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1 Introduction

Compactification of E8×E8 heterotic string theory on smooth Calabi-Yau (CY) threefolds

can lead to realistic particle physics models. For example, heterotic M-theory vacua con-

sisting of stable, holomorphic SU(4) vector bundles defined by “extension” over a class of

Schoen CY threefolds can produce exactly the spectrum of the minimal supersymmetric

standard model (MSSM) with gauged B−L symmetry [1–4]. Similarly, heterotic M-theory

compactified on other classes of CY threefolds, such as the tetra-quadric, carrying “monad”

vector bundles can lead to the MSSM at low energy, with or without gauged B − L sym-

metry [5–9]. Although these string vacua realize the correct spectrum and interactions

of low energy particle physics, there remains a fundamental problem; that is, that the

associated threefolds and vector bundles have moduli that generically have no potential

energy. Therefore, the vacuum values of these fields can be dynamically unstable and, even

if time-independent, cannot be uniquely specified — thus rendering explicit predictions of

the values of supersymmetry breaking and physical parameters impossible. It follows that

the stabilization of both geometric and vector bundle moduli is one of the most important

problem in heterotic string theory.

A non-vanishing potential energy for the geometric moduli, that is, the complex struc-

ture [10] and Kahler moduli, can occur for specific heterotic string vacua due to both

perturbative and non-perturbative effects. This leads to partial, and in some toy cases

complete, stabilization of these moduli [11]. However, the situation for vector bundle

moduli is more difficult. Here, there is no perturbative contribution to their potential

energy and one must examine possible non-perturbative effects. A non-perturbative super-

potential can, in principal, be generated by string instantons [12–20]. It depends (inversely)

exponentially on the Kahler moduli, and also contributes to a potential energy for both

complex structure and, importantly, the vector bundle moduli through 1-loop determi-

nants. However, it is difficult to compute these 1-loop quantities. So far, this has only

been carried out for specific examples of elliptically fibered CY threefolds with spectral

cover vector bundles [21, 22]. It is important, therefore, to generalize these constructions

to more realistic vacua, such as those mentioned above. Even then, to find the complete

superpotential one has to sum up the contributions from all holomorphic, isolated, genus

0 curves. Beasley and Witten showed that, in a large class of models, these contributions

cancel against each other [23, 24]. Hence, in addition to calculating the instanton gener-

ated superpotential for specific curves in more realistic vacua, one must then show that

these contributions do not cancel each other; that is, that the Beasley-Witten theorem is

not applicable to these theories. In this paper, we take a first step in that direction by

explicitly calculating the complete leading order instanton superpotential for a heterotic

vacuum consisting of a Schoen [25] threefold geometry and a simple “extension” SU(3) vec-

tor bundle — similar, but not identical, to the heterotic standard model in [4]. Although

our Schoen threefold is a complete intersection CY manifold (CICY) and the vector bundle

descends from a vector bundle on the ambient space — two of the three main conditions

required by the Beasley-Witten theorem — we find in this theory that the Beasley-Witten

theorem is not applicable and that the superpotential indeed does not vanish. Extending

this work to exact heterotic standard model vacua will be carried out elsewhere.

– 2 –



J
H
E
P
0
1
(
2
0
1
7
)
0
3
8

We start our analysis with a theory on a Schoen threefold X̃ which is a CICY in the

ambient space A = P1 × P2 × P2. We will also consider only those vector bundles Ṽ on X̃

that descend from a vector bundle V on A. These vacua satisfy two of the three conditions

of the residue theorem of Beasley and Witten and, therefore, one might expect the complete

non-perturbative superpotential to vanish. However, we point out that the Beasley-Witten

residue theorem additionally assumes that the area of all holomorphic curves on the CICY

is computed using the restriction of the Kahler form on the ambient space. Usually, this

restriction does give the complete Kahler form on the CY manifold — but there are cases

when it does not. These more subtle cases arise when the CICY manifold has more (1, 1)

classes than does the ambient space. As a result, curves which have the same area with

respect to the restriction of the Kahler form of the ambient space, can actually have

different area with respect to the true Kahler form on the Calabi-Yau space and, hence,

can lie in different homology classes. The Schoen manifold studied in the paper has this

property. It has 19 (1, 1) classes whereas the ambient space has only 3. We show that

there are holomorphic, isolated, genus 0 curves in this manifold which are unique in their

homology classes despite having the same area with respect to the restriction of the Kahler

form of A. Thus, for an arbitrary vector bundle the contributions to the non-perturbative

superpotential due to these curves cannot cancel each other because they are weighted with

different area. This way, one can get around the Beasley-Witten residue theorem.

Furthermore, our CICY Schoen threefold is chosen to have a freely acting Z3 × Z3

symmetry group. We then mod our this discrete action, to obtain a non-simply connected

Calabi-Yau space with π1 = Z3 × Z3. For a toy choice of a vector bundle which descends

from the ambient space, the non-perturbative superpotential for all holomorphic, isolated,

genus 0 curves with minimal area is computed. For simplicity, we perform our calculations

for a fixed complex structure. Hence, the only 1-loop determinant which needs to be

computed is the Pfaffian of the Dirac operator on these curves. Since we do not know

either the metric or the gauge connection, we use an algebraic method (similar to the

one developed in [21, 22]) to compute the Pfaffians. They turn out to be homogeneous,

degree 2 polynomials on the moduli space of vector bundles. We show that the sum of the

contributions from these curves is non-zero. Here, the main reason for the non-vanishing

of the superpotential is the discrete part of the second homology group, called discrete

torsion. Due to torsion, curves which have the same area actually lie in different classes

of the second homology group with integer coefficients. These different classes are labeled

by the characters of the torsion subgroup — which in the present case is Z3 ⊕ Z3. Hence,

in this case the non-vanishing of the superpotential can also be attributed to existence of

holomorphic, isolated, genus 0 curves which are unique in their integral homology classes.

The paper is organized as follows. In section 2, we start with reviewing the structure

of the non-perturbative superpotential in heterotic string theory, mostly following [17].

Then we review the residue theorem of Beasley and Witten, pointing out that it is directly

applicable only when the Kahler form on the Calabi-Yau manifold is the restriction of the

Kahler form of the ambient space. We also discuss how the structure of the superpotential

is modified if the second homology group with integer coefficients contains discrete torsion.

Holomorphic, isolated, genus 0 curves which are in the same real homology classes and
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which, hence, have the same area, are distributed among different torsion classes labeled

by the characters of the torsion group. These characters arise as extra factors in the

superpotential. In section 3, we review some mathematical propeties of the Schoen manifold

and of its quotient by Z3 × Z3. We also review the type II prepotential on the quotient

computed in [26–28]. We point out that there are 9 holomorphic, isolated, genus 0 curves

of the quotient having the same minimal area, but each lying in its own torsion class. In

section 4, we show that the pre-image of these curves on the covering Schoen manifold

consists of 81 curves lying in 81 different homology classes. These curves have different

area due to the Kahler classes which are non-invariant under Z3 ⊕ Z3 and, hence, do not

descent to the quotient. In particular, this implies that the superpotential on the Schoen

manifold is non-zero. In the remaining part of the paper, we compute the superpotential on

the quotient manifold due to the above 9 isolated curves with minimal area. In this paper,

we do the calculation for a toy model. More realistic vacua will be discussed elsewhere. In

section 5, we construct a toy vector bundle with structure group SU(3) which descends to

the quotient manifold. We show that its moduli space is a projective space and find its

explicit parametrization. In section 6, we compute the Pfaffian of the Dirac operator on

the curves of interest. On each curve, the result is a homogeneous polynomial which we

find explicitly up to an overall coefficient. We show that, since all curves are in different

integral homology classes, their contributions pick up different torsion factors and, hence,

they do not cancel each other. In the Conclusion, we summarize our results and discuss

directions for further research. Finally, appendices A, B, C and D are devoted to discussing

various technical details.

2 Non-perturbative superpotentials in heterotic string theory

2.1 The general structure of non-perturbative superpotentials

We consider E8 ×E8 heterotic string theory compactified to four-dimensions on a Calabi-

Yau threefold X. As was extensively studied in a variety of contexts and papers [12–22], the

effective low-energy field theory may, in principle, develop a non-perturbative superpoten-

tial for the moduli fields generated by worldsheet/worldvolume instantons. The structure

of the instantons is slightly different in the weakly and strongly coupled heterotic string

theories. Be that as it may, the superpotential has the same generic form. For concrete-

ness, we will discuss the weakly coupled case where the superpotential is generated by

strings wrapping holomorphic, isolated, genus 0 curves in X.1 Furthermore, for simplicity,

we will restrict our discussion to the “observable” sector; that is, to the superfields associ-

ated with the first E8 factor of the gauge group.The superpotential is then determined by

the classical Euclidean worldsheet action Scl evaluated on the instanton solution and by

the 1-loop determinants of the fluctuations around this solution. Let C be a holomorphic,

isolated, genus 0 curve in X. Then the general form of the superpotential induced by a

string wrapping C is [17]

W (C) = exp

[
− A(C)

2πα′
+ i

∫
C
B

]
Pfaff(∂̄VC(−1))

[det′(∂̄O)]2det(∂̄NC)
. (2.1)

1Holomorphic, non-isolated and/or higher genus curves contribute to higher order F-term interac-

tions [24].
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Let us review various ingredients in this formula. The expression in the exponent is the

classical Euclidean action evaluated on C. In the first term, A(C), is the area of the curve

given by

A(C) =

∫
C
ω , (2.2)

where ω is the Kahler form on X. In the second term, B is the heterotic string B-field

which, in this expression, can be taken to be a closed 2-form, dB = 0. Let ωI be a basis of

(1, 1)-forms on X, I = 1, . . . , h1,1. Then we can expand

ω =
h1,1∑
I=1

tIωI , B =
h1,1∑
I=1

φIωI . (2.3)

Let us define the complexified Kahler moduli

T I = φI + i
tI

2πα′
. (2.4)

Then the exponential prefactor becomes

eiαI(C)T I , αI(C) =

∫
C
ωI . (2.5)

By construction Re(iαI(C)T I) < 0.

Note that the exponential factor in (2.1) can also be understood as a map from the

curve C to the non-zero complex numbers C∗. That is,

C → exp

[
− A(C)

2πα
+ i

∫
C
B

]
. (2.6)

Since the value of the integrals depends only on the homology class of the curve, the map

is more appropriately expressed as

e−Scl : H2(X,Z)→ C∗ . (2.7)

However, here there is an important caveat. In eqs. (2.3), (2.7) we are assuming that the

moduli space of the B-field is connected. As we will discuss below, this is not necessarily

the case. Hence, the map (2.7) needs to be refined.

