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ABSTRACT 
A detailed experimental study has been carried out to 

evaluate the heat transfer performance of a solid/liquid phase-

change thermal energy storage system. The phase-change 

material (PCM) and metal foam are contained in a vertically 

oriented test cylinder that is cooled or heated at its outside 

boundary, resulting in radially inward melting, respectively. 

Detailed quantitative time-dependent volumetric temperature 

distributions and melt-front motion and shape data were 

obtained. As the PCM melts, the interface moves away from the 

surface of the heat source/sink, and a thermal resistance layer is 

built up, resulting in a reduced heat transfer rate and/or increased 

temperature difference between the system to be cooled (or 

heated) and the PCM. The phase-change medium was 99% pure 

eicosane, with a melting temperature of 36.5oC. Results have 

been generalized to apply to any low-Stefan number PCM. 

A heat transfer scale analysis was used in order to help in 

interpretation of the data and development of heat transfer 

correlations. In the scale analysis, conduction heat transfer in the 

solid and natural convection heat transfer in liquid were 

considered. Comparison of experimental data with scale-analysis 

predictions of the solid-liquid interface position and temperature 

distribution was performed. 

INTRODUCTION 
Phase change thermal storage and thermal control devices 

have been discussed extensively in the literature. These articles 

often refer to a device, which is used to either thermally control 

a component or store energy by utilizing a material, which 

undergoes a change of phase (PCM) in the temperature range of 

interest for the process. 

Interest in the heat transfer aspects of freezing and melting 

has been increased in recent years by the proposed use of phase-

change processes for the storage of thermal energy. A survey of 

the experimental literature [1] reveals a strong concentration of 

effort on melting or freezing outside of heated or cooled 

cylinders embedded either vertically or horizontally in a phase-

change medium. 

The solution of moving-boundary problems with phase 

change has been of special interest due to the inherent difficulties 

associated with the nonlinearity of the interface conditions and 

the unknown locations of the moving boundaries. Exact closed-

form solutions of phase-change problems are available only for 

a limited number of cases such as the Stefan problem. A variety 

of approximate analytical solution techniques have been 

developed, including the heat balance integral [2], variational 

[3], embedding [4], and perturbation techniques [5, 6]. In 

addition, efforts to solve phase-change problems numerically 

have produced such diverse solution methods as the enthalpy [7, 

8], apparent heat capacity [9], isotherm migration [10], and 

coordinate transportation methods [11–16]; these methods have 

been introduced by researchers mainly to overcome the 

difficulties in handling moving boundaries. 

Lunardini [17] and Pouhkakus [18] investigated melting and 

freezing of a phase-change medium contained in a vertical 

cylinder. They studied outward phase change in detail for many 

cases including freezing of a subcooled liquid, zero subcooled, 

and melting of a superheated, and zero superheat in infinite 

domain and finite geometry. Lunardini has also performed 

limited study on inward melting and freezing of a phase-change 

medium contained in a vertical cylinder. 
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Fundamental heat transfer experiments were performed for 

freezing of an initially superheated or nonsuperheated liquid in a 

cooled vertical cylindrical container (inward freezing) by 

Sparrow [19]. He concluded that, although the latent energy is 

the contributor to the total extracted energy, the total sensible 

energies could make a significant contribution, especially at 

large tube wall subcooling, large liquid superheating, and short 

freezing time. Natural convection effects in the superheated 

liquid were modest and were confined to short freezing times. 

The primary objective of this work is to evaluate inward 

melting of a solid/liquid phase change system in a cylindrical 

enclosure. In the melting experiments, the phase change medium 

used was 99% pure n-eicosane paraffin, with a melting 

temperature of 36.5oC. 

EXPERIMENTAL SETUP AND PROCEDURE 
The experiments were performed in a copper test vessel. In 

order to provide a controlled, constant wall temperature thermal 

boundary condition, a pair of copper tubes was wrapped and 

soldered around the outside of the copper test vessel, with two 

tube inlets, each at opposite ends of the test vessel. In this 

manner, the double-wrapped tubing acted like a counter flow 

heat exchanger to provide a uniform wall temperature boundary 

condition around the outer periphery of the test vessel. The test 

vessel was fabricated from a large copper tube with an inside 

diameter of 15.55 cm, an outside diameter of 16.19 cm, and a 

height of 30.48 cm. 

