensions ( %, %) does not have poles. On the other hand, in all the counter-examples to
factorization mentioned above, the OPE has a pole®
~ 1
Ol(21) O(w2) ~ ————— Ty (w2) + -+, (1.5)
Ty T

where the symbol | on the left-hand side picks up the bottom component of each multiplet.
The operator J 4 appearing on the right-hand side must be both chiral and twisted chiral,
and with scaling dimensions (1,0) and R-charges (2,0). Jy4 is the bottom component of
a special N' = (2, 2) short multiplet, which we shall denote by J, . The existence of such
a multiplet implies that the R-symmetry is enhanced and that the SCFT enjoys enlarged
superconformal symmetry beyond N = (2,2) supersymmetry. For example, in the K3
SCFT, the current J, ; enlarges the R-symmetry from U(1) to SU(2).°
Let us imagine that we deform the SCFT with exactly marginal operators

/ Prddtdd= A0 + / Prdotdod= A0 + c.c (1.6)

A powerful idea [15] is to promote A and A to background chiral and twisted chiral super-
fields. We will see that whenever the OPE between O and O is singular as in (1.5), then
the couplings cannot be promoted to such background superfields due to an anomaly! We
can either promote the As to background chiral superfields or the s to background twisted
chiral superfields, but we cannot do both simultaneously. To our knowledge, this type of
obstruction has not been discussed before.

Before we explain how this comes about let us explain the physics of promoting cou-
plings to background fields. The effective action as a function of the background fields
satisfies the required symmetries when the operators do not have contact terms that spoil
those symmetries. For example, if a conserved current is not conserved at coincident points
then the background effective action will not be gauge invariant. Another example is if in a
CFT the operator equation T}, = 0 does not hold at coincident points, then the background
effective action fails to depend just on the conformal class of the background metric. Sim-
ilarly, in supersymmetric theories, for the effective action to depend on A and A as chiral
and twisted chiral superfields, the operators O and O have to obey their defining equations

D:O=0, D,O0O=D_0=0 (1.7)

SThroughout this note we study the theories in Euclidean space. However, we use Lorentzian signature
notation with coordinates 2=+ etc., which are complex conjugates of each other. The reason for using this
notation is that we use complex conjugation notation on the charged chiral objects like the odd coordinates
0, as if we are in Lorentzian signature.

5Tt is important that the current J,, which enlarges the R-symmetry corresponds to a normalizable
state in the SCFT.



not only at separated points (which holds by definition) but also at coincident points.
Loosely speaking, one could say that the equations (1.7) have to be obeyed off-shell. As
with all anomalies, our shortening anomaly can be understood as the failure of the parti-
tion function to be invariant under certain background field transformations. The operator
equations (1.7) at coincident points would be a consequence of the partition function being
invariant under certain background superfield transformations, akin to the standard way
conservation laws follow from the invariance of the partition function under background
field transformations. When the partition function is not invariant under these back-
ground field transformations, we encounter an anomaly. This point of view is elaborated
in appendix A.
We will show that the OPE (1.5) induces contact terms of the form

DV O(21) O(Zs) ~ 6@ (213) 0y T+ (Z2)

H(2) 2 2 (18)
DY O(21) O(Z3) ~ 8 (219) 0y T (21),

and that it is impossible to tune both of these contact terms away (the notation will be
explained in section 3.) Therefore, the effective action does not depend on the background
coupling constants as if they were chiral and twisted chiral superfields. Some of the back-
ground couplings have to sit in long multiplets. We call this phenomenon a shortening
anomaly.” The discussion above is reminiscent of the clash between conservation of the
vector and axial current in theories with fermions, where by adjusting counter-terms either
symmetry can be preserved, but not both simultaneously.

As is standard in such situations, where some operator equations are violated at co-
incident points, when we turn on nontrivial backgrounds for A and A then the contact
terms (1.8) lead to nontrivial operator equations. Depending on which counter-terms we
choose, one of the equations below has to be true:

D40~ DX T (1.9)

DO ~D_X\Jyyt.
For constant couplings, where only the bottom components of A and A are turned on, the
operators @ and O remain short, as they should.

The obstruction to promoting both chiral and twisted chiral couplings to short mul-
tiplets (which exists only if supersymmetry is enhanced) invalidates the conclusions found
in [14] for such theories.® We therefore conclude that factorization (1.1) breaks down only
if the supersymmetry algebra is larger than N' = (2,2). The SCFT’s with conformal man-

"We would like to emphasize that the operators @, @ remain short in the standard situation where
the couplings are constant. Indeed, A, X have vanishing beta functions, since the operators O, O have no
operators to combine with (see [20] and also earlier literature, e.g. [11]). In particular, (1.5) does not induce
a beta function. The shortening anomaly is in the background fields, not in the operators. The operator
equations are modified only in nontrivial configurations for the background superfields (see equation (1.9)).

8The analysis in the spirit of [16] is also invalidated by this anomaly since an implicit assumption in
such an analysis is that it is possible to preserve the shortening conditions of all the dimension (%, %) chiral
and twisted chiral operators both at separate and coincident points.



ifolds (1.2) (with n > 2 even), (1.3) and (1.4) are indeed endowed with such an operator
of R-charge (2,0) and have enhanced supersymmetries, thus resolving the paradox.”

This phenomenon is similar to a familiar situation in supergravity. The target space
of N' = 1 supergravity in 4d is known to be Kéhler (see [21] for details). But N = 2
supergravity with hypermultiplets has a quaternionic target space, which is not Kéahler
(see [22] for a review of the scalar manifolds of supergravities in various dimensions).
There is no contradiction in that because the N' = 2 theory is not merely a special N’ = 1
supergravity theory because it has a multiplet including a graviphoton and a gravitino,
which is not present in the generic N' = 1 theory. The special N' = (2,2) multiplet J,
that resolves our puzzle, which includes a conserved spin—% current, plays a similar role to
the graviphoton multiplet in this supergravity analog. For a related discussion see [23].

We can relate our discussion to supergravity more directly if we view our 2d models as
worldsheet theories for strings and we study their spacetime description. The low energy
description of string compactifications on Calabi-Yau threefolds, described by N' = (2,2)
SCFT’s on the worldsheet, is captured by four-dimensional N' = 2 supergravity, whose
scalar manifold indeed takes the factorized form (1.1). On the other hand, compactifications
on manifolds leading to enhanced spacetime supersymmetry, such as 7 or K3 xT?, are
instead described by N’ = 8 or N = 4 supergravity. The scalar manifold in these theories
does not factorize.!”