Let us now discuss the 1-loop determinants. The first determinant is the Pfaffian of

the Dirac operator which comes from integrating over the right moving fermions in the

worldsheet theory. In heterotic compactifications, we have to specify the internal gauge

field A on X which satisfies the Hermitian Yang-Mills equations

Fmn = 0 , Fm̄n̄ = 0 , gmn̄Fmn̄ = 0 , (2.8)

where m and m̄ are holomorphic and anti-holomorphic indices on X and gmn̄ is the Ricci

flat metric on X. According to the theorem of Donaldson-Uhlenbeck-Yau, A is a connection

on a holomorphic polystable vector bundle V on X whose structure group is a subgroup

of E8. Then the Pfaffian in (2.1) is the Pfaffian of the Dirac operator depending on the
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connection A restricted to the curve C. Since the spin bundle on a genus 0 curve is OC(−1),

we additionally tensor V with OC(−1) and denote VC(−1) = V|C⊗OC(−1). Pfaff(∂̄VC(−1))

depends on the moduli of the vector bundle V. In principle, it can be explicitly expressed

as a function of the gauge connection A using the WZW model [22]. However, since no

explicit solutions to the Hermitian Yang-Mills equations on X are known, it is unclear how

to use this in practice. Since right moving worldsheet fermions are Weyl, the Pfaff(∂̄VC(−1))

is anomalous. However, this anomaly is cancelled by the variation of the B-field [22]. As

the result, the Pfaffian of the Dirac operator is not a function on the moduli space of V

but, rather, a section of some line bundle. In the denominator in (2.1), det(∂̄NC) comes

from integrating over bosonic fluctuations and is the determinant of the ∂̄-operator on

the normal bundle to the curve C. For an isolated, genus 0 curve, the normal bundle is

NC = OC(−1) ⊕ OC(−1). Hence, det(∂̄NC) = [det∂̄OC(−1)]
2. Finally, [det′(∂̄O)]2 is the

∂̄-operator on the trivial line bundle which is a constant.

In general, a given homology class of X contains more than 1 holomorphic, isolated,

genus 0 curve. The number of these curves is referred to as to Gromov-Witten invariant.

All such curves in the same homology class have the same area, the same classical action

and the same exponential prefactor in (2.1). However, the 1-loop determinants, in general,

are different. Hence, the contribution to the superpotential from all curves Ci in the

homology class [C] of the curve C is given by (for simplicity, we remove the constant

factor [det′(∂̄O)]−2)

W ([C]) = exp

[
− A(C)

2πα′
+ i

∫
C
B

] n[C]∑
i=1

Pfaff(∂̄VCi (−1))

[det∂̄OCi (−1)]2
, (2.9)

where n[C] is the number of the holomorphic, isolated, genus 0 curves in the homology class

[C]. To find the complete non-perturbative superpotential W , we then have to sum over

all homology classes. That is,

W =
∑

[C]∈H2(X)

W ([C]) . (2.10)

2.2 The residue theorem of Beasley-Witten

In [23] (also see earlier papers [29–32]) Beasley and Witten showed that, under some

rather general assumptions, the sum (2.9) must vanish for each homology class [C]. Here,

we review their assumptions since they will be important later in the paper. Let X̃ be

a complete intersection Calabi-Yau threefold in the product of projective spaces2 A =

Pn1 × · · · × Pna . That is, X̃ is given by a set of polynomial equations p1 = 0, . . . , pm = 0

where
∑a

i=1 ni −m = 3. Additionally, assume that the Kahler form ωX̃ descends from the

ambient space, that is, ωX̃ = ωA|X̃ , and that the vector bundle Ṽ on X̃ is obtained as

a restriction of a vector bundle V on A, Ṽ = V|X̃ . Then, it was shown by Beasley and

Witten that if these assumptions are satisfied, the sum (2.9) vanishes for any homology

class. This result was proven in [23] and interpreted as a residue theorem.

2The results of Beasley and Witten are also expected to be valid for complete intersections in toric

varieties.
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The proof in [23] is based on standard arguments of topological field theory and local-

ization. First, they constructed a topological worldsheet action with target space A such

that there exists a set of supersymmetric vacuum solutions — all with CICY threefold X̃,

ωX̃ = ωA|X̃ and Ṽ = V|X̃ . Each such vacuum is associated with a holomorphic curve

C ⊂ X̃. By the standard arguments of topological field theory, the correlation functions

in this theory do not depend on the coupling. In one limit of the coupling, the correlators

are localized on this set of supersymmetric vacua solutions. This leads to eq. (2.10) for

the total superpotential, where one uses the fact that non-isolated and/or higher genus

curves only contribute to higher F-term interactions,. In another limit, the same corre-

lators vanish because of unsaturated fermionic zero modes. Hence, W = 0. Since the

exponential factor is different for each homology class, Beasley and Witten concluded that

the sum (2.9) vanishes for any homology class. The assumptions of Beasley and Witten

are rather general, which means that in a large class of heterotic string models a non-

perturbative superpotential cannot be generated. This raises a question of whether moduli

in heterotic compactifications can ever be completely stabilized.

The aim of this paper is to present explicit examples where the non-perturbative

superpotential is indeed non-zero.

2.3 Applicability of the residue theorem

As we have discussed, in the analysis of Beasley and Witten in [23] there is the assumption

that ωX̃ = ωA|X̃ . This assumption is necessary in order for their analysis to be a topological

theory on the ambient space with X̃ as a vacuum solution — and, hence, to use their

residue theorem. It follows that, in their theorem, the area of all curves in (2.9), (2.10) is

measured using the Kahler form ωA on A restricted to X̃. However, there are cases when

this restriction is not the same as the physical Kahler form on X̃. Indeed, it is possible that

h1,1(X̃) is not the same as h1,1(A) because there can be classes in X̃ which do not come as a

restriction of classes from the ambient space. Hence, the residue theorem, strictly speaking,

is valid only if h1,1(X̃) = h1,1(A).3 If h1,1(X̃) > h1,1(A) the residue theorem, though

still valid in the topological theory, is not directly applicable to the physical heterotic

string theory. In the former case, the area of holomorphic curves is measured using ωA|X̃ .

But in the physical theory, it is measured using the actual Kahler form ωX̃ on X̃. As a

result, the curves which have the same area with respect to ωA|X̃ might have different area

with respect to ωX̃ and, hence, might lie in different homology classes. More precisely, if

h1,1(X̃) > h1,1(A) we have

ωX̃ = ωA|X̃ + ∆ωX̃ , (2.11)

where ∆ωX̃ is the contribution to the Kahler form on X̃ from the (1, 1) classes which do

not come as a restriction of classes from the ambient space. Then the actual area of a curve

C is given by ∫
C
ωX̃ =

∫
C

(ωA|X̃ + ∆ωX̃) ≥
∫
C
ωA|X̃ . (2.12)

3Such models were called favorable in [33].
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Two curves C1 and C2 which satisfy∫
C1

ωA|X̃ =

∫
C2

ωA|X̃ (2.13)

and appear to lie in the same homology class from the viewpoint of the residue theorem

can actually have different area due to different contributions from ∆ωX̃ and can lie in

different homology classes.

To say it differently, if h1,1(X̃) > h1,1(A) the correlation functions in the topological

theory studied in [23] do not coincide with correlation functions in the physical heterotic

string theory on X̃. Hence, the cancellation in the residue theorem does not imply an

analogous cancellation in the physical theory. However, we can still apply the residue

theorem to the physical theory. If in the physical theory we ignore ∆ωX̃ and measure the

area of all curves using ωA|X̃ only, then we should have the same cancellation as in the

topological theory. Nevertheless, it is important to emphasize that now the cancellation

happens among the 1-loop determinants of the curves in different homology classes but

having the same area measured by ωA|X̃ . If we restore the actual area using the Kahler

form ωX̃ on X̃, the contributions of these curves might no longer cancel each other because

they might lie in different homology classes and have different area. That is, in the physical

theory whether or not curves in a given homology class cancel each other cannot be directly

deduced from the residue theorem. Below, we will give an example where the cancellation

cannot happen simply because each curve is unique in its homology class.

2.4 Discrete torsion

Our discussion so far has been missing an important ingredient called discrete torsion. In

general, for an arbitrary complex manifold, X, the second homology group with integer

coefficients is of the form

H2(X,Z) = Zk ⊕Gtor , k > 0 , (2.14)

where Zk is the free part and Gtor is a finite group called discrete torsion. For example, a

discrete torsion factor of H2(X,Z) can arise when X is a quotient of another Calabi-Yau

manifold by a freely acting discrete isometry group K — as we will discuss below. The

existence of the torsion classes affects the B-field. Indeed, the B-field is an arbitrary closed

2-form dB = 0. However, in general, it implies that the field strength H = dB vanishes in

H3(X,R) but not necessarily in H3(X,Z). In the later case the integral
∫
C B is not defined

because the moduli space of the B-field is not connected. From the Universal Coefficient

Theorem (see e.g. [34]) it follows that

H2(X,Z)tor = H3(X,Z)tor . (2.15)

This means that there is one-to-one correspondence between the torsion elements of

H2(X,Z) and the number of the connected components of the moduli space of the B-

field. These connected components can be labeled by the characters of the discrete group

Gtor. Since the B-field is not continuous, we have to replace the exponential prefactor

– 8 –
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in (2.1) with a more general map from H2(X,Z) → C∗ [35]. While we will continue to

denote this map by

e−Scl : H2(X,Z)→ C∗ , (2.16)

it is no longer given by expression (2.6). Specifically, it now depends on the discrete choice

of the connected component of the moduli space of the B-fields.4 Choosing a different

connected component gives a different map (2.16). It is possible to describe the map (2.16)

more explicitly. Let us define the complexified Kahler form

ωC =
h1,1∑
I=1

T IωI =
h1,1∑
I=1

(
φI + i

tI

2πα′

)
ωI . (2.17)

Then the map (2.6) can be understood as

C → exp

[
i

∫
C
ωC

]
= exp[iωC · C] , (2.18)

where, in the last step, we view ωC as the Poincare dual 4-cycle and ωC ·C is the intersection

of this 4-cycle with the curve C. However, ωC defined in (2.17) is Poincare dual only to an

element of the free part of H4(X,Z). Clearly, ωC should also contain a torsion part. Let

Gtor have r generators β1, . . . , βr. Then the complete expression for ωC is given by

ωC =

h1,1∑
I=1

T IωI +

r∑
α=1

sαβα , (2.19)

where, slightly abusing notation, we continue to use the same symbol for the complexified

Kahler form including torsion. Since βα are torsion elements, it follows that for any α there

is an integer mα for which mαβα = 0. Hence, we obtain

exp[iωC · C] = eiαI(C)T I
r∏

α=1

eis
αβα(C) , βα(C) = βα · C . (2.20)

Since mαβα = 0 and C is arbitrary, it follows that χα = eis
α

is an mα-th root of unity.