Lids made of acrylic plastic sealed the test vessel on the top 

and bottom. The thermal conductivity of acrylic is much lower 

than the thermal conductivity of the PCM and the copper test 

vessel, which helped reduce the end effects. Two small vertical 

copper tubes were placed in the top cap to enable removal of 

excess PCM during melting and to prevent overflowing, as well 

as to provide a passage of the thermocouple wires. The test vessel 

system was insulated using 10-cm-thick fiberglass fitted around 

the entire vessel and caps. A constant temperature bath was 

selected to supply cooling/heating fluid to the copper heat 

exchange tubes that kept the outer wall of the container at 

constant temperature. 

For these experiments, 99% pure eicosane (C20H42) was 

chosen as the PCM. Eicosane was desirable because it has a 

single fusion temperature (36.5°C), which is just slightly higher 

than ambient temperature, making it convenient for phase 

change experimentation. Low-temperature heating can be used 

to melt the PCM and ambient-temperature cooling can be used 

to refreeze it. In addition, the proximity of the melting point to 

ambient temperature results in reduced heat losses to the 

environment. The thermo-physical properties of eicosane are 

reasonably well established, and the thermal conductivity of the 

solid eicosane is given as 0.423 W/mK [20]. 

For the series of tests, a plastic tree was fabricated to hold 

the thermocouples (TCs) in place. Four additional TCs deployed 

along the outside height of the copper test vessel measured the 

wall temperature. Numerous melting tests were performed at 

various wall temperatures. At the termination of the tests, all of 

the TCs indicated that the entire eicosane volume was in thermal 

equilibrium with the constant temperature water bath. 

EXPERIMENTAL RESULTS FOR MELTING EICOSANE 
For the experiment to be detailed in this section, the eicosane 

phase-change material had an initial temperature of 10C and a 

final temperature of 50oC. 

In the presence of natural convection in the melt region, it is 

convenient to identify first four regimes, I–IV, whose main 

characteristics are sketched schematically in Figure 1 [21]. In 

this figure, the dashed line represents the phase-change interface 

front. On the right of the dashed line is the liquid region and on 

its left, the solid region. The “Conduction Regime” (I) is 

dominated by pure thermal diffusion. The “Transition Regime” 

(II) occurs when a natural convection flow carves its own 

convection-dominated zone in the upper part of the liquid region, 

while the lower part remains ruled by conduction. The 

“Quasi-Steady Natural Convection Regime” (III) begins when 

the convection-dominated zone of the preceding regime fills the 

entire height of the cylinder. Finally, the arrival of the liquid-

solid interface at the centerline marks the beginning of the 

“Variable Height Regime” (IV). 

Figure 1. Four regimes of melt. 

Heat Transfer and Scaling Analysis 
The object of scale analysis is to use the basic principles of 

convection heat transfer in order to produce order-of-magnitude 

estimates for quantities of interest (in our case Nusselt number 

and radius of fusion). In order for the results of the scale analysis 

(a functional proportionality) to be converted into an equality, a 

proportionality constant must be inserted into the equations 

describing the radius of fusion and the Nusselt number. These 

constants varied between 0.1 and 10 ( an order of magnitude) 

and they are different for each case. 
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Conduction Regime (I) 
If we can assume that components and the solid PCM are at 

the fusion temperature, then immediately after t=0, the melting 

process is governed by pure conduction heat transfer. The heat 

flux across the very thin liquid film is absorbed by the latent heat 

of fusion at the liquid-solid interface. Referring to Figure 2, this 

heat balance, in cylindrical coordinates, can be expressed as 

dt

dm
h

rr

TT
Hkr2 fus

fusw

fusw

lfus 



 (1) 

where H is the height of the tank, and dm/dt is the mass rate of 

melting. The last term on the right of Equation (1) may be 

expressed as 

)H)rπ(r(ρ
dt

d

dt

dm 2

fus

2

wliq   (2) 

Substituting Equation (2) into (1), and integrating yields the 

following solution for the radius of fusion in the conduction 

regime. 