As with all 't Hooft-like anomalies, our analysis leads to theorems about the non-
existence of certain renormalization group (RG) flows. If there exists a strictly N' = (2,2)
supersymmetric RG flow in which all the infrared marginal couplings are realized as chiral
or twisted chiral couplings along the flow, then it is guaranteed that the corresponding cou-
pling constants in the infrared are in short representations and hence there is no shortening
anomaly. Therefore, the conformal manifold would have to factorize into a chiral Kéhler
manifold and a twisted chiral Kédhler manifold. Therefore, one can immediately conclude
that there cannot exist an N = (2,2) RG flow that realizes the full conformal manifold of
the K3 SCFT. Indeed, constructions of gauged linear sigma models (GLSM’s) [24] which
lead to subspaces of the K3 conformal manifold are known (see for example [18, 25]), but
it has never been possible to embed the K3 SCFT in a UV completion that covers the
full conformal manifold. The same holds for 7% but not for 72, which does not have a
shortening anomaly, and indeed admits an NV = (2,2) GLSM representation that realizes
the complete T2 SCFT conformal manifold.!! We now see that the obstruction for K3 and
T* is due to an anomaly in the infrared that must be matched in the ultraviolet.!?

9Such an operator does not exist for the 7% SCFT. And indeed, the T? conformal manifold (1.2)
factorizes into a product of Kéhler manifolds, locally given by SL(2)/U(1) x SL(2)/U(1).

10The conformal manifold of the worldsheet SCFT is a subspace of the supergravity scalar manifold.

"“The GLSM is an N = (2,2) U(1) gauge theory with chiral multiplets (X1, X2, X3, P) of charges
(1,1,1,—3) with a superpotential W = PG3(X), where G3(X) is a homogeneous polynomial of degree
3. The twisted chiral coupling is realized by the complexified FI parameter and the chiral coupling by the
single complex parameter in G3(X).

20ur analysis however does not rule out A’ = (4,4) supersymmetric RG flows that would cover the full
conformal manifold of sigma models on K3 or T%.



It is interesting to relate this discussion to recent developments concerning the S2
partition functions of N' = (2,2) SCFT’s [26-28]-[29]. There are two inequivalent ways to
compactify such theories on S? and they compute, respectively, the Kihler potentials of
the chiral and twisted chiral deformations [28, 30] (see also [14, 31]). However, this state-
ment is not meaningful, if the total space does not factorize as in (1.1)! Therefore, when
our anomaly is present, also this result about general N' = (2,2) SCFT’s is invalidated.
(One can understand it again as being due to the failure of spurion analysis.) Because of
the anomaly, there is no N' = (2,2) UV completion that would cover the full conformal
manifold, therefore, what one can extract from the sphere partition function is at best the
Kahler potential on some Kahler submanifolds of the conformal manifold. An alternative
sphere compactification that utilizes the extended supersymmetry may exist and it may
probe the full conformal manifold.

We also provide a complementary perspective on the anomalies by studying the Rie-
mann curvature of the conformal manifold in ' = (2,2) SCFT’s, extending the previous
work [8, 19, 32]. The study of the mixed chiral and twisted chiral exactly marginal cur-
vature components leads us to establish a factorization theorem: the conformal manifold
of an N' = (2,2) SCFT fails to factorize, if and only if the SCFT is endowed with a
conserved current of R-charges (2,0), precisely the same operator J . responsible for the
shortening anomaly.

The outline of the paper is as follows. In section 2 we set the stage by discussing the
OPE of chiral and twisted chiral superfields. In section 3 we show that if a particular
short representation 7, appears in the OPE, then one inevitably finds an obstruction to
imposing the shortening conditions simultaneously on both the chiral and twisted chiral
superfields. In section 4 the same result is established by analyzing the Riemann curva-
ture tensor of the conformal manifold of NV = (2,2) SCFT’s. In section 5 we study the
curvature of the conformal manifold of SCFT’s endowed with the small NV = (4,4) su-
perconformal algebra and prove that the conformal manifold of such theories indeed takes
the form (1.4). In this section we further show that the extended supercharges acquire
non-trivial holonomies when transported around the conformal manifold.

In appendix A, we discuss the shortening anomaly from the Wess-Zumino point of
view. Some of the calculations of the various curvatures are presented in appendices B, C,

and D.

2  OPE of chiral and twisted chiral operators in N = (2,2) SCFT’s

Around a given point on the conformal manifold of an N' = (2,2) SCFT an exactly marginal
operator can be realized as the top component of a chiral multiplet O with U(1); x U(1)—
R-charges (1,1) or as the top component of a twisted chiral multiplet O with R-charges
(1, —1). These multiplets obey the shortening conditions

D, O =0 D_
(2.1)
D_

D+(§:O

G G
o o



Our aim is to determine to what extent these shortening conditions can be maintained as
we explore the conformal manifold of an N = (2,2) SCFT.
Monitoring the shortening conditions (2.1) under an exactly marginal perturbation

/ 2z dftdo= A0 + / Pz dftdod= A0 + c.c (2.2)
leads us to analyze the contact terms in
(D20(21)] O(22),  O(z1) [D:O(z2)].  O@) [D-O)],  (23)

where Z; = (m?iﬁ%,éf) are points in superspace. In this section we determine the
operator product expansion (OPE) of a chiral and a twisted chiral multiplets, whose top
components yield marginal operators, leaving the analysis of contact terms to the follo-
wing section.

In supersymmetry, it is often useful to employ spurion analysis. E.g., the coupling
constants of chiral operators O are promoted to background chiral multiplets [15] . This
procedure makes sense only if the operator equation D4+ O = 0 is respected also at coinci-
dent points (loosely speaking, we can say that O is chiral off-shell). This is because when
we write the partition function depending on some background fields, by taking deriva-
tives with respect to the background fields, we can probe the correlation functions of the
corresponding operators both at separated and at coincident points. By definition, op-
erators equations are always obeyed at separated points, but they may fail at coincident
points. The famous (continuous) 't Hooft anomalies arise when a conservation equation
is not obeyed at coincident points. As a consequence, the partition function depending
on the associated background fields does not obey the naively expected equations (in the
famous case of the chiral anomaly, the partition function is not gauge invariant). Similarly,
we can couple twisted chiral background fields to twisted chiral operators as long as the
corresponding shortening conditions are valid off-shell.