Hence, sα can take only discrete values parametrizing the connected components of the

moduli space of the B-field. It also follows that χα is a character of Gtor. We conclude

that mapping (2.6) now generalizes to

C → eiαI(C)T I
r∏

α=1

χβα(C)
α . (2.21)

The precise values of χα depends on the choice of the torsion part of B; that is, on the

choice of the connected component. Clearly, all curves in the same homology class of

H2(X,Z) have the same value of βα(C) and, hence, pick up the same character-dependent

factor in (2.21).

4A discrete choice of a vacuum is quite common in heterotic compactifications on non-simply connected

Calabi-Yau manifolds. Other discrete choices may involve a choice of the equivariant structure of a vector

bundle or a choice of a Wilson line.
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Let us now refine eq. (2.9) in the presence of discrete torsion. Let [C] be the homology

class of the curve C in H2(X,R) = Rk. As we have just discussed, the curves in [C] do

not necessarily lie in the same homology class in H2(X,Z) because they might belong to

different torsion classes. Curves belonging to different torsion classes pick up different

characters under the map (2.21). Hence, equation (2.9) is modified to become

W ([C]) = eiαI(C)T I
n[C]∑
i=1

Pfaff(∂̄VCi (−1))

[det∂̄OCi (−1)]2

r∏
α=1

χβα(Ci)
α , [C] ∈ H2(X,R) . (2.22)

To find the complete non-perturbative superpotential, we have to sum over all homol-

ogy classes [C] ∈ H2(X,R). Later in the paper, we will analyze expression (2.22) for a

specific example.

3 The Schoen manifold and the prepotential

3.1 The Schoen manifold

Having presented the generic discussion above, we now proceed to calculate the non-

perturbative superpotential for a specific Calabi-Yau threefold. This manifold, denoted

by X, is the quotient of a simply connected, complete intersection Calabi-Yau threefold,

X̃ — chosen to be a specific Schoen manifold [25] — with respect to its fixed-point free

symmetry group K = Z3 × Z3. This Schoen threefold is defined as follows. We construct

X̃ as a compete intersection in the ambient space A = P1 × P2 × P2 with homogeneous

coordinates

([t0 : t1], [x0 : x1 : x2], [y0 : y1 : y2]) ∈ P1 × P2 × P2 . (3.1)

X̃ is then given by a common zero locus of two polynomial equations

P1(t0, t1)Q1(x0, x1, x2) + P2(t0, t1)Q2(x0, x1, x2) = 0 ,

P3(t0, t1)Q3(y0, y1, y2) + P4(t0, t1)Q4(y0, y1, y2) = 0 . (3.2)

Here P1, . . . , P4 are homogeneous polynomials of degree 1 and Q1, . . . , Q4 are homogeneous

polynomials of degree 3. For the purposes of this paper, we will restrict X̃ to be given by

the following polynomials

F1 = t0(x3
0 + x3

1 + x3
2) + t1(x0x1x2) = 0 ,

F2 = (λ1t0 + t1)(y3
0 + y3

1 + y3
2) + (λ2t0 + λ3t1)(y0y1y2) = 0 . (3.3)

This manifold is self-mirror with h1,1 = h2,1 = 19 [25, 36]. Note that

h1,1(X̃) > h1,1(A) = 3 . (3.4)

It follows that on X̃ there are 16 (1, 1) classes which do not arise as the restriction of (1, 1)

classes from the ambient space. The manifold X̃ defined by (3.3) is invariant under the
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action of the K = Z3 × Z3 symmetry generated by

g1 :


[x0 : x1 : x2] 7→ [x0 : ζx1 : ζ2x2]

[t0 : t1] 7→ [t0 : t1] (no action)

[y0 : y1 : y2] 7→ [y0 : ζy1 : ζ2y2]

g2 :


[x0 : x1 : x2] 7→ [x1 : x2 : x0]

[t0 : t1] 7→ [t0 : t1] (no action)

[y0 : y1 : y2] 7→ [y1 : y2 : y0] ,

(3.5)

where ζ = e2πi/3. Note that this discrete symmetry does not act on P1. This action has

fixed points on the ambient space A, but not on X̃. Having constructed X̃ with a free

Z3 × Z3 action, we define

X = X̃/(Z3 × Z3) . (3.6)

This manifold is also self-mirror with h1,1 = h2,1 = 3 [27]. From these Hodge numbers, it

follows that H2(X,R) = R3. However, H2(X,Z) is more involved. It was shown in [27]

that it contains the discrete torsion subgroup

Gtor = Z3 ⊕ Z3 . (3.7)

That is, the complete H2(X,Z) is given by

H2(X,Z) = Z3 ⊕ Z3 ⊕ Z3 . (3.8)

Let us point out that from the Universal Coefficient Theorem it follows that

H2(X,Z)tor = H1(X,Z)tor = Z3 ⊕ Z3 . (3.9)

Hence, in the present case, the torsion groups of H2(X,Z) and of H2(X,Z) are the same.

Let us present some mathematical details of X̃ and X following [27]. From eq. (3.3) we

see that for fixed [t0 : t1] we have two elliptic curves, one in each P2. Thus, each equation

in (3.3) defines a rational elliptic surface dP9 ∈ P1 × P2 and, hence, X̃ is a double elliptic

fibration over P1. The structure of X̃ can be illustrated using the diagram

dimC = 3 : X̃
π2

��
π1

��
dimC = 2 : B1

��

B2 .

��
dimC = 1 : P1

(3.10)

Here B1 and B2 are the dP9 surfaces given by the individual equations in (3.3). The Z3×Z3

action descends to B1 and B2. Since its action is trivial on P1, on each Bk for k = 1, 2 the

Z3 × Z3 must act by translation along the fiber by two independent sections of order 3.

To simplify notation, we denote these sections on either Bk by the same symbols µ and ν
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— unless it is necessary to distinguish them. Additionally, each Bk has the zero section σ.

This determines the structure of Kodaira fibers and the Mordell-Weil group to be [37]

sing(B1) = sing(B2) = 4I3 ,

MW (B1) = MW (B2) = Z3 ⊕ Z3 . (3.11)

The Mordell-Weil group is generated by the zero section σ and by the sections µ and ν of

order 3. Each Bk has 4 I3 singular fibers, each containing 3 exceptional classes intersecting

in a triangle. These classes will be denoted by θji, where j = 1, . . . , 4 labels the singular

fibers and i = 1, 2, 3 labels the exceptional classes in each such fiber. As was shown

in [38, 39], the basis in H2(Bk,Z) can be chosen to be

H2(Bk,Z) = spanZ{σ, µ, ν, f, θ11, θ21, θ31, θ32, θ41, θ42} , (3.12)

where f is the class of the elliptic fiber. The intersection numbers of these classes can be

found in [27]. Out of these basis elements, it is possible to construct divisors which are

Poincare dual to Z3 × Z3 invariant (1, 1) classes in Bk (here we will use the same notation

for divisors and Poincare dual (1, 1)-forms). The invariant cohomology group of Bk is

two-dimensional and generated by [27]

H2(Bk,Z)K = spanZ{f, t} , (3.13)

where t is a specific linear combination of the classes in (3.12) given by

t = −3σ − 3f + 3µ+ 3ν + θ11 + θ21 + 2θ31 + 2θ32 + 3θ41 + θ42 . (3.14)

The intersection numbers of f and t are [27]

f2 = 0 , f · t = 3 , t2 = 1 . (3.15)

Using the invariant cohomology classes in Bk, we can now construct divisors in X̃

Poincare dual to the invariant (1, 1) classes on X̃. The invariant generators can be defined

using the diagram (3.10) and the invariant classes in (3.13):

φ = π−1
1 (f1) = π−1

2 (f2) ,

τ1 = π−1
1 (t1) , τ2 = π−1

2 (t2) . (3.16)

Let us now denote the corresponding Poincare dual (1, 1)-forms as ωφ, ωτ1 , ωτ2 . They form

a basis of the invariant cohomology group H2(X̃,Z)K , and will descend to the quotient

manifold X. Their triple intersection numbers can be found using the diagram (3.10) and

eq. (3.15) to be ∫
X̃
ωφ ∧ ωτ1 ∧ ωτ2 = φ · τ1 · τ2 = 9 ,∫

X̃
ωτ1 ∧ ωτ1 ∧ ωτ2 = τ1 · τ1 · τ2 = 3 ,∫

X̃
ωτ1 ∧ ωτ2 ∧ ωτ2 = τ1 · τ2 · τ2 = 3 . (3.17)
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The remaining triple intersection numbers are zero. We can now, somewhat abusing nota-

tion, define the form ωX on X̃ by

ωX = t1ωφ + t2ωτ1 + t3ωτ2 , tI > 0 , (3.18)

which will descend to the non-torsion part of the Kahler form on X. Let us emphasize,

however, that ωX is not the same as the Kahler form on X̃. This follows from the fact

that on X̃ there are additional classes of H2(X̃,Z) which are not invariant under Z3 ×Z3.

Indeed, as we stated previously, h1,1(X̃) = 19. This means that there are 16 (1, 1) classes

on X̃ in addition to ωφ, ωτ1 and ωτ2 . That is, the complete Kahler form on X̃ is given by

ωX̃ = ωX + ∆ωX̃ , (3.19)

where ∆ωX̃ stands for the contribution from the additional 16 non-invariant classes. Com-

paring this expression with (2.11), we conclude that

ωX = ωA|X̃ . (3.20)

We will give an explanation for this relationship in the following subsection.

3.2 The ambient space description of the invariant (1,1) classes

The above description of the invariant (1, 1) classes on X̃ is somewhat abstract. Here, we

will give a simpler description of ωφ, ωτ1 , ωτ2 in terms of the forms on the ambient space.