(3) 

where s is defined as the thickness of the liquid PCM (m) in 

a radial direction, and  is a dimensionless time defined as 

.FoStt
Hhρ

)T(Tk
θ l2

fusl

fuswl 



  (4) 

Where Stl is the liquid Stefan number. The liquid Stefan 

number is defined as 

fus

fuswpl

l
h

)T(Tc
Ste




 (5) 

For comparison to heat transfer results obtained at later 

times, it is desirable to express the results of the pure-conduction 

Regime (I) in terms of a convection heat transfer coefficient and 

Nusselt number. The Nusselt number (NuH) based on cylinder 

height is defined as [23] 

l

H
k

hH
Nu  (6) 

where h is the convection heat transfer coefficient. Heat transfer 

at the melt interface can be expressed in terms of a heat transfer 

coefficient using 

s

)T(T
Hkr2)THh(Tr2 fusw

lfusfuswfus


  (7) 

From equation (7), we can conclude that the convection heat 

transfer coefficient for Regime (I) can be expressed as 

s

k
h l (8) 

Substituting Equation (8) into Equation (6) yields the 

Nusselt number (NuI) that corresponds to the pure conduction 

regime. 

s

H
Nu I  (9) 

Substituting equation (3) into From Equation (9) yields 

1/2-

1/2I θ
Hθ

H

s

H
Nu  (10) 

Transition/Mixed Regime (II) 
For the analysis of this regime, we will assume the height of 

the upper convection region is z, and the remainder of the liquid 

height (H  z) continues to be controlled by conduction. 

In the upper zone, the thermal boundary layer thickness (z) is 

smaller than the horizontal dimension of the carved-out upper 

zone. It should be noted that, at the location where z is of the 

same order as the gap thickness of the lower conduction zone, 

convection becomes negligible. 

sδz   (11) 

In the steady-state condition, the heat conducted from the 

wall is carried upward by convection inside the thermal 

boundary layer. In that thermal boundary layer region where r  

 and z  H, consider the conservation of mass, z-momentum, 

and energy. Then scales of mass, z momentum, and energy 

equations become 

)
H

ΔT
,

δ

ΔT
 ,

δ

ΔT
α(

H

ΔT
 w,

δ

ΔT
u

)
H

w
,

δ

w
,

δ

w

δ

1
ν( , Tgβ

H

w
 ,

δ

w
u

H

w
 ,

δ

u
 ,

δ

u

222

22

2







 (12) 

1/2
wfus

1/2
fusw

Hθrr

or

Hθrrs




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where T = Tw – Tfus is the scale of T-Tfus. Since  << H, the two 

terms w/H2, and T/H2 are much smaller than w/2, and T/2, 

respectively, and may be ignored. 

From the continuity equation, we may conclude that 

H

w
 

δ

u
 (13) 

Substitution of the continuity equation into the energy 

equation yields 

2δ

α

H

w
 (14) 

Also substitution of the continuity equation into the scale of 

the z-momentum of Equation (12) yields 

2

2

δ

w
ν  βgΔT,

H

w
 (15) 

Dividing both sides of Equation (15) by the buoyancy scale 

(βgΔT ) and using Equation (14) to eliminate the vertical 

velocity scale (w), we obtain 

1,Ra)
δ

H
(PrRa)

δ

H
( 1-

H

411-

H

4 
 (16) 

where RaH, and Pr are the Rayleigh, and Prandtl numbers, 

respectively, defined as 

α

ν
Pr

αν

βgΔTH
Ra

3

H





(17) 

where  is the kinematic viscosity (m/sec2). In our case where 

the Pr is much greater than one (Pr>>1), the term on the left of 

Equation (16) is much smaller than the first term on the right, so 

it can be ignored. Then, Equation (16) will result in an expression 

for thermal boundary layer thickness as 

-1/4

HHRaδ  (18) 

For the upper convection region (height of z), Equation 

(6.26) can be used to show the convection thermal boundary 

layer thickness (z). 

-1/4

zz zRaδ  (19) 

where Raz is the Rayleigh number based on the height, z, and is 

expressed as 

H

3

z Ra)
H

z
(Ra  (20) 

Combination of Equations (3), (11), (19), and (20) gives an 

expression for z. 

3/2

H

2

H θsRaθHRaz  (21) 

Equation (21) suggests that the transition regime ends, when 

z  H, at a time of order (II) 

-1/2

HII Raθ  (22) 

The total heat transfer rate through the heated wall, qII (w), 

has two components. The first component is convection over the 

z height, and the second is conduction over the remainder of the 

height (H  z). 

]
s

TT
z)(Hk

δ

TT
z[kr2q fusw

l

z

fusw
lwII





   (23) 

Substituting the qII definition, Equation (23), into the 

Nusselt number expression ])kT(Tr2/[q(Nu lfuswwIIH   , and 

utilizing Equations (3), (19), and (21), will result in the transition 

Nusselt number (NuII). 