A general method that guarantees that some conservation equation is obeyed also at
coincident points is to construct a regularization obeying the conservation equation. This
automatically tunes the contact terms in the infrared to zero. Such a regularization may not
exist, if there is a genuine anomaly in the conservation equation. In the next section we will
establish the existence of some contact terms that violate the shortening conditions (2.1)
at coincident points. Therefore, the standard arguments relying on the selection rules of
background superfields are not valid. This also means that, when this occurs, N' = (2,2)
RG flows that contain all the infrared chiral and twisted chiral couplings cannot exist.

We will show that such a subtlety in the spurion analysis takes place in an N = (2, 2)
SCFT in two dimensions when it has an operator of dimensions (1,0) and R-charges (2,0).
Unitarity implies that this operator, which we denote by Jy;, is a conserved current,
obeying d__J,4 = 0. Since J,4 carries a non-vanishing R-charge, its existence implies
that the supersymmetry is enhanced.

A typical (but not the only) example of supersymmetry enhanced by such an extra
R-current is the small N = 4 superconformal symmetry with SU(2)r symmetry. In an



N = (4,4) SCFT, chiral and twisted chiral operators are rotated into each other by the
extra R-current as o 1
Jit(21) Ol(22) ~ = Ol(22), (2.4)
Ty — Ty
where O| denotes the bottom component of the operator O. By taking OPE’s of both sides
of the equation with another twisted chiral operator @(xg) (or, in other words, using the
symmetry of the OPE coefficients), we find

O(22) O(2s) ~ ——=t—— Ty () + - (25)
Ty — 3

where - - - encode the contributions of non-chiral operators and descendants. For simplicity,
we are suppressing some coefficients that we will make more explicit later. In particular,
when the N' = (4,4) SCFT is realized as a non-linear sigma model whose target space is
a hyper-Kéhler manifold M, there is a unique holomorphic 2-form Q € H*°(M), and the
extra R-current is expressed as J; = Qablbiwi. Chiral and twisted chiral operators are

expressed as, ) )
Of = kaEwil/_}b—v @| = kaEgbCch @Z)ii/]d_, (2.6)
where k € HY1(M), g,; is the Kéhler metric on M, and 14 are fermions. The OPE (2.5)

then follows from ¢? (z3)9)? () ~ —Lo .

xX —X

More generally, one can show tﬁat tfle existence of Jy i of dimensions (1,0) and R-
charges (2,0) alone is sufficient for the pairing (2.4) and therefore the OPE (2.5) follows
without assuming the small N' = 4 superconformal symmetry. Indeed, since J,  does not
commute with the U(1); x U(1)_ R-symmetry in an N = (2,2) SCFT, the R-symmetry
group must be larger than just U(1); x U(1)_ and the dimension (3, 3) chiral and twisted
chiral operators must furnish a representation of it. Therefore, J, cannot act trivially
and hence some pairing as in (2.4) and (2.5) must be present.

Unitarity and supersymmetry further imply that the extra R-current J4 1 is the bottom

component of a very short multiplet, which we denote by J; . It obeys
Dy Ji = DTt = D_ T4t = 0. (2.7)

For convenience, we summarize the R-charges of various objects used in the following:

U(1)y U(1)-

o+ 1 0

0~ 0 1

D, -1 0

D_ 0 -1 (2.8)
@) 1 1

O 1 —1
Tr 2 0
J-—- 0 2

Our final goal is to monitor the shortening conditions (2.1) as we explore the confor-
mal manifold while preserving A = (2,2) supersymmetry. This prompts us to determine



the OPE of the supermultiplets @, @ and J,y in N = (2,2) superspace, which makes
supersymmetry manifest. Introducing coordinates (z,6,6) (suppressing the 4, — indices)

we define
0

_ _ )
— _ D=——413 2.9
o ~ 100, +i00, (2.9)

D _
00
which generate

{D,D} =2i0. (2.10)

The chiral coordinates y = z — i#9 and § = x + 0 obey
Dy=0 Dj=0 (2.11)

and are chiral /anti-chiral respectively, which we denote also as ¢/¢. In this language O is
(¢,¢), Ois (¢,¢) and J, is simultaneously (¢, ¢) and (c, €).

We want to determine the dependence of three-point correlators on the superspace
position of the operators. We start with the supertranslation Ward identities. Given
two points in superspace (x1,601,0;) and (z2,62,02), we can define two independent even
linear invariants:'?

213 = X1 — T — 10201 + 10105 — 1012012 = Y1 — Y2 + 216010 (2.12)

2y = T1 — X2+ i919_1 + i92§2 — 2i92§1 =Y — Y2 — 220251 . ‘
Supertranslation invariance implies that correlators depend on the position of operators
through 2;; and z;;. The coordinates we have defined are rather convenient. Indeed, if
the i-th operator is chiral, the correlators depend on z;; only, while if it is anti-chiral they
depend on z7 ;.
Our correlator of interest is:

(0(21) O(22) T ++(Z3)) , (2.13)
where Z7 = (a:}—Li, 0?, éf) The shortening conditions,

D+O:D_O:0,

D,O=D_0=0, (2.14)
Dy J4+=D-J41=D-J11 =0,

together with supertranslational and rotational invariance imply that the correlator (2.13)
depends on zf’ g+ , z; :—j and 25 . A subtlety in SCFT’s that must be taken into account is
the existence of a superconformal invariant X (Z1, Zs, Z3) constructed out of three points
in superspace [33]. Superconformal invariance and nilpotency of X (Z1, Za, Z3) imply that

the most general correlator consistent with superconformal invariance is given by

OZ)OZ) T (2) = o — [+ aX (B 20 Z)] . (219
13 723 712

13The canonical invariants are constructed from the Maurer Cartan one-form ¢ 'dg = (dz — i0df +
id60, do, df), where g = exp (—i(azP—i— QQ—I—E?Q)). This yields the supertranslation invariants (Aiz =
xr1— T2 —19251 +i91é2, 012 = 01 —02, élg = gl —52). Note that z;5 = JAND) —7:912912 and 214 = A2 +i012§12.



Imposing that O(Z;) is chiral forces a = 0, as X (Z1, Z2, Z3) depends on 6; [33]. We
therefore conclude that the correlator at separated points is

~ — C
(O(21) O(Z2) T 4+(Z3)) = 57— - (2.16)
“13 %23 *12
Moreover, using that
2
— 1
(T++(Z2) T ++(Z3)) = <++> (2.17)
23
we obtain our desired OPE:
~ C
O(21) O(Z2) ~ —= T1++(22). (2.18)

13
The superspace correlators we have constructed obey, by construction, the shortening
conditions (2.14) at separated points. Our next task is to study the shortening condi-
tions at coincident points (2.3) and determine whether counter-terms can be adjusted so

that the shortening conditions for chirals and twisted chirals (2.1) can be both simulta-
neously obeyed.