Let J1, J2, J3 be the Kahler forms on the three projective spaces P1, P2, P2 forming the

ambient space, normalized as∫
P1

J1 = 1 ,

∫
P2

J2 ∧ J2 = 1 ,

∫
P2

J3 ∧ J3 = 1 . (3.21)

Since Z3 × Z3 does not act on P1, the cohomology class of J1 is automatically invariant

under Z3 × Z3. In the cohomology class of J2 (and similarly of J3), one can choose a

representative to be the Kahler form of the Fubini-Study metric with the Kahler potential

log(|x0|2 + |x1|2 + |x2|2) , (3.22)

which is invariant under Z3 × Z3. This means that the cohomology classes of J2 and J3

are also invariant classes.

Let us now define the (1, 1) classes on X̃ by restriction

J1 = J1|X̃ , J2 = J2|X̃ , J3 = J3|X̃ . (3.23)

By construction, the cohomology classes of J1, J2, J3 are invariant classes in H2(X̃,Z) and,

hence, form a basis in H2(X̃,Z)K . The triple intersection numbers of J1, J2, J3 can be

computed by the standard methods of complete intersection Calabi-Yau manifolds (see

e.g. [40])5 with the following result∫
X̃
J1 ∧ J2 ∧ J3 = 9 ,∫

X̃
J2 ∧ J2 ∧ J3 = 3 ,

∫
X̃
J2 ∧ J3 ∧ J3 = 3 , (3.24)

5One can also compute them by lifting the triple intersection integrals to the ambient space by inserting

the delta-function current as in [41–43]. See appendix A in [42] for a similar calculation.
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with the remaining ones being zero. Comparing eq. (3.24) with (3.17) we conclude that

ωφ = J1 , ωτ1 = J2 , ωτ2 = J3 . (3.25)

That is, the invariant (1, 1) classes ωφ, ωτ1 , ωτ2 , which were constructed in the previous

subsection in a rather abstract way, are simply the restriction of the Kahler forms on the

projective spaces forming the ambient space — thus explaining expression (3.20). Due to

the normalization properties (3.21), the forms J1, J2, J3 can be viewed as first Chern classes

of the following line bundles on A:

OA(1, 0, 0) , OA(0, 1, 0) , OA(0, 0, 1) . (3.26)

This implies the following relations between the line bundles

OX̃(φ) = OA(1, 0, 0)|X̃ , OX̃(τ1) = OA(0, 1, 0)|X̃ , OX̃(τ2) = OA(0, 0, 1)|X̃ . (3.27)

These relations will be useful later. For emphasis, we again note note that the Kahler

form (3.19) can be written as

ωX̃ = ωA|X̃ + ∆ωX̃ . (3.28)

We see, therefore, that the Kahler form on X̃ is not simply given by the restriction of the

Kahler form from the ambient space but, rather, contains an additional term ∆ωX̃ .

3.3 The prepotential and Gromov-Witten invariants

The number of holomorpic, isolated, genus 0 curves in each homology class of X can

be read off from the prepotential in type II string theory. The prepotential on X was

computed in [26–28]. In this subsection, we will review the result. Since the (1, 1) classes

{ωφ, ωτ1 , ωτ2} are Z3 × Z3 invariant on X̃, they descend to cohomology classes on X. To

simplify our notation, we will label these cohomology classes using the same symbols. Let

{[Cφ], [Cτ1 ], [Cτ2 ]} be the dual homology classes in the free part of H2(X,Z). If Cφ, Cτ1 ,

Cτ2 are arbitrary representatives of these classes, then∫
Cφ

ωφ = 1 ,

∫
Cτ1

ωτ1 = 1 ,

∫
Cτ2

ωτ2 = 1 , (3.29)

with the other integrals being zero. Let us define

p = e−Scl([Cφ]) = exp

[ ∫
Cφ

(
− ωX

2πα′
+ iB

)]
= eiT

1
,

q = e−Scl([Cτ1 ]) = exp

[ ∫
Cτ1

(
− ωX

2πα′
+ iB

)]
= eiT

2
,

r = e−Scl([Cτ2 ]) = exp

[ ∫
Cτ2

(
− ωX

2πα′
+ iB

)]
= eiT

3
. (3.30)

Since H2(X,Z) contains torsion classes, we also have to introduce the image under the map

e−Scl of the Z3 × Z3 torsion generators — which we denote by b1 and b2 respectively and

satisfy b31 = b32 = 1. Let [C] be a homology class of the form

[C] = (n1, n2, n3,m1,m2) ∈ H2(X,Z) = Z3 ⊕ Z3 ⊕ Z3 , m1,m2 = 0, 1, 2 . (3.31)
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Then, as shown in (2.21), the image of this class under e−Scl is given by

e−Scl([C]) = pn1qn2rn3bm1
1 bm2

2 , (3.32)

where bm1
1 bm2

2 is a Z3 × Z3 character. The prepotential in type II string theory is defined

by the expression

FX =
∑

[C]∈H2(X,Z)

n[C]Li3(e−Scl([C])) =
∑

[C]∈H2(X,Z)

n[C]Li3(pn1qn2rn3bm1
1 bm2

2 ) . (3.33)

Here the sum is over all holomorphic, isolated, genus 0 curves and the polylogarithm Li3
takes proper care of multiple wrappings. If we know FX , we can expand it in powers of

p, q, r, b1, b2 and read off the Gromov-Witten invariants n[C]. The prepotential FX for the

quotient Calabi-Yau manifold X in (3.6) was computed in [26–28]. Here, we present the

result to low orders in p, q, r. It is given by

FX = p(1 + b1 + b21)(1 + b2 + b22)P(q)4P(r)4 +O(p2) , (3.34)

where the polynomial P(q) is of the form

P(q) = 1 +O(q) . (3.35)

Let us discuss some simple consequences of eqs. (3.34), (3.35). It follows that there are

no terms ∼ p0. In other words, there are no isolated, genus 0 curves in the homology classes

(0, n2, n3,m1,m2). However, there are terms in FX that are ∼ p1. Hence, there are isolated,

genus zero 0 curves in the (1, n2, n3,m1,m2) homology classes. It follows from (3.30) that

the contribution of these classes to e−Scl and, hence, the superpotential is proportional to

eiT
1+in2T 2+in3T 3

. This means that the leading contribution to the superpotential is ∼ eiT 1
;

all terms with n2 > 0 and/or n3 > 0 being exponentially suppressed. Similarly, the

contribution to the superpotential of any class with n1 > 1 is also suppressed relative to

eiT
1
. Therefore, since we are interested in computing the superpotential, we will focus on

the homology classes of the form (1, 0, 0,m1,m2). The number of isolated, genus 0 curves

in each such class can be read off from the most leading term in (3.34). This is given by

FX ∼ p(1 + b1 + b21)(1 + b2 + b22) . (3.36)

It follows that in each torsion class there is precisely 1 curve. That is,

n[C] = 1 for each class [C] = (1, 0, 0,m1,m2) , m1,m2 = 0, 1, 2 . (3.37)

The main aim of the rest of this paper will be to compute the non-perturbative superpo-

tential (2.22) summed over these 9 isolated, genus 0 curves. All of them are in the same

homology class in H2(X,R) and, hence, have the same area with respect to the Kahler

form on X. However, they are distributed in 9 different homology classes once we take

discrete torsion into account.
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3.4 Explicit construction of the isolated, genus 0 curves

It is possible to explicitly visualize these 9 curves as follows. We see from eq. (3.30)

that, ignoring torsion, they are in the same homology class [Cφ] which is dual to the

class of the (1, 1)-form ωφ. Let us lift these curves from X to X̃. Since on X̃ we have

ωφ = J1 = J1|X̃ , where J1 is the Kahler form on P1 ⊂ A, the pre-image of these 9 curves

gives 81 holomorphic, genus 0 curves on X̃ which can be parametrized by [t0 : t1]. Hence,

we can visualize these curves by demanding that eqs. (3.3) are solved for arbitrary [t0 : t1].

This is equivalent to solving the system of equations

x0x1x2 = 0 , x3
0 + x3

1 + x3
2 = 0 , y0y1y2 = 0 , y3

0 + y3
1 + y3

2 = 0 (3.38)

on P2 × P2. It is easy to see that this system is solved by 9 × 9 = 81 distinct points on

P2 × P2. Since the solutions of (3.38) are distinct points, all the corresponding curves in

X̃ are isolated. In appendix A we compute the normal bundle for each of these curves and

check that it is indeed O(−1)⊕O(−1). Due to the Z3×Z3 symmetry, the above 81 curves

split into 9 orbits under the action of Z3×Z3 — each orbit containing 9 curves. The curves

in the same orbit are obtained from each other by the action of the Z3 × Z3 group. When

we descend to the quotient manifold X, all curves in one orbit yield the same curve in X.

Hence, we obtain 9 isolated, genus 0 curves in X which are precisely the curves discussed

at the end of the previous subsection. It follows from the prepotential (3.36) they are in

the same homology class in H2(X,R) but in 9 different homology classes in H2(X,Z).

We now present 9 curves in X̃ which do not lie in the Z3×Z3 orbits of each other and

which, therefore, descend to 9 distinct curves in X. To accomplish this, let us write the

generators g1 and g2 in (3.5) in the matrix form

g1 =

1 0 0

0 ξ 0

0 0 ξ2

 , g2 =

0 1 0

0 0 1

1 0 0

 . (3.39)

Since Z3 × Z3 acts simultaneously on both P2’s, it is convenient to combine [x0 : x1 : x2]

and [y0 : y1 : y2] into a 6-vector (x0, x1, x2, y0, y1, y2)T . In this basis, the generators of

Z3 × Z3 are

K1 =

(
g1 0

0 g1

)
, K2 =

(
g2 0

0 g2

)
. (3.40)

Now choose one arbitrary solution of (3.38). For example, pick

s1 = (1,−1, 0, 1,−1, 0)T , (3.41)

where the symbol “T” means think of this as a column vector. It corresponds to the curve

C1 = P1 × s1 = [t0 : t1]× [1 : −1 : 0]× [1 : −1 : 0] ⊂ X̃ ⊂ P1 × P2 × P2 . (3.42)
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Let us now construct the remaining 8 curves Ci = P1 × si, i = 2, . . . , 9 by acting on s1 as

follows:

s2 =

(
g1 0

0 1

)
s1 , s3 =

(
1 0

0 g1

)
s1 , s4 =

(
g2 0

0 1

)
s1 , s5 =

(
1 0

0 g2

)
s1 ,

s6 =

(
g1g2 0

0 1

)
s1 , s7 =

(
1 0

0 g1g2

)
s1 , s8 =

(
g1 0

0 g2

)
s1 , s9 =

(
g2 0

0 g1

)
s1 .