3/2

H

1/2

II θRaθNu  
(24) 

The Regime (II) Nusselt number is made up of two 

components, one due to conduction, the first term on the right of 

Equation (24), and the other due to convection, the last term on 

the right of Equation (24). The heat transfer scaling law, 

Equation (24), holds at  = 0 until the convection height (z) 

extends all the way to the bottom of the tank (z  H). 

The Quasi-steady Convection Regime (III) 

At nondimensional times greater than II, the quasi-steady 

convection zone fills the entire liquid space of height H. As we 

discussed earlier, at the end of the Regime (II), which is the 

beginning of Regime (III), from Equation (24) the Nusselt 

number scale (Numin-III) is 

3/2

IIHIII-min θRaNu  (25) 

Substitution of II from Equation (22) into Equation (25) 

yields 

1/4

HIII-min RaNu   (26) 

This Nusselt number scale is the minimum value for Regime 

(III). The Nusselt number in Regime (III) is time-dependent but 

does not change significantly with respect to time. Since in the 

convection regime, the melt front is always deformed, it is more 
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appropriate and convenient to present the front location based on 

a height-averaged melt-front location. 

At the interface, the convection heat transfer rate (qconv) 

balances the latent heat rate (qfus) released from the interface. The 

left side of Equation (7) expresses a relation for the convection 

heat transfer rate. Substitution of Equations (6) and (26) into 

Equation (7) results in the scale of convection heat transfer rate 

(qconv). 

)T1)(T x (HRa
H

k
q fusw

1/4
H

l
conv  (27) 

where (H x 1) is the unit area perpendicular to the heat transfer 

direction. Substitution of Equation (2) into Equation (1) gives 

qfus as 

dt

dr
)2r(ΔhπHρq fus

fusfuslfus  (28) 

Equating and then integrating Equations (27) and (28) 

results in an equation that describes the position of the interface 

with respect to the dimensionless time. 

θRa
π

H x 1
rt

ρHπΔh

)T(TRak
-rr 1/4

H
2
w

fus

fusw
1/4
Hl2

wfus 


 (29) 

Equations (26) and (29) hold until the average solid-liquid 

interface reaches the centerline. At rfus = 0, the convection regime 

expires and the dimensionless time (III) will be 

1/4-
H

2
w

III Ra
H x 1

πr
θ  (30) 

The Variable Height Regime (IV) 
We now turn our attention to the last regime, in which the 

remaining solid shrunk as its uppermost point, at height of H, 

descended along the centerline. Liquid circulation continues, as 

in the convection regime, however, the heat transfer and melting 

rates depend on the size of the remaining solid. 

Bejan [22, 23], in order to determine the scales of this 

regime, made assumptions concerning the shape of the solid 

region. He assumed that early enough in Regime (IV), the fusion 

radius is fixed and the height of the frozen/solid eicosane (hIV) 

decreases. Then, in the intermediate stage of Regime (IV), the 

liquid-solid interface advanced such that both rfus and hIV 

decreased at the same rate (the interface advanced while 

remained parallel to itself). Finally, when the solid disappeared 

almost totally (hIV << H) leaving nearly horizontal zone (hIV << 

rfus). 

To begin the analysis, the first stage of the Regime (IV) is 

explored to define the scale of the Nusselt number. The scale of 

the Nusselt number in this stage is the order of 
1/4

h IV
Ra  (Rayleigh 

number based on hIV) since the interface resistance controlled the 

heat transfer rate that melted the solid. The Rayleigh number 

based on hIV is related to the Rayleigh number based on the total 

height such that 

H

3IV
h Ra)

H

h
(Ra

IV
 (31) 

An energy balance at the solid-liquid moving interface 

requires that 

dt

dm
Δh)T(T 1 x kRa)

H

h
( fusfuswl

1/4
H

3/4IV  (32) 

where dm/dt is defined from Equation (2) as 

dt

dh
)rπ(r(ρ))hrπ(r(ρ

dt

d

dt

dm IV2

fus

2

wliqIV

2

fus

2

wliq  (33) 

From Equation (4), dt can be expressed as a function of d. 

dθ
)T(Tk

ΔhHρ
dt

fuswl

fus

2

l


 (34) 

Substitute Equation (34) into (33) and then into (32) results 

in the energy balance at the interface. 

 


IV

III

h

H
IV

-3/4

IV

θ

θ 2
fus

2
w

5/41/4
H dhhdθ

)rπ(r

1 xHRa
(35) 

Integration of Equation (35) gives the rate of Regime (IV) 

height decrease as 

)θ(θ
)rπ(r

1 x HRa

4

1
1)

H

h
( III2

fus
2
w

1/4
H1/4IV 


  (36) 

It should be noted that this equation is valid when  > III. 