3 Supersymmetric contact terms and the shortening anomaly

The OPE (2.18) may lead to some contact terms (2.3).!4 To understand these we need
to study the superspace derivatives (the derivatives with respect to the second argument

(1 ) —<1>< 1 >
D+ — ) D+ __ . (31)
(Zm %13

Our strategy to compute (3.1) is to extend the well-known formula, d; 4 ( L ) =763 (212),

T12

follow from these)

ie.,

s (2= ) =010 ogllon) = Ologe) = m0an). (32

12

to Green’s function in superspace. This line of inquiry makes manifest an inherent ambi-
guity in defining the derivatives (3.1) in superspace. In order to define these derivatives
we need to specify the behavior of Green’s function in superspace for the left-movers, and
different choices yield different answers. This ambiguity is a manifestation of the fact that
the pole 1/z5 in N = (2,2) superspace is too singular to yield an unambiguous distri-
bution.'® Tn fact, we will find an ambiguity of 6,0,,6)(z3) in defining 1/z5 . This is
analogous to the well-known ambiguity in the distribution 1/x on the real line x € R by

1A related discussion appeared in [34], where it clarified the need for a contact term, which had been
found earlier in [35, 36]. A more modern discussion of that problem appeared in [37].

150n the other hand, the pole 1/z~~ on the 2-plane of (z*t, 27 7) can be extended to an unambiguous
distribution because [d*zf(z*+,277)/a” " is well-defined for any smooth function f. The pole 1/z;; in
superspace, however, is akin to 1/(3077)2 and cannot be extended to an unambiguous distribution. The
distribution defined via 1/(z~7)* = —9d—_(1/x~ ") corresponds to a particular choice of regularization.
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the addition of §(x).'6 As a result, the derivatives (3.1) suffer from certain ambiguities.
However, we will find that, whichever choice we make for these ambiguities, we cannot
remove the contact terms for both chiral and twisted chiral operators simultaneously.

We can compute (3.1) starting from the Green’s functions in superspace

1 1 — oA
DY DM log(z15275) = —4m6 P (213) 0 0r (3.3)
or alternatively
_ 1 o -
DY DM log(2275) = 4w (215) 07 O - (3.4)

Physically, (3.3) and (3.4) can be interpreted as the Schwinger-Dyson equations or the
Ward identities for the shift symmetry of a chiral multiplet and a twisted chiral multiplet
respectively. But these are not the only choices. Consider the following identity

1 1) —— 1 _ __
(/f_) D(_)zlé - pW [a log(zf;zlﬁ )+ blog(zi?z1§ )] (3.5)
12

which holds as long as a + b = 1. Using equations (3.3) and (3.4) we arrive at'”

PO (1) — —2mia 6 (1) B

Z =
t2 (3.6)
=1 1 .
13
These expressions obey the supersymmetry algebra for all a + b =1
{D4, D1} =2id1+ . (3.7)
Amongst these, there are distinguished canonical choices
OONES! HL) [ _1
Preserves chiral Ward identity —27 0 (3.8)
Preserves twisted chiral Ward identity 0 27
Symmetric violation of Ward identities - 7r

We note that there is no choice of a that preserves simultaneously the chiral and twisted
chiral Ward identity. Even though the derivatives are subject to some ambiguities, we now
proceed to unambiguously establish our shortening anomaly.

161/x is characterized by the fact that ™ - 1/z = 2™ ' for all positive integers n. Therefore, any
ambiguity in 1/z must be annihilated by multiplication by 2™, and the only distribution with this property
is proportional to 6(z) (See, for example, theorem 9 in [38]). Indeed, the principal value P(1/z) and
1/(z £ ie) differ by distributions proportional to d(x).

"Note that equations (3.3) and (3.4) only fix Dsrl) (1/z;) and Dsrl) (1/z75) up to terms propor-
tional to A;,. However such terms are forbidden by the condition that DY annihilates DiLl) (l/zl_{)
and DS_U (1/275)-
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Anomalies arise when we have an operator that should satisfy an operator equation,
such as (2.1), and one finds that such an equation is only correct at separated points while
at coincident points there are various contact terms.'® Establishing the anomaly amounts
to showing that these contact terms cannot be removed by redefining the scheme since
scheme redefinitions change the theory by contact terms.

We consider N = (2,2) supersymmetric contact terms since we assume that the con-
formal manifold can be explored while maintaining ' = (2, 2) supersymmetry. Therefore,
the most general OPE between a chiral and a twisted chiral superfield in a theory with an
enhanced R-symmetry, now allowing for supersymmetric contact terms, is given by

- C _
O(21)0(Z2) ~ ——=T44(Za) + 18P (213) 05,015, T4 (Za) , (3.9)

%12

where 7 is a scheme dependent constant, which can be shifted by changing the scheme.
In order to establish our shortening anomaly we must show that it is not possible to
tune the contact term 7 such that the shortening conditions for a chiral and a twisted chiral
multiplet can be maintained simultaneously. Since the contact term in (3.9) is annihilated
by D(_l) and D(_Q), these shortening equations are automatically preserved. Acting with

D(j) and Df) we get using (3.6)'°

DL O(21) O(Z) ~ 2miC b3 (213) 0y Tii (Z2) = 70 (213) 0y T4 (22)

7 ’ (3.10)
DPO(2) O(Z2) ~ 2miC a 8P (21) 0y Tii(Z1) + 1 6P (215) 05y T (21)

Preserving the chiral and twisted chiral shortening conditions along the conformal manifold
requires tuning the coefficient of the supersymmetric counter-term to obey

chiral : r = 2miCh,

(3.11)
twisted chiral : r=—-2mCa.

However, since a + b = 1, it is impossible to solve both equations. This implies that we
cannot simultaneously preserve the chiral and twisted chiral shortening conditions along
the conformal manifold. By tuning the contact term, we can either preserve the chiral or
the twisted chiral constraint, but not both. This is our shortening anomaly.

The fact that we cannot preserve both constraints simultaneously is analogous to the
situation in two dimensions with vector and axial anomalies [39], where contact terms
cannot remove both anomalies simultaneously. For a complementary derivation of our
shortening anomaly in the cohomological approach based on the Wess-Zumino consistency
conditions, see appendix A.