(3.43)

One can check that these curves solve eqs. (3.38) and cannot be obtained from each other

by the action of Z3 × Z3.

4 Non-vanishing of the superpotential on X̃

Let us now compactify the E8×E8 heterotic string on the manifold X̃, and consider the non-

perturbative superpotential generated by the 81 isolated, genus 0 curves discussed above.

To describe the complete string vacuum, one must also introduce a specific holomorphic

vector bundle — which we will do in the next section. Although we will compute the

superpotential for this specific bundle, the results of the present section are valid for any

vector bundle. Since the curves specified by the solutions of (3.38) are all parameterized

by [t0 : t1], it is tempting to conclude that they are in the same homology class dual to the

(1, 1) class ωφ = J1|X̃ . However, we will see that this is not the case. In fact, we will show

that these curves lie in 81 different homology classes.

First consider the twofold B1 ' dP9 ⊂ P× P2 defined by

F1 = t0(x3
0 + x3

1 + x3
2) + t1(x0x1x2) = 0 . (4.1)

Let us now examine the genus 0 curves parametrized by [t0 : t1]. They are specified by the

9 solutions of

x0x1x2 = 0 , x3
0 + x3

1 + x3
2 = 0 . (4.2)

Each solution is a distinct section of the elliptically fibered surface B1 ' dP9. We

denote these sections by σi, i = 1, . . . , 9. Since the order of the Mordell-Weil group

MW (B1) = Z3 ⊕ Z3 is 9, these sections are in one-to-one correspondence with the ele-

ments of MW (B1) [27]. On the other hand, it was shown in [38] that on a dP9 twofold

distinct elements of the Mordell-Weil group are all non-homologous to each other. It fol-

lows that the 9 solutions to (4.2) fall into 9 different homology classes. The same is true

on B2 ' dP9 defined by

F2 = (λ1t0 + t1)(y3
0 + y3

1 + y3
2) + (λ2t0 + λ3t1)(y0y1y2) = 0 (4.3)

for the 9 genus 0 curves specified by the solutions of

y0y1y2 = 0 , y3
0 + y3

1 + y3
2 = 0 . (4.4)

For reasons of simplicity, we also denote these sections by σi, i = 1, . . . , 9.
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We now extend this result to X̃. To start with, note that there is a natural map

H2(X̃,Z)→ H2(B1,Z)×H2(B2,Z) . (4.5)

Let us define

σi×σj = (σi × σj) ∩ X̃ ∈ H2(X̃,Z) , σi ∈MW (B1) , σj ∈MW (B2) . (4.6)

This provides a more abstract way to visualize the 81 curves solving eqs. (3.38). Then the

map (4.5) acts on the above described solutions as

σi×σj → σi × σj ∈ H2(B1,Z)×H2(B2,Z) . (4.7)

We note that the 81 elements σi × σj , all being distinct, are in one-to-one correspondence

with elements of the Mordell-Weil group MW (B1 × B2) of B1 × B2 — which is given by

MW (B1)⊕MW (B2) and is of order 81 as well. Therefore, we have a map between the set

{σi×σj} and the elements of MW (B1)⊕MW (B2). By construction, it is a surjective linear

map between two finite sets consisting of 81 elements each. Hence, it is one-to-one. Since

all distinct elements of MW (B1)⊕MW (B2) are non-homologous to each other, it follows

that all 81 curves obtained in (3.38) lie in 81 different homology classes. In particular,

it follows that each of these 81 homology classes has precisely 1 isolated, genus 0 curve.

Hence, as long as the Pfaffian of the Dirac operator of at least one of these curves is not

identically zero — which is expected to be true for a generic vector bundle — the non-

perturbative superpotential in this theory is non-zero. We will show this explicitly for a

specific holomorphic vector bundle in the remainder of this paper.

To finish this section, let us point out that any of the 81 homology classes discussed

above are dual to a (1, 1) class of the form J1|X̃ + ∆ωX̃ .6 Here, it suffices to recall that

∆ωX̃ stands for the classes on X̃ which cannot be obtained as a restriction from the

ambient space. All of these 81 curves have equal area with respect to J1|X̃ and ωA|X̃ ,

but have different areas with the respect to the actual Kahler form ωX̃ . Hence, we have

an explicit realization of the situation described in subsection 2.3. As was discussed, this

violates one of the assumptions of the Beasley-Witten residue theorem and, hence, one can

expect a non-vanishing instanton superpotential. Finally, note that since ∆ωX̃ contains

only non-invariant classes under Z3×Z3 which vanish on the quotient manifold X, the area

of the images of the 9 curves in eqs. (3.41), (3.42), (3.43) in X is the same with respect

to the Kahler form ωX on X. That is, although the original 81 curves were in different

homology classes on the covering manifold, their images are in the same homology class on

the quotient manifold modulo torsion.

5 The vector bundle

The rest of the paper will be devoted to an explicit computation of the superpotential in

a concrete example of a theory on X. Specifically, we will consider a toy model where

6Explicit calculation of ∆ωX̃ for each of the 81 curves is a tedious, complicated task which is unnecessary

for the purposes of the paper.
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the holomorphic vector bundle V is taken to have structure group SU(3). A more phe-

nomenologically realistic class of bundles will be studied elsewhere. Since X is a quotient

manifold, it is easiest to first construct a vector bundle Ṽ on the covering space X̃ which

is equivariant under the action of K = Z3×Z3. The moduli space of an equivariant vector

bundle Ṽ consists of connected components labeled by the characters of K. The vector

bundle V on the quotient space X is then defined as

V = Ṽ /(Z3 × Z3) , (5.1)

with the moduli space of V consisting of one of the connected components. The choice

of the connected component is referred to as to the choice of the equivariant structure.

Different choices of equivariant structure give different vector bundles V in (5.1).

First, we will discuss a construction of Ṽ in terms of the data on X̃. We then will

express the same vector bundle as the restriction of a vector bundle Ṽ on the ambient space.

The second description is more explicit and will be used in computing the superpotential

in the next section.

5.1 Construction of the vector bundle Ṽ on X̃

We will construct Ṽ by specifying the line bundles L1, L2, L3 on X̃ satisfying the property

L1 ⊗ L2 ⊗ L3 = OX̃ . (5.2)

Then we define Ṽ as a sequence of extensions

0 −→ L1 −→ W̃ −→ L2 −→ 0 ,

0 −→ W̃ −→ Ṽ −→ L3 −→ 0 . (5.3)

Eq. (5.2) assures that the structure group of Ṽ is SU(3) rather than Υ(3). The structure

group of the rank 2 vector bundle W̃ is Υ(2). For Ṽ to descend to the quotient manifold

X, it has to be equivariant. To achieve that, it is sufficient to require that the line bundles

L1, L2, L3 are equivariant. A discussion of equivariant line bundles on the Schoen manifold

can be found in [3]. The action of the discrete group in [3] was chosen to be different from

ours in (3.5). However, the conclusions on equivariance are the same. Here we will simply

state the conclusions, referring to [3] for additional details.

First, any equivariant line bundle L on X̃ has to be constructed out of the invariant

divisors in (3.16). That is, it has to be of the form

L = OX̃(c1φ+ c2τ1 + c3τ2) , (5.4)

where c1, c2, c3 are integers. In addition, the sum c2 + c3 has to be divisible by 3. In our

toy model, we will choose L1, L2, L3 to be

L1 = OX̃(−2φ+ 2τ1 + τ2) ,

L2 = OX̃(τ1 − τ2) ,

L3 = OX̃(2φ− 3τ1) . (5.5)
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Note that eq. (5.2) is satisfied. We will take the trivial choice of the equivariant structure;

that is, we will assume that the moduli space of V given by (5.1) consists of the component

of the moduli space of Ṽ which is invariant under Z3 × Z3.

For V to have structure group SU(3) rather than its subgroup, we have to make sure

that there exist non-trivial extensions in (5.3). The spaces of non-trivial extensions are

given by

H1(X̃, L1 ⊗ L∗2) and H1(X̃, W̃ ⊗ L∗3) (5.6)

respectively. For simplicity, we will often denote them by [W̃ ] and [ṼW̃ ]. Note that

H1(X̃, W̃ ⊗L∗3) is the space of extensions for a fixed extension W̃ in [W̃ ]. That is why we

denote it by [ṼW̃ ]. Each element in the extension class defines a vector bundle. However, it

is important to take into account that different elements in the extension class can define

isomorphic vector bundles. Let W̃1 and W̃2 be two vector bundles from the same extension

class [W̃ ]. That is, they both satisfy

0 −→ L1 −→ W̃1 −→ L2 −→ 0 ,

0 −→ L1 −→ W̃2 −→ L2 −→ 0 . (5.7)

For any line bundle L there is an isomorphism L→ λL, where we multiply all elements of

the fiber of L by a non-zero complex number λ. Let us consider the following isomorphisms

of L1 and L2: L1 → L1, L2 → λL2. Then from the “five” lemma (see e.g. [34]), it follows

that W1 and W2 are isomorphic. This means that elements in H1(X̃, L1 ⊗ L∗2) related

by a multiplication by λ ∈ C∗ correspond to the same vector bundle. Therefore, the

moduli space M(W̃ ) of vector bundles corresponding to the extension class [W̃ ] is the

projectivization of H1(X̃, L1 ⊗ L∗2):

M(W̃ ) = PH1(X̃, L1 ⊗ L∗2) . (5.8)

Note that

dimM(W̃ ) = h1(X̃, L1 ⊗ L∗2)− 1 . (5.9)

Similarly, the moduli space M(ṼW̃ ) of vector bundles corresponding to the extension class

[ṼW̃ ] is given by

M(ṼW̃ ) = PH1(X̃, W̃ ⊗ L∗3) , dimM(ṼW̃ ) = h1(X̃, W̃ ⊗ L∗3)− 1 . (5.10)

The full moduli space M(Ṽ ) of Ṽ can be then understood as a fibration over M(W̃ ) =

PH1(X̃, L1⊗L∗2), where the fiber at a fixed extension W̃ is given byM(ṼW̃ ) = PH1(X̃, W̃⊗
L∗3). In appendix B, we compute the dimensions of the spaces in (5.6). We find

h1(X̃, L1 ⊗ L∗2) = 18 , h1(X̃, W̃ ⊗ L∗3) = 117 . (5.11)

This means that

dimM(W̃ ) = 17 , dimM(ṼW̃ ) = 116 (5.12)

and, hence,

dimM(Ṽ ) = 17 + 116 = 133 . (5.13)
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Note that if we introduce coordinates in the vector space of extensions, it is straightforward

to introduce coordinates on its projectivization; that is, we simply treat these coordinates

as homogeneous ones.