This regime ends (the solid will disappear entirely) at a time IV 

when hIV << H, which, according to Equation (36), is 

1/4-
H

2
fus

2
w

IIIIV Ra
1 x H

)rπ(r
4θθ


 (37) 

If Equation (36) is substituted into (31), the result is the scale 

of the Nusselt number for Regime (IV). 

3
III2

fus
2
w

1/4
H1/4

H1-IV )]θ(θ
)rπ(r

1 x HRa

4

1
[1RaNu 


 (38) 

In the intermediate stage of the last regime, the liquid-solid 

interface advances such that hIV and rfus decrease at the same rate. 

The energy balance at the interface, Equation (32), still can be 



6 

applied in this case, however, drfus/dt  dhIV/dt. This equation can 

be solved for fusion radius of Regime (IV). The result is 

)θ(θRa
π

H

8

5
rr III

1/4

H

5/4
5/4

w

5/4

fus   (39) 

The scale of the interface location from Equation (39) is 

compared with the average fusion radius evaluated from data in 

Figure 3. This figure shows that the scale of the average fusion 

radius matches the prediction for a portion of Regime (III) 

exactly. The rfus/rw ratio decreases almost linearly, which is 

confirmed also by the shape of the data in this figure. This scale 

matches the data all the way to the end of experiment (Nu  0) 

and it is valid to assume that there is no need to explore the last 

stage of the Regime (IV) to express the scale of the fusion radius. 

Figure 3. Regime III and IV average fusion radius vs. 
data. 

As mentioned earlier, the scale of the Nusselt number in this 

regime is the order of 
1/4

h IV
Ra . Utilizing Equation (31), the scale 

of the Nusselt number, NuIV-2 can be expressed as 

1/4

H

3/4

w

fus4/1

h2-IV Ra)
r

r
()Ra(Nu

Iw
 (40) 

Note that the hIV/H is replaced by rfus/rw, since we assumed 

drfus/dt  dhIV/dt. Equation (39) expresses the ratio of the fusion 

radius to the fusion radius at the end of Regime (III). Substitution 

of Equation (39) into Equation (40) yields the Nusselt number of 

the intermediate stage of the Regime (IV). 

3/5

III

1/4

H

5/4
5/4

w3/4

w

1/4

H
2-IV )]θ(θRa

π

H

8

5
r[

r

Ra
Nu  (41) 

Based on the scale analysis of all four regimes, it is clear that 

Regimes (I) and (II) occupy relatively a short period of time and 

they disappear quickly into Regime (III). These two regimes do 

not contribute significantly to the scale of the fusion radius and 

may easily be ignored. On the other hand, the Nusselt number of 

Regimes (I) and (II) cannot be disregarded. The Nusselt numbers 

of the Regimes (I) and (II) started at infinity at the beginning of 

the experiment. As time progressed, the Nusselt numbers 

decreased proportional to the dimensionless time (1/2). As 

conduction gradually disappeared, convection appeared and its 

effect eventually dominated the heat transfer. In Regime (III), the 

Nusselt number is quasi-steady. When the Regime (IV) started, 

in the stage one of Regime (IV), the Nusselt number rapidly 

decreased as a function of [1-(-III)]3, but toward the very end 

of the experiment, intermediate stage of Regime (IV), the 

Nusselt number changes as a function of [1-(-III)]3/5. The 

complete history of the scale of the Nusselt numbers of all four 

regimes is shown in Figure 4. 

Figure 4. Complete history of the heat transfer scale. 

UNCERTAINTY ANALYSIS 

An estimate of the uncertainty in the calculated result (R), 

based on a constant-odds formulation, is given by [24] 

2/12
J

J

2
2

2

2
1

1

])δX
X

R
(...)δX

X

R
()δX

X

R
[( 

R

1

R

δR














 (42) 

where R/XJ is the partial derivative of R with respect to XJ, 

and XJ is the uncertainty of XJ. In many engineering cases, R 

can be expressed as a product string. In such cases, R is 

expressed as 

.........xxR b
2

a
1  (43) 

In this case, the relative uncertainty of R is expressed as [25, 

26] 

1/22

2

22

1

1 ......])
x

δx
(b)

x

δx
[(a 

R

R



(44) 

Utilizing Equation (42), the uncertainty in the radius of 

fusion for melting can be expressed as 

2/12
2

2

fus2
1

1

fus

fusfus

fus ])δQ
Q

r
()δQ

Q

r
[( 

r

1

r

δr









 (45) 
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Where Q1 is the incremental heat transfer to the system, and 