The contact terms we encountered lead to an operatorial violation of the shortening
equations upon deforming the theory by background superfield sources for the exactly

8By turning on suitable background fields the ambiguities in the contact terms can be described as an
ambiguity in adding local counter-terms constructed out of the operators in the theory and the background
fields. When such background fields are present, the problem with contact terms can be uplifted to problems
at separated points.

19The formula Df)% = 21ia 6@ (2,3)07, follows from (3.6).
#12
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marginal operators (as in (2.2)). The shortening conditions become
D+O ~ D—S‘ j—i--‘r ’

T (3.12)
D+O ~ Df)\ j++ .

This implies that promoting the couplings of dimension (%, %

ators to full-fledged background chiral and twisted chiral superfields is impossible whenever

) chiral and twisted chiral oper-

the theory includes the operator J; . We emphasize that the violations in (3.12) depend
on the fermionic components of the multiplet to which the couplings have been promoted.

4 Curvature of conformal manifold and factorization

A CFT with exactly marginal operators comes equipped with additional structure beyond
the metric on the conformal manifold M. Operators in the CFT are sections of vector
bundles over M. A canonical example of this is the set of exactly marginal operators,
which are sections of the tangent bundle T M. Transporting operators in the vector bundle
along M leads to operator mixing, which is governed by a connection on the vector bun-
dle [3, 40, 41]. The curvature of these connections captures geometrical and topological
data about the vector bundle of operators in the CFT.

The curvature of the tangent bundle T'M can be used to prove theorems about the
conformal manifold M. The computation in [8] of the curvature of 7'M in two-dimensional
N = (2,2) SCFT’s with ¢ = 9, obtained by combining the worldsheet with spacetime ar-
guments, was used to prove that the conformal manifold of such SCFT’s factorizes (1.1).
The result in [8] follows from the vanishing of the mixed chiral and twisted chiral curvature
components, which implies that the holonomy group is the direct product of two commut-
ing subgroups, which in turn implies factorization (1.1). In this section we establish the
following result about any N' = (2,2) SCFT by investigating the curvature on its conformal
manifold explicitly: the conformal manifold of an N = (2,2) SCFT does not factorize if
and only if the SCFT has a conserved current with R-charges (2,0).

We now proceed to compute the mixed components of the Riemann tensor of M using
CFT techniques, in the spirit of [3, 19, 41, 42]. The tangent bundle 7'M comes equipped
with a metric compatible connection, whose curvature we would like to find. The curvature
of this connection is determined by a certain four-point function of the exactly marginal
operators, which we denote by ;. The formula for the curvature can be written as [42]?"

2
Rijm = —RV / ‘%y log(y™Fy™7) (Ui(0) Up (y) Uy (1) U (c0)),. - (4.1)

The symbol ‘RV’ stands for the prescription where we cut out small discs around the fixed

21

operators and remove the power-law divergent terms.”* The subscript ¢ stands for the

20Note that our definition of the curvature includes an overall normalization of 4 compared to that of [42].
This is the convention in which the special geometry relation takes the standard form. In addition, we define
as usual O(00) = lim, e 2229 0(z) while keeping all the other insertions fixed.

2'The energy-momentum tensor would appear in the OPE with a 1/y? singularity. However, it has an
angular dependence and thus this singularity vanishes upon integrating over the angles. We recall that
dimension (1,1) operators do not appear in the OPE since a nonzero OPE coefficient would lead to a
beta function.
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connected correlator, which is defined by subtracting the three possible disconnected con-
tributions to the four-point function. As shown in [41], an explicit formula for the curvature
can be given in terms of the CFT data: spectrum of operators and OPE coefficients.

Extending the N' = (2,2) superconformal Ward identities first introduced in [8] and
further exploited in [19] we can show that the only non-trivial mixed chiral and twisted
chiral moduli four-point function that needs to be studied is

(Fi@) Fj(y) Fy(2) F(w)) (4.2)

where we have denoted the exactly marginal operators constructed from operators in the
chiral and twisted chiral ring by

1 _1 .
Fi=3 / dotdo~0;, F=3 / dotdo—O;. (4.3)

Using the superconformal Ward identities introduced in [8], the four-point function of
interest (4.2) can be expressed in terms of the four-point function of chiral and twisted

chiral operators of dimension (%, %)

gt —wtt T — 2 L
=00, 0O | L o (010,030 w)) |

We are now ready to compute the curvature using (4.1). It follows from (4.4) that
the independent components of the Riemann curvature tensor are Rz‘fc?} and Riﬁi' The
connected component prescription in (4.1) can be extended to both sides of (4.4), and
therefore, by pulling the operator located at x to infinity we arrive at

< Fi(00) F5(y) ~/;(Z)Ti(w)>c

= Oy Oy 0Oy | (7 =)y =27 (0(e0)05(9)Op(2)0(w)) | - )

&~

Integrating by parts in (4.1) and remembering that we are integrating over the complex
plane with disks around the punctures removed, the answer reduces to contour integrals
around the punctures. In order to get a non-zero contribution to the curvature, the function

(4.6)

z=0,w=1

&l

9) = 0.y | =)y~ —27) (0u(x) 05 (4) O (2)0;(w)) |

must either have a constant piece at y = 0 or have a simple pole at y = 1.2 Let us analyze
g(y) near y = 1. This leads us to consider the OPE studied in section 2

_ = s
O;(y) ;(w) ~ Ty (w), (4.7)

y —w

22More singular terms are removed by the prescription in (4.1). One can verify that there is no contri-
bution from infinity.
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where J; has R-charges (—2,0). Using

<j++(w) Oi(2) Oi(©®)> = w++CikZ++, (4.8)
we find that indeed near y = 1 the function g(y) has a simple pole
ytt
9(y) ~ 1 (4.9)

A very similar analysis of the behavior of the function near y = 0, where now the relevant
OPE is

0;(y)0; Cii
j(y) k@)”m —=

(2), (4.10)
demonstrates that there is no contribution to the curvature from the contour integral
around y = 0.

In conclusion, we have shown that there is a non-trivial component of the mixed
curvature tensor between chiral and twisted chiral moduli in an N' = (2,2) SCFT if and
only if the SCFT has a current with R-charges (2,0). In such a SCFT, the Riemann
curvature is given by

Rug ~ Gl B ~ il (4.11)
and the conformal manifold M no longer factorizes.