Since the line bundles L1, L2, L3 are equivariant, they descend to the quotient manifold

X. To simplify notation, we will denote the corresponding line bundles on X by the same

letters L1, L2, L3. Hence, the vector bundles W and V on X, obtained by modding out W̃

and Ṽ by the action of Z3 × Z3, can be defined by the similar extension sequences on X

0 −→ L1 −→W −→ L2 −→ 0 ,

0 −→W −→ V −→ L3 −→ 0 . (5.14)

As we mentioned before, we will take the trivial choice of the equivariant structure. This

means that the the extension classes [W ] and [VW ] can be taken to be the invariant com-

ponents of (5.6). That is,

h1(X,L1 ⊗ L∗2) = 2 , h1(X,W ⊗ L∗3) = 13 , (5.15)

where we have simply divided the dimensions in (5.11) by the order of Z3 × Z3. Then it

follows that

dimM(W ) = 1 , dimM(VW ) = 12 , dimM(V ) = 1 + 12 = 13 . (5.16)

To show that Ṽ and, hence, V admits an Hermitian connection satisfying eq. (2.8), we need

to prove that the extensions described above correspond to stable vector bundles. This is

discussed in appendix C.

5.2 The ambient space description of Ṽ

As was shown in the previous section, the line bundles OX̃(φ),OX̃(τ1),OX̃(τ2) can be

obtained as restrictions of line bundles on the ambient space. Using (3.27), we find that

L1, L2, L3 are also restrictions of line bundles on A. Let us define

L1 = OA(−2, 2, 1) , L2 = OA(0, 1,−1) , L3 = OA(2,−3, 0) . (5.17)

Then L1 = L1|X̃ , L2 = L2|X̃ , L3 = L3|X̃ . This implies that the extensions W̃ and Ṽ are

also restrictions of extensions on A, which we denote by W̃ and Ṽ respectively. They satisfy

0 −→ L1 −→ W̃ −→ L2 −→ 0 ,

0 −→ W̃ −→ Ṽ −→ L3 −→ 0 . (5.18)

Let us denote by [W̃] and [ṼW̃ ] the extension classes whose elements form the vector spaces

H1(A,L1 ⊗ L∗2) = H1(A,OA(−2, 1, 2)) and H1(A, W̃ ⊗ L∗3) . (5.19)

Similarly to our discussion in the previous subsection, we can introduce the moduli spaces

of the corresponding vector bundles

M(W̃) = PH1(A,L1 ⊗ L∗2) , dimM(W̃) = h1(A,L1 ⊗ L∗2)− 1 ,

M(ṼW̃) = PH1(A, W̃ ⊗ L∗3) , dimM(ṼW̃) = h1(A, W̃ ⊗ L∗3)− 1 . (5.20)
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Let us now study how the spaces (5.19), (5.20) are related to the similar spaces

in (5.6), (5.8), (5.10). The dimension of the first cohomology group in (5.19) can be

computed using the Kunneth formula and the Bott’s formula

hq(Pn,OPn(k)) =



(n+ k)!

n!k!
for q = 0, n ≥ 0, k ≥ 0

(−k − 1)!

n!(−k − n− 1)!
for q = n, n ≥ 0, k ≤ −(n+ 1)

0 otherwise

. (5.21)

We then find that

h1(A,L1 ⊗ L∗2) = 18 . (5.22)

Comparing with (5.11), we observe that h1(X̃, L1⊗L∗2) = h1(A,L1⊗L∗2) = 18. This means

that all extensions in [W̃] descend to non-trivial extensions on X̃, and that all extensions

in [W̃ ] are obtained as a restriction of extensions in [W̃]. The dimension of the second

cohomology group in (5.19) can be obtained by tensoring the first line in (5.18) with L∗3
to get

0 −→ OA(−4, 5, 1) −→ W̃ ⊗ L∗3 −→ OA(−2, 4,−1) −→ 0 . (5.23)

Now the dimension of H1(A, W̃ ⊗ L∗3) can be computed from the cohomology long ex-

act sequence corresponding to (5.23), again using the Kunneth and Bott’s formulas. We

find that

h1(A, W̃ ⊗ L∗3) = 189 . (5.24)

Comparing this with eq. (5.11), we see that h1(A, W̃ ⊗ L∗3) > h1(X̃, W̃ ⊗L∗3). This means

that 189− 117 = 72 non-trivial extensions of [ṼW̃ ] on A get restricted to zero on X̃.

Let us now describe the space of extensions on X̃ in terms of the cohomology groups

on the ambient space. Cohomology groups on projective spaces can be written in terms

of polynomials. Hence, this way we will obtain an explicit polynomial representation of

the elements of [W̃ ] and [ṼW̃ ]. Furthermore, taking those polynomials which are invariant

under Z3×Z3 will give us an explicit polynomial parametrization of [W ] and [VW ]. Taking

the projectivization of the corresponding vector spaces will give us a parametrization of

the moduli spaces M(W ) and M(VW ).

The relation between cohomology groups on A and on X̃ ⊂ A can be obtained using

the Koszul sequence — as we now explain. The Calabi-Yau threefold X̃ is defined as a

submanifold in A using eqs. (3.3). Since X̃ is of co-dimension 2, its normal bundle is a

rank 2 vector bundle. From eqs. (3.3) we find that it is a restriction of the following vector

bundle on A:

N = N1 ⊕N2 , N1 = OA(1, 3, 0) , N2 = OA(1, 0, 3) . (5.25)

Let L be a vector bundle on A and L = L|X̃ . They are related to each other by the Koszul

sequence

0 −→ ∧2N ∗ ⊗ L F ′
−→ N ∗ ⊗ L F−→ L r−→ L −→ 0 . (5.26)
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The map r is the restriction map, the map F is multiplication (from the left) by the row

vector (F1, F2) of the defining polynomials in (3.3) and the map F ′ is determined by the

composition rule F ◦ F ′ = 0, which follows from the exactness of (5.26). This implies that

F ′ is a column vector (F2,−F1)T . Note that the sequence (5.26) is not short and, hence, we

cannot write the long exact cohomology sequence directly. However, one can split (5.26)

into two short exact sequences by introducing an auxiliary sheaf S:

0 −→ ∧2N ∗ ⊗ L F ′
−→ N ∗ ⊗ L H1−→ S −→ 0 ,

0 −→ S H2−→ L r−→ L −→ 0 , (5.27)

where the maps H1, H2 satisfy H2 ◦H1 = F . Writing the long exact cohomology sequences

for (5.27) allows us to compute the cohomology groups of L in terms of the cohomology

groups of L,N ∗ ⊗ L and ∧2N ∗ ⊗ L. These, in turn, can be calculated using the Kunneth

and Bott formulas. We will not present the details of these laborious calculations and only

give the results.

To compute the space of extensions [W̃ ] we apply the Koszul sequence (5.25) to L =

L1 ⊗ L∗2. Then we find that

H1(X̃, L1 ⊗ L∗2) = H1(A,L1 ⊗ L∗2) = H1(A,OA(−2, 1, 2)) . (5.28)

To compute the space of extensions [ṼW̃ ], we apply the Koszul sequence (5.26) to L =

W̃ ⊗ L∗3. But first we have to find the cohomology groups of W̃ ⊗ L∗3, W̃ ⊗ L∗3 ⊗N ∗ and

W̃ ⊗ L∗3 ⊗ ∧2N ∗ using (5.18). We obtain

h•(A, W̃ ⊗ L∗3) = h•(A,OA(−4, 5, 1)) = (0, 189, 0, 0, 0, 0) , (5.29)

h•(A, W̃ ⊗ N ∗ ⊗ L∗3) = (0, 72, 0, 36, 0, 0) ,

h1(A, W̃ ⊗ N ∗ ⊗ L∗3) = h1(A,OA(−5, 2, 1)) = 72 ,

h3(A, W̃ ⊗ N ∗ ⊗ L∗3) = h3(A,OA(−3, 4,−4)) = 36 , (5.30)

h•(A, W̃ ⊗ ∧2N ∗ ⊗ L∗3) = h•(A,OA(−4, 1,−4)) = (0, 0, 0, 27, 0, 0) . (5.31)

Now, from the Koszul sequence (5.26) applied to L = W̃ ⊗ L∗3 we find

H1(X̃, W̃ ⊗ L∗3) =
H1(A, W̃ ⊗ L∗3)

F1 ·H1(A, W̃ ⊗ N ∗ ⊗ L∗3)
=

H1(A,OA(−4, 5, 1))

F1 ·H1(A,OA(−5, 2, 1))
,

h1(X̃, W̃ ⊗ L∗3) = 189− 72 = 117 . (5.32)

Here F1 is the first defining polynomial in (3.3). It can be viewed as an element of

H0(A,OA(1, 3, 0)). When we multiply F1 by a differential in H1(A,OA(−5, 2, 1)), we

naturally obtain a differential in H1(A,OA(−4, 5, 1)). Eq. (5.32) simply means that to

find the extension class [ṼW̃ ] on X̃ we have to mod out by the image of the map F1. The

elements in the image of F1, that is, the denominator in (5.32), are precisely the extensions

on the ambient space which do not correspond to extensions on X̃. From eq. (5.32) we see

that they become zero when we restrict to X̃, since F1 vanishes on X̃.
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Note that the right hand side of eq. (5.32) does not depend on the choice of an element

W̃ in [W̃ ] or in M(W̃ ). This means that the moduli space M(Ṽ ) is the trivial fibration

M(Ṽ ) =M(W̃ )×M(ṼW̃ ) , (5.33)

where the first factor is the projectivization of the vector space in (5.28) and the second

factor is the projectivization of the vector space in (5.32).

5.3 Parametrization of the moduli space

The aim of this subsection is to derive a parameterization of the moduli spaces M(ṼW̃ )

and M(VW ). Parametrization of the moduli spaces of extensions M(W̃ ) and M(W ) can

be derived in a similar way, but is not required in this paper.