Q2 is the total heat transfer to each component. Utilizing 

Equation (44), the uncertainties of Q1 and Q2 are defined as 

TC

TC
2

1/22

TC

TC
22

1/22

meter

meter2
11

T

Tδ
Q])

T

Tδ
[(QδQ

])
ΔT

δΔT
()

m

mδ
[( QδQ
















(46) 

where  m/m  is the relative uncertainty for the mass flow rate of

water,  T/Tδ metermeter  is the uncertainty of the temperature 

difference between inlet and outlet of the water flow, and 

TCTC T/Tδ   is the uncertainty of the temperature differences 

measured with thermocouples. The TTC was measured by 

thermocouples (0.005-inch-diameter, OMEGA TT-K-36, type-K 

thermocouple). In estimating the relative uncertainty, 

TCTC T/Tδ  , thermocouple manufacturer and the data 

acquisition/control (HP model 3852A) specifications were taken 

into account. These estimates indicated that the thermocouple 

uncertainty is temperature dependent. 

Results of Equation (45), for melting are presented in Figure 

5. This figure presents the uncertainty of the radius of fusion with

respect to time. In this figure, as expected at t=0, the uncertainty 

with respect to the radius of fusion is zero (at the wall radius) and 

as time progressed, the uncertainty of radius of fusion increased 

due to increase in uncertainties of the cumulative heat transfer 

(Q1 and Q2) and the fact that, as the test progresses, rfus decreases, 

approaching zero for large times. 

Figure 5. Radius of fusion uncertainty (melting). 

The only experimental uncertainty associated with the 

measured Nusselt number is the uncertainty of the instantaneous 

heat transfer to the eicosane (q3). The relative Nusselt number 

uncertainty ( δNu/Nu ) can then be expressed as 

)δq
q

Nu
( 

Nu

1
])δq

q

Nu
[( 

Nu

1

Nu

δNu
3

3

1/22
3

3 







 (47) 

where 3qNu/  is the partial derivative of Nu with respect to 

q3, and 3δq  is the uncertainty of q3. Note that the same equation 

(Equation 46) predicting 2δQ  may be utilized to predict 3δq

(Q2 replaced by q3). 

Utilizing Equation (47) indicates that the relative 

uncertainty of the Nusselt numbers were independent of time (in 

the worst case approximately 4%) and a typical values of them 

are: Nu=5.6%. 

CONCLUSION 
A detailed experimental study has been carried out to 

evaluate the heat transfer performance of a solid/liquid phase-

change thermal energy storage system. The phase-change 

material is contained in a vertically oriented test cylinder that is 

heated at its outside boundary (inward interface motion). The 

PCM employed in this work was 99% pure eicosane paraffin 

having a melting point of 36.5C. Based on this work, the 

following conclusions/observations related to melting were 

obtained: 

1. Initial subcooling of the solid decreased the rate of melting

and, correspondingly, the rate of sensible heat storage in the

liquid.

2. The melting problem is characterized by a conduction heat

transfer regime (“Conduction Regime”) at early times

followed by a transition (“Transition/Mixed Convection and

Conduction Regime”) to a natural convection dominated

regime (“Quasi-Steady Natural Convection Regime”).

Finally, the arrival of the liquid-solid interface at the

centerline marks the beginning of the “Variable Height

Regime”. From this time, the height of the liquid-solid

interface decreases steadily until the solid region disappears

entirely.

3. An examination of the experimentally observed pattern of

melting confirmed the progression through the four regimes

of melting. For very short melting times, vertical near-wall

isotherms indicated that conduction was the sole means of

heat transfer. However, the upward flow of fluid, due to the

natural convection which accompanied melting, caused the

solid material to take on a curvature near its top. The

accumulation of liquid atop the solid caused a downward

melting in addition to inward melting. This type of melting

was perpetuated by natural convection, which developed in

the liquid region. Melt shapes corresponding to the

completion of selected tests were measured and are reported.

The inverted bell shape of the cavities demonstrated the

dominant role of natural convection in the melting problem.

The model presented here to predict melting was based on a 

scale analysis which considers conduction and convection heat 

transfer with zero superheat contained in the liquid eicosane. 

Predictions obtained from model results have been compared to 

the experimentally measured radius of fusion values, evaluated 
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utilizing a volume-averaged technique. The results were within 

10% of the data measurements in the worst case. 
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