5 N = (4,4) conformal manifolds

The small N' = 4 superconformal algebra, which has an SU(2) g R-symmetry (see e.g. [19]),
is an important example of extended supersymmetry. In this section, we use the for-
mula (4.1) to compute the curvature on the conformal manifold of N' = (4, 4) theories and
give a purely field-theoretic derivation that the local geometry of the coset is (1.4). We
also study the bundle of N' = 4 supercurrents over the conformal manifold and show that
there is no consistent choice of an N/ = 2 subalgebra even over a local coordinate patch.
This gives a geometric perspective on our shortening anomaly.

Let us introduce some notation first: the left-moving N' = 4 supercurrents are denoted
by S:."_ﬁ +, and the SU(2)g currents by Jiof), where o and A are doublet indices for the
R-symmetry SU(2)r and the outer automorphism SU(2)oyt of the N' = 4 superconformal
algebra, respectively.

We use the convention €'? = e3; = 1 for the invariant tensors €ags€AB and their
inverses. For the right moving sector, we use dotted indices. We denote the weight (%, %)
BPS primaries by O;na, where i = 1,...,n. Their weight (1,1) descendants

FM = Q3 10, O]} (1)

are exactly marginal operators which preserve the N' = (4,4) superconformal symme-
try [2, 8, 19]. These operators span the conformal manifold M of N' = (4,4) SCFT’s.
Their two-point functions are

_ Mij€apCap

(Oiaa(2)0;54(y)) = w2’ (5.2)
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and DeABe
ij€EABE AL
<F1AA(5L’)F]-BB(Z/)> = ﬁ,

where 7;; is the Zamolodchikov metric.

5.1 Riemannian curvature

In the N = 4 notation above, the formula (4.1) for the Riemann curvature is expressed as

d2y
RipijpBikccupn = _RV/WIOgW’ <FiAA(0) Fipp(y) cho(l)FeDD(oo)>c- (5.4)

By choosing an N’ = 2 subalgebra generated by S—li-l-‘r 4 and 5—2+2+ ., marginal operators for
(anti-)chiral multiples are Fj;; (F,3), while those for (anti-)twisted chiral multiples are
Fiys (Fioi)-

As shown in the previous section, there are non-zero curvature components in mixed

chiral and twisted chiral directions, which in the A" = 4 notation can be expressed as

1
Rz‘li;jl?;in;ZQQ = Rz‘1i;j21;k12;z22 = _Enijnk% (5.5)

where k in the normalization factor is related to the Virasoro central charge by ¢ = 6k. By

using the Bianchi identity, we can also determine?3
1
Rioi j15.k1i000 = _E(niﬁnjk — NikMje)- (5.6)

On the other hand, the curvatures in the purely chiral directions are controlled by the
special geometry relation for ¢ = 9 and its generalization for other ¢ [10, 12, 13, 43], which
we re-derive in appendix B using the formula (4.1). In the N' = 4 notation, it takes the form

Ri1ijosk1iees = MijMe + Nienjk — CikICjZJQIJa (5.7)

where C’l{C are the chiral ring coeflicients.
In appendix D, we use the NV = (4,4) superconformal symmetry to find a relation
between the curvature components (5.5), (5.6), and (5.7)

Rz‘li;j22;kli;é22 + Ri2i;j12;kli;€22 + Ri2i;j22;k11;£12 =0. (5-8)

This allows us to determine
1
Ri1ijosk1iees = E(nifnjk — NikNje + MijMke) - (5.9)

Comparing this with (5.7), we obtain as a by-product the following constraint on the chiral
ring of any A" = (4,4) SCFT

1 1
ChChgrs = (1 - k) (MijMke + M) + 7 ikTlje. (5.10)

23The Bianchi identity R;jre = 0 follows from the crossing symmetry of the four-point function [42].
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For an N = (4,4) SCFT realized by a sigma model on a hyper-Kahler manifold M, it
would be nice to verify that the cohomology ring of M satisfies the constraint (5.10).24
Combining these results, the full Riemannian curvature is

1
RiAA;jBB;kCC‘;ZDD = —%(mkw — MieNjk)EABECDE i €D (5.11)
1
— ot ((eacesp + €apepe) eapeop + (eacesp + eapesc) €ipep)
This implies that the conformal manifold of an N/ = (4,4) SCFT is locally the coset
manifold (1.4)
O(4,n)

M= 5@ xom)

(5.12)

5.2 Supercurrent bundle

Let us turn to the curvature of the bundle of the N’ = 4 supercurrents Siﬁ +,25

2
RiCC’jDDaAﬂB = _lekRV/ % log(y*Fy™7) <SaA+++(0) Fioe(y) FjDD(l)SﬂB+++(OO)>C .
(5.13)
In appendix C, we determine the connected four-point function using N = (4,4) Ward
identities to be

oA e Db 8B 0B CD EACEBD EADGBCy
(ST (0) B~ (y) F; (1)Sy 1 (00))e = =26 €~ 7 nijOyt+ 0y~

_ + —
y(y—1) -1

(5.14)
The y-integral in (5.13) can then be performed
1
RiCC’;jDD;aA;ﬁB = —ﬂmﬁc‘pﬁaﬂ(mc@[) + €AD€ERC) (5.15)
and 1
Riceijpiaips = ~gpi€cneag€icesn + €ipeie) - (5.16)

The nontrivial SU(2)out X SU(2)out holonomies shown in these curvatures means that it is
not possible to choose an N' = 2 subalgebra consistently, even on a local patch of M.

Since the tangent bundle T'M is a tensor product of the left and right supercurrent
bundles and the bundle of weight (%, %) chiral primaries, the curvature tensor for the
supercurrents computed here can be combined with the curvatures for the chiral primaries
computed in [19] to reproduce the Riemann curvature (5.11) on M.

Although M is not Kéhler, it has Kahler sub-manifolds. In fact, the maximal Kéahler
sub-manifold of a quaternionic-K&hler manifold is middle-dimensional [44]. In our case,

the maximal Kéhler submanifold of M is locally

0(2,n)

Szowxomy

(5.17)

247 curious observation is that (5.10) implies that there is a uniform bound on chiral ring coefficients
(squared) associated with the R-charge (1,1) chiral primaries. The bound takes the schematic form C? <
2 —1/k. Note that this is very different from the A" = (2, 2) case, where the chiral ring coefficients can blow
up, say, as at the conifold point.