First, we consider the numerator in (5.32). According to the Kunneth and Bott

formulas,

H1(A,OA(−4, 5, 1)) = H1(P1,OP1(−4))⊗H0(P2 × P2,OP2×P2(5, 1)) . (5.34)

Let us consider the vector space

H1(P1,OP1(−3)) ' H0(P1,OP1(1))∗ , (5.35)

where we have used Serre duality. This vector space is 2-dimensional and we denote its

basis as {r0, r1}. This basis is chosen to be dual to the basis {t0, t1} of homogeneous degree

1 polynomials on P1. The vector space of interest,

H1(P1,OP1(−4)) ' H0(P1,OP1(2))∗ , (5.36)

is 3-dimensional with a natural basis {r2
0, r0r1, r

2
1} dual to the basis {t20, t0t1, t21} of degree

2 polynomials on P1. It follows that an arbitrary element v ∈ H1(A,OA(−4, 5, 1)) can be

written as

v = r2
0f1(x,y) + r0r1f2(x,y) + r2

1f3(x,y) , (5.37)

where f1, f2, f3 are homogeneous polynomials on P2×P2 of degree (5, 1). Here, to simplify

our notation, we let x denote the coordinates on the first P2, x ≡ [x0 : x1 : x2] and,

similarly, y denotes the coordinates on the second P2, y ≡ [y0 : y1 : y2]. The coefficients

in the polynomials f1, f2, f3 can be viewed as coordinates on H1(A,OA(−4, 5, 1)). As we

computed in (5.29), there are 189 such coefficients.

Since eventually we are interested in the moduli space of the vector bundle V on X, we

restrict H1(A,OA(−4, 5, 1)) to its subspace consisting of elements vinv which are invariant

under Z3×Z3. Since the discrete group does not act on P1 (see eq. (3.5)), the elements r0

and r1 are automatically invariant. Hence, vinv is of the form (5.37) where the polynomials

f1, f2, f3 are restricted to be the Z3 × Z3 invariant polynomials of degree (5, 1). Let us
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introduce a basis for these invariant polynomials:

E1 = x5
0y0 + x5

1y1 + x5
2y2 ,

E2 = x2
0x

3
1y0 + x2

1x
3
2y1 + x2

2x
3
0y2 ,

E3 = x2
0x

3
2y0 + x2

1x
3
0y1 + x2

2x
3
1y2 ,

E4 = x2
0x1x2y0 + x2

1x2x0y1 + x2
2x0x1y2 ,

E5 = x4
1x2y0 + x4

2x0y1 + x4
0x1y2 ,

E6 = x5
0y0 + x5

1y1 + x5
2y2 ,

E7 = x1x
4
2y0 + x2x

4
0y1 + x0x

4
1y2 . (5.38)

The invariant polynomials f1, f2, f3 are then given by

f1 =
7∑

α=1

aαEα , f2 =
7∑

α=1

bαEα , f3 =
7∑

α=1

cαEα , (5.39)

where (aα, bα, cα) are coordinates on the 21(=189/9)-dimensional invariant subspace of

H1(A,OA(−4, 5, 1)). However, to obtain the invariant part of the extension class [ṼW̃ ]

we have to mod out by those elements which can be obtained by multiplying the defining

polynomial F1 by elements of H1(A,OA(−5, 2, 1)). We discuss this in detail in appendix D.

Here we simply state the result. Dividing by the the denominator in (5.32) is equivalent

to imposing the following constraints on the coordinates (aα, bα, cα):

a1 + a2 + a3 = 0 , a4 + a5 + a6 = 0 ,

a4 + b1 + b2 + b3 = 0 , a7 + b4 + b5 + b6 = 0 ,

b4 + c1 + c2 + c3 = 0 , b7 + c4 + c5 + c6 = 0 ,

c4 = 0 , c7 = 0 . (5.40)

We can choose

a1, a2, a5, b1, b2, b3, b5, b6, c1, c2, c3, c5, c6 (5.41)

as independent parameters, with the others being determined using eqs. (5.40). The param-

eters in (5.41) can be viewed as the 13 coordinates on the invariant subspace of the vector

space of extensions. Note that this is consistent with (5.16). According to our previous

discussion, the moduli space M(VW ) is obtained by projectivization of this vector space.

This simply means that we should view the coordinates (aα, bα, cα) as homogeneous ones.

To conclude this section, let us summarize the structure of the moduli space of V . It

is given by the trivial fibration

M(V ) =M(W )×M(VW ) , (5.42)

where

M(W ) = P1 , M(VW ) = P12 . (5.43)

In total, we have 13 moduli of V . The parametrization of the second factor, M(VW ), is

explicitly given by 21 homogenous coordinates (a1, . . . , a7, b1, . . . , b7, c1, . . . , c7) subject to
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8 linear constraints (5.40). We can choose 13 independent variables, as in eq. (5.41), and

view them as 13 homogeneous coordinates onM(VW ). By similar methods, we can obtain

a parametrization of M(W ) — but we do not need it in this paper.

6 The superpotential on X

In this section, we will compute the leading non-perturbative superpotential, that is, ∼
p = eiT

1
(see eq. (3.30)), in a heterotic string vacuum specified by (X,V ). To simplify our

analysis, we will perform the calculations for fixed complex structure. Then (det∂̄OCi (−1))

in (2.22) become numerical constants which will not play any role and will be ignored. Our

aim in this section will be to compute the Pfaffians. First, we will calculate them on the

covering space X̃ and then on the quotient space X. Since we would like to compare these

two calculations, in the theory on X̃ we will restrict ourselves to the invariant component

of the moduli space which will descend to X. The method of computing the Pfaffians will

be similar to the one introduced in [21, 22]. Since we do not know either the metric or the

connection, we will rely on an algebraic approach whose essence is to understand under

which conditions each Pfaffian vanishes. The conditions will be derived as a homogeneous

polynomial equation on the moduli space. Since the Pfaffian is a section of a line bundle

on the moduli space and the moduli space is a projective space, this polynomial will be the

Pfaffian up to a numerical coefficient which cannot be determined by our algebraic method.

Let us now review the general condition for the vanishing of a Pfaffian on a holo-

morphic, isolated, genus 0 curve C [15, 21, 22]. The Pfaffian vanishes if and only if

the operator ∂̄VC(−1) has a zero mode. The zero modes of ∂̄ are elements of the Dol-

beault cohomology group. In the present case, the cohomology group of interest is

H0(C, V |C⊗OC(−1)). Hence, the Pfaffian vanishes if and only if h0(C, V |C⊗OC(−1)) 6= 0.

Since h0(C, V |C⊗OC(−1)) is not a topological invariant, it depends on where we are in the

moduli space of V . For generic values of the moduli, h0(C, V |C⊗OC(−1)) will be zero and

∂̄VC(−1) will not have zero modes. However, at a specific co-dimension 1 subspace of the

moduli space h0(C, V |C ⊗OC(−1)) will jump — thus producing a zero mode. The Pfaffian

of ∂̄VC(−1) will be determined by the equation defining this co-dimension 1 subspace.

6.1 Calculation of the Pfaffians

As was discussed in section 3.4, on X̃ there are 81 isolated curves of interest. These curves

split into 9 orbits under the action of Z3 × Z3 with 9 curves in each orbit. If we restrict

ourselves to the invariant part of the moduli space, all curves in the same orbit will give

an identical contribution. Hence, in this case we need to compute the Pfaffians of the

Dirac operator on any 9 curves which do not lie in the orbits of each other. An example

of such curves was given in eqs. (3.41), (3.42), (3.10). Let us recall that these curves lie in

different homology classes and, hence, have different areas measured by the Kahler form

on X̃. However, they have the same area when measured using the invariant part of the

Kahler form ωA|X̃ . Therefore, the images of these curves in X have the same area with

respect to the Kahler form ωX .
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Let us now study under which conditions h0(C, Ṽ |C ⊗ OC(−1)) 6= 0 for the curves C

of the type P1×x×y ⊂ X̃ ⊂ P1×P2×P2. We denote B = P2×P2 and define pB to be the

projection pB : A → B with fibers being P1. Now consider a particular extension element

W̃ on A,

0 −→ L1 −→ W̃ −→ L2 −→ 0 , (6.1)

and tensor this sequence with OA(−1, 0, 0) to obtain

0 −→ OA(−3, 2, 1) −→ W̃(−1, 0, 0) −→ OA(−1, 1, 1) −→ 0 , (6.2)

where we have used eqs. (5.17) and defined W̃(−1, 0, 0) = W̃ ⊗OA(−1, 0, 0). Now take the

direct image of this sequence with the projection pB. This leads to the exact sequence

0 −→ pB∗OA(−3, 2, 1) −→ pB∗W̃(−1, 0, 0) −→ pB∗OA(−1, 1, 1) −→
R1pB∗OA(−3, 2, 1) −→ R1pB∗W̃(−1, 0, 0) −→ R1pB∗OA(−1, 1, 1) −→ 0 . (6.3)

At each point on B and for any line bundle L, pB∗L is generated by the cohomology

group of the fiber at this point; that is by H0(P1,L|P1). Similarly, R1pB∗L is generated by

H1(P1,L|P1). Clearly, for L of the form L = OA(m1,m2,m3), we have L|P1 = OP1(m1).

Then, using the Bott’s formula, we compute that

pB∗OA(−3, 2, 1) = 0 , pB∗OA(−1, 1, 1) = 0 , R1pB∗OA(−1, 1, 1) = 0 ,

R1pB∗OA(−3, 2, 1) = H1(P1,OP1(−3))⊗OB(2, 1) . (6.4)

Therefore, from eq. (6.3) we obtain

pB∗W̃(−1, 0, 0) = 0 ,

R1pB∗W̃(−1, 0, 0) = R1pB∗OA(−3, 2, 1) = H1(P1,OP1(−3))⊗OB(2, 1) . (6.5)

Note that the right hand side in eqs. (6.5) is independent of the choice of the extension

representative W̃.

As the next step, we consider the sequence defining Ṽ tensored with OA(−1, 0, 0).