*The k dependent normalization is due to the two-point function (Sﬁi+(0)5fﬁ+ (00)) = 4ke*PeAB,
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If we only turn on the marginal couplings associated to chiral multiplets and explore that
sub-manifold of M, then there is no shortening anomaly, and the argument of [14] leading
to Kahlerity applies. In N' = (4,4) SCFTs, the subspace spanned by the marginal couplings
associated to chiral or twisted chiral operators corresponds to the sub-manifold (5.17) .
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A The Wess-Zumino perspective

Anomalies arise when we have some operator that should satisfy an operator equation, e.g.
Otj, =0 or T} = 0, but then one finds that such an equation is only correct at separated
points while at coincident points there are various contact terms. The essence is to show
that these contact terms cannot be removed by redefining the scheme. Indeed, scheme
redefinitions change the theory by various contact terms and so we need to demonstrate
that the anomaly is invariant under scheme redefinitions. A convenient way to establish
it is to introduce background fields for the various operators. Then scheme redefinitions
correspond to adding new local terms to the action, which depend on these background
fields and also, possibly, on the operators in the theory.

We would like to examine the operator [Q, O|], which is normally zero if O is chiral.
To this end we couple a background field to this operator. A standard procedure is to
couple the superfield O to a background field in the superpotential but then we do not
have a source for the redundant operator. Therefore we will couple O to a source in the
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Kahler potential. We add a corresponding term for a twisted chiral superfield O:
/ 4 (A(’) +BO + c.c.) . (A1)

Now we imagine computing the partition function Z[A, B] (with A, B superfields). It
is useful to tabulate their charges

U(1)4+x U(1)— Dimension
A -1 -1 (=1/2,-1/2) (A.2)
B -1 1 (-1/2,-1/2)

The standard expectation is that the partition function would not actually depend on
most of the components in A, B due the fact that [Q+, O[] = 0 and [Q1,O|] = [Q_,0|] =
0.26 So the standard expectation is that

Z[A7B] :Z[A+D+X—+D—X+7-B]a (Ag)
Z|A,B] = Z[A, B+ Dit— + D_tp4] (A.4)

for arbitrary x+,t+. This should be viewed, for example, in analogy with 6,Z[g,.] = 0 for
the conformal anomaly case. What we would like to test is whether we can respect (A.3)
and (A.4) while preserving N' = (2,2) supersymmetry. In other words, we want to see
whether the shortening of the background multiplets is consistent with supersymmetry.
The general principles that we reviewed above tell us that for infinitesimal yi,¥4,
Oy e Z[A, B] should be a local functional of the sources and operators in the theory i.e.

Oyi s log Z[A, B] = / X-Ligeay + 7 (A.5)

with Ljoeqr some local function of the couplings and operators. The right hand side in (A.5)
is restricted by demanding that it is supersymmetric and also by demanding that it obeys
the Wess-Zumino consistency conditions [45].

Let us assume that the partition function is invariant under the 1 transformations,
namely, O obeys the twisted chiral shortening conditions at both separated and coincident
points. We can then write the variation under x_ as follows (the formula for the variation
under x4 is analogous)

Sy log Z[A,B] = k / d*D,.D_BD_x_Jy+, (A.6)

with k£ some constant. Equation (A.6) respects supersymmetry (because it is a [ d*
integral), and it is consistent with the R-symmetry (D, D_B carries R-charges (0,0) and
x— carries R-charges (—2,—1) and therefore D_x_ carries (—2,0) and thus it exactly
cancels the R-charge of Jyy). Furthermore, (A.6) obeys the Wess-Zumino consistency

26This standard expectation follows from the fact that these conditions hold “off shell,” namely there is a
regularization where this is true. Technically, it means that there are no cohomologically nontrivial contact
terms in correlation functions of these redundant operators.
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condition since D, D_B is invariant under B — B + D¢ + D_1,. Therefore, (A.6)
does not violate the fact that the partition function is postulated to be invariant under 1+
transformations.

We now proceed to prove that (A.6) is cohomologically non-trivial. If (A.6) were
cohomologically trivial then one could add a local term to log Z[A, B] such that the right
hand side of (A.6) would vanish while retaining supersymmetry and invariance under 4
transformations. It is clear (by integration by parts and using (2.7)) that the y_ variation
of the local term

/ d*AD_D_BJ, . (A7)

could cancel the right hand side of (A.6). However, (A.7) spoils the invariance of the
partition function under ¢y transformations. One can easily verify that indeed the right
hand side of (A.6) is physical as long as we insist on supersymmetry and invariance under
14+ transformations.

To summarize let us make some comments

e 1. Suppose we always insist on preserving N' = (2,2) supersymmetry. Then, if
in (A.6) is nonzero, then it turns out that we may not be able to respect both (A.3)
and (A.4). In other words, we cannot embed the coupling constants of chiral and
twisted chiral operators into short multiplets. At least some of the couplings have to
be in longer multiplets.

e 2. We can view the x and 1 transformations as analogous to U(1)4 and U(1)y
transformations in 2d electrodynamics. If we preserve one we must give up on the
other, but choosing which one to preserve is at our discretion. Therefore, the situation
is very similar to the way the usual chiral 't Hooft anomalies arise [39].

Note that from equation (A.6) we can immediately write the anomaly in operatorial
formalism. This is because x_ couples to DO and so we find

D+O ~ H(D_D+D_B)j++ . (AS)

But since our partition function is invariant under ¥+ transformations and hence depends
only on A = D, D_ B, which is a standard twisted chiral background field, we can also write

D+O ~ K/D_S\ j++ . (Ag)

Hence in a “fermionic background” for the twisted chiral coupling, the operator O ceases
to be chiral.

It is now straightforward to make contact with the analysis in the bulk of the paper.
Our discussion in this appendix has shown that there may be an anomaly with coefficient
r and that it would manifest itself as (A.9). Comparing with (3.12) we thus see that this
coefficient is nonzero whenever the OPE coefficient in (3.9) is nonzero. Furthermore, the
analysis in this appendix sheds light on the choices we could make in (3.11). Indeed, we
could have chosen whether to postulate that the partition function preserves (A.3), (A.4),
or none of the two. As in all cases with anomalies, these various choices are related to
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each other by adding counter-terms to the action, e.g. the one we discussed in (A.7). By
choosing the coefficient of this counter-term carefully, we can change the scheme from the
one where 1 transformations are obeyed to the one where x transformations are obeyed.

B Special geometry relation

It is well known that for an /' = (2,2) SCFT, the Riemannian curvature for marginal de-
formations generated by chiral primary fields is determined in terms of the Zamolodchikov
metric and the chiral ring coefficients [10, 12, 13, 43]. For ¢ = 9, this is known as the special
geometry relation. Below we will give a simple derivation of this relation using (4.1) (our
derivation is valid for any central charge c).

Following [8], we can use N’ = 2 Ward identities to express the integrand of (4.1) as a
total derivative,

(Fi(1)F;(y) Fi(00) Fy(0)),, (B.1)

= O+ Oy—— Oyt Oy ((yJ“Jr —w ) (y T — w__)<Oi(1)@3(y>0k(00)@z(w)>0)

w=0
The curvature is then computed by integration by parts, with non-vanishing contribu-

tions coming from the origin (y = 0).2” Therefore, we need to study the order-one terms

in the limit limy 0 8yy++ 0y (¥t —wtH) (™™ — w™)(0s(1) 05 (y) Ok (00) O(w)) )

w=0
We can act with the derivatives on the prefactor |y — w|? and thus reduce the problem to

studying the y — 0 limit of (0;(1)O;(y)Ok(00)Oy(0))c. There is a contribution from the
unit operator in the ¢ and u channel as well as a contribution from the (2, 2) chiral primaries,

Ry = — lim(Oi(1) 05(y) Ok(20) O(0))e = gi5917 + 9:29x5 — Cs7” 917Ci" (B.2)

where g¢;7 is the metric associated with the R-charge (2,2) chiral primaries.

C Four-point function involving supercurrents

Let us focus on the connected four-point function
; ‘ B
(5344 (2) FEOy) PP (2) 825, (). (€1)

Since the four-point function is holomorphic in z and w, it is determined completely by
the poles in the OPE between the supercurrents and other insertions. We first consider
the singularities in z, and denote the polar terms in (z — w), (x — y), (x — z) by I1, s, I3
respectively.

From the OPE of the N' = 4 supercurrents,

A B
Si++($)5ﬁ++ w

o,
(C.2)

( ) _ EAB 4P _ 40‘1016J’L(w) 260451"(“)) _ 20?’88J1(w)
(z—w)? (z—w)? (= —w)

2T A priori, there can be boundary contributions from contours around y = 1 and co as well. However care-
ful analysis of the integrand shows that such contributions are absent for this particular four-point function.
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we have

I = <Wwpicc(y)pbpb(z)> 7 (C.3)

(z —w)

where we have dropped the disconnected pieces and also the terms involving the SU(2) g
currents since F; are SU(2)g singlets. It is then easy to obtain using the OPE between T

and Fj
QGQBEABECDGCD

ij
L = . C4
N T (TR T E TR 4y
Similarly looking at the OPE between Sﬁ‘_ﬁ 4 and FZCC
B, ABABB .~ .
N . 1 P70
S () FPP (w) = 5 Gwt+ p— w++ﬁ[3’ +.. (C.5)
we have '
1 eO‘VeACQiC Oq5(y) DD 3B
Iz:§<8y++ ( p— Fi7P(2) Sy (w)) (C.6)
Using again (C.5) and also
aA . _ g vA R
S (2 )Oﬁﬁ(w)_—2(2++fw++)Q+ (’)w(w)+..., (C.7)
we get
2€BACBD LDy (9 _ 0o
= 260Dy 2y — 2 —w) ©9)
(Z2=9)(y —w)*(z —w)*(z —y)
Finally from the OPE between Sﬁ‘_ ., and F jD D we get
1 : €*0eAD Q‘ZD Os:(z
h-l <Fi°‘0<y>az++ ( ) 528 w) ) ()
x—2z
and following the same steps as above we obtain
I — 26 AP BCCDy, () + 1 — 22) (C.10)

(2 =9y —w)*(z —w)*(x — 2)*

Putting together (C.4), (C.8) and (C.10) while taking the limit w — oo, we arrive at

(594,(0) FCC (y) FPP (1)1, (00)).
5 C‘D 7€AC€BD AD BC’
=2, < — + — )
TNy —-1)2  (y—1)?
6ACEBD EAD ech>

— 4+ —
y(y—1) y—1

(C.11)

= — 26a6€CDnijay++3y77 (
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D SU(2)ous selection rules

In this appendix we prove that

(i (0) Foai ) Fios (1) Fjoa(00) ) + (Fioi (0) Fyyi () Fyua(1) Fyos(00))

(D.1)
+ <Fi21(0) Fi1i(y) Fyps(1) Fj12(00)> =0,

follows from N = (4,4) superconformal Ward identities. More generally, the four-point
function of the exactly marginal operators <FZ A AFJ seFwceFip D> respects SU(2)out Ward
identities.?®

For notational simplicity, let us focus on the left-moving side of (D.1). Using N' =4

Ward identities

(Q%0}(2)Q%OL(y) QT O} (2) Q1 0% ()
=204+ (Q¥ O} (2)OL(y) O} (2)QY 02 (00)) — 20,4+ (O} (2) Q2204 () 07 (2)Q1 O3 () ) ,

(D-2)
(@Y 0} (2)QPOL(Y)QTOF(:)Q OF () (D.3)
=20,++ (0] (2) Q¥ O (y) 07 (2)Q11 O3 (00)) — (QF O} (2)QT O(y) OF (2) 05 () ,
and
(QY0l(2)QFOL()QY 0} (:)Q20F (o)) (D.4)

=201+ (QF 0 (2) Ok (y) O} (2)Q¥ 03 (00)) + ( Q1O (2)QF O (y) 07 (2) O (0)) -
Moreover, from (C.5) we can derive
(QF 0] ()04 (y) 07 (2)Q Y 0F (20)) = = (QF0; (2)Op(y) 07 (2)QY OF (0)) . (D.5)

Putting together (D.2), (D.3), (D.4) and (D.5), we obtain

(QF0; (1)QFOL)QY 0F(2)Q1 0f(00)) + (QF O} () QT Ok (y) QY OF (2) Q1 OF (0))
+(QF Ol (2)QE O (1) Q3 07 () QY Of(0)) = 0, (D.6)

which leads to (D.1).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

ZThe SU(2)out is the outer automorphism group of the N' = 4 superconformal algebra, but not a
symmetry of the full SCFT. However, the operator spectrum of the theory can still be organized into
SU(2)out representations by postulating that the N = 4 superconformal primaries transform as singlets.
Here we see that certain correlation functions respect the SU(2) oyt invariance. This is analogous to the bonus
U(1)y symmetry in the 4d N' = 4 super Yang-Mills theory [46]. More recently, the outer automorphism
group figured in the study of the K3 SCFT from spacetime arguments in [47].
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