Using eqs. (5.17), (5.18) we obtain

0 −→ W̃(−1, 0, 0) −→ Ṽ(−1, 0, 0) −→ OA(1,−3, 0) −→ 0 , (6.6)

where Ṽ(−1, 0, 0) = Ṽ ⊗ OA(−1, 0, 0). Taking the direct image of this sequence with the

projection pB and using (6.5) we obtain

0 −→ pB∗Ṽ(−1, 0, 0) −→

H0(P1,OP1(1))⊗OB(−3, 0)
δ(Ṽ)−→ H1(P1,OP1(−3))⊗OB(2, 1) −→

R1pB∗Ṽ(−1, 0, 0) −→ 0 . (6.7)

Here δ(Ṽ) is a map depending on the moduli of Ṽ. Note that the vector spaces

H0(P1,OP1(1)) and H1(P1,OP1(−3)) are 2-dimensional, which implies that δ(Ṽ) can be

represented by a 2× 2 matrix.
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Let us now consider the sequence (6.7) at any point x × y ⊂ B which corresponds to

a curve C = P1 × x × y ⊂ A. This curve is also a curve in X̃ if the point x × y satisfies

equations (3.38). At any point x × y ∈ B, pB∗Ṽ(−1, 0, 0) is generated by the cohomology

group H0(C, Ṽ|C ⊗ OC(−1)). If x × y is chosen to satisfy eq. (3.38), then we also have

H0(C, Ṽ|C ⊗ OC(−1)) = H0(C, Ṽ |C ⊗ OC(−1)) — which is precisely the space of zero

modes of the Dirac operator. This space is non-empty if and only if the map δ(Ṽ)|x×y has

a non-trivial kernel. Let us define δ(Ṽ ) = δ(Ṽ)|X̃ . Note that if x×y corresponds to a curve

in X̃, then we have δ(Ṽ )|x×y = δ(Ṽ)|x×y. If we represent δ(Ṽ )|x×y by a 2 × 2 matrix, it

then follows that

PfaffX̃(∂̄VCi (−1)) = 0 if and only if det[δ(Ṽ )|x×y] = 0 . (6.8)

Let us now construct the matrix δ(Ṽ ) which provides a map δ(Ṽ ) : H1 → H2, where

we denoted

H1 = H0(P1,OP1(1))⊗OB(−3, 0) ,

H2 = H1(P1,OP1(−3))⊗OB(2, 1) . (6.9)

Recall from eq. (5.32) that modulo the denominator — which will be taken into account

later — the space of extensions is given by the elements

v ∈ H1(A,OA(−4, 5, 1)) = H0(P1,OP1(−4))⊗H1(B,OB(5, 1)) , (6.10)

where v can explicitly be written as (see (5.37))

v = r2
0f1(x,y) + r0r1f2(x,y) + r2

1f3(x,y) . (6.11)

Comparing eq. (6.9) and eq. (6.10), we conclude that δ(Ṽ ) is given by multiplication by v.

As was discussed around eq. (5.35), we can introduce the basis {t0, t1} for H0(P1,OP1(1))

and the dual basis {r0, r1} for H1(P1,OP1(−3)). To construct the matrix δ(Ṽ ), we simply

multiply v by the basis elements {t0, t1} to get

v(t0) = r0f1 + r1f2 , v(t1) = r0f2 + r1f3 (6.12)

and present the answer in the matrix form

δ(Ṽ )

(
r0

r1

)
. (6.13)

This gives

δ(Ṽ ) =

(
f1 f2

f2 f3

)
, det[δ(Ṽ )] = f1f3 − f2

2 . (6.14)

If C is a curve corresponding to a specific point x× y ∈ P2 × P2 then we get

det[δ(Ṽ )|x×y] = (f1f3 − f2
2 )(x,y) . (6.15)
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After we evaluate f1f3 − f2
2 at points of P2 × P2, the right hand side of (6.15) becomes

a degree 2 homogeneous polynomial of the parameters of f1, f2, f3. For the purposes of

our paper, we can restrict f1, f2, f3 to be the invariant polynomials under Z3 × Z3. They

are explicitly given by eqs. (5.38), (5.39). Furthermore, we recall that to describe the

extensions of Ṽ rather than those of Ṽ, we have to impose the relations (5.40). We also

recall that to describe the moduli space of Ṽ, we projectivize the corresponding space of

extensions. This simply means that we view the parameters (aα, bα, cα) of the polynomials

f1, f2, f3 as homogeneous coordinates. Since the moduli space is a projective space and

(f1f3 − f2
2 )(x,y) is a homogeneous polynomial of degree 2, we conclude that (6.15) is a

section of a line bundle of degree 2 on the moduli space. Finally, we notice that eq. (6.15)

depends only on the coordinates of M(ṼW̃ ). The coordinates of M(W̃ ) drop out from

our calculations.

From eq. (6.8) and the fact the Pfaffian is a section of a line bundle on the moduli

space, we conclude that

PfaffX̃(∂̄VC(−1)) ∼ (f1f3 − f2
2 )(x,y) =

7∑
α,β=1

(aαcβ − bαbβ)EαEβ(x,y) (6.16)

up to a numerical coefficient — which we are not able to compute by our method. Let us

now apply this result to the curves (3.41), (3.43). Denote

RX̃,i = (f1f3 − f2
2 )(si) , i = 1, . . . , 9 . (6.17)

Substituting the points (3.41), (3.43) into (6.17), we obtain the following expressions for

Ri (ζ = e2πi/3):

RX̃,1 = −(2b1 − b2 − b3)2 + (2a1 − a2 − a3)(2c1 − c2 − c3) ,

RX̃,2 = −(b2 + b3ζ
2 + b1ζ)2 + (a2 + a3ζ

2 + a1ζ)(c2 + c3ζ
2 + c1ζ) ,

RX̃,3 = −(b2 + b3ζ + b1ζ
2)2 + (a2 + a3ζ + a1ζ

2)(c2 + c3ζ
2 + c1ζ) ,

RX̃,4 = −(−b1 + b3 + b5 − b6)2 + (−a1 + a3 + a5 − a6)(−c1 + c3 + c5 − c6) ,

RX̃,5 = −(−b1 + b2 − b5 + b6)2 + (−a1 + a2 − a5 + a6)(−c1 + c2 − c5 + c6) ,

RX̃,6 = −(−b1 + b3 + (b5 − b6)ζ2)2 + (−a1 + a3 + (a5 − a6)ζ2)(−c1 + c3 + (c5 − c6)ζ2) ,

RX̃,7 = −(−b1 + b2 − (b5 − b6)ζ2)2 + (−a1 + a2 − (a5 − a6)ζ2)(−c1 + c2 − (c5 − c6)ζ2) ,

RX̃,8 = −(−b1 + b2 − (b5 − b6)ζ)2 + (−a1 + a2 − (a5 − a6)ζ)(−c1 + c2 − (c5 − c6)ζ) ,

RX̃,9 = −(−b1 + b3 + (b5 − b6)ζ)2 + (−a1 + a3 + (a5 − a6)ζ)(−c1 + c3 + (c5 − c6)ζ) .

(6.18)

The parameters (aα, bα, cα) satisfy the relations (5.40), but substituting them into (6.18)

does not lead to a simplification. Note that none of the polynomials RX̃,i depends on the

parameters a4, a7, b4, b7, c4, c7. The reason is because the corresponding polynomials E4

and E7 in (5.38) vanish on any curve satisfying eqs. (3.38).

Let us now introduce the proportionality coefficient into (6.16). For each of our 9

curves, we denote it by AX̃,i where i = 1, . . . , 9. That is, we have

PfaffX̃(∂̄ṼCi (−1)) = AX̃,iRX̃,i . (6.19)
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Note that every AX̃,i is non-zero because the Pfaffians vanish only along the zero locus

of the polynomials RX̃,i and do not vanish identically. We are not able to compute the

coefficients AX̃,i by our algebraic method. However, it is possible to constrain them using

the Beasley-Witten residue theorem, which we will now discuss.

6.2 The residue theorem on X̃

Our theory on X̃ formally satisfies the assumptions of Beasley and Witten in [23], which

we reviewed in subsection 2.2. Indeed, the Calabi-Yau threefold X̃ is, by construction, a

projective complete intersection manifold and the vector bundle Ṽ is the restriction of a

vector bundle Ṽ. Nevertheless, as we discussed in subsection 2.3, the residue theorem of

Beasley-Witten is not directly applicable here since h1,1(X̃) > h1,1(A). However, indirectly

we can still apply it. If we measure the area of curves in X̃ using the (1, 1) form ωA|X̃
then, according to the residue theorem, the sum of the Pfaffians of all curves with the same

area has to vanish. The 81 curves found in subsection 3.4 have the same area with respect

to ωA|X̃ and, hence, we can apply the residue theorem to them. Since we are restricting

ourselves to the invariant part of the moduli space, all curves in the same Z3 × Z3 orbit

will have an identical Pfaffian. This means that it is enough to sum the Pfaffians of the

curves which do not lie in the orbit of each other. These Pfaffians are given in eqs. (6.18)

and (6.19). Hence, the residue theorem implies that

9∑
i=1

AX̃,iRX̃,i = 0 . (6.20)

Let us stress again that eq. (6.20) does not imply that the superpotentail in the heterotic

theory on X̃ vanishes because in (6.20) we are summing the Pfaffians of curves lying in

different homology classes and having different area with respect to the proper Kahler form

ωX̃ . Hence, in the superpotential these Pfaffians will be weighted with different exponential

prefactors and cannot cancel each other. Eq. (6.20) constrains the coefficients AX̃,i. It is

possible to satisfy eq. (6.20) if and only if the polynomials RX̃,i in (6.18) are linearly

dependent — which is a non-trivial consistency check on our calculations. It is possible

to check (using e.g. Mathematica) that these polynomials are indeed linearly dependent

and it possible to adjust the parameters AX̃,i so that the sum in (6.20) vanishes. More

precisely, requiring that the sum in (6.20) vanish puts the following constraints on AX̃,i:

AX̃,1 = −AX̃,4 −AX̃,5 ,

AX̃,2 = eiπ/3AX̃,4 −AX̃,7 ,

AX̃,3 = −eiπ/3AX̃,5 + e−iπ/3(AX̃,4 −AX̃,7) ,

AX̃,6 = AX̃,4 +AX̃,5 −AX̃,7 ,

AX̃,8 = eiπ/3AX̃,5 − e
2iπ/3AX̃,7 ,

AX̃,9 = AX̃,4 + e−iπ/3(AX̃,5 −AX̃,7) . (6.21)

These results will play a role in constructing the superpotential on the quotient Calabi-Yau

manifold X.
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6.3 The explicit formula for the superpotential on X

Since the curves Ci corresponding to solutions (3.41), (3.43) lie in different Z3×Z3 orbits,

they descend to 9 different curves on X. To simplify our notation, we will still denote these

curves by Ci. The non-perturbative superpotential for these curves is then given by

WX([C]) = eiT
1

9∑
i=1

PfaffX(∂̄VCi (−1))χi . (6.22)

As was discussed in section 3, these 9 curves lie in the same homology class in H2(X,R)

but in 9 different homology classes in H2(X,Z). This means that the contribution for each

curve will pick up a distinct Z3×Z3 character χi. As we discussed in subsection 2.4, as long

as the curves in the same homology class in H2(X,Z) receive the same character and curves

in different homology classes receive different characters, the distribution of the characters

among the curves is arbitrary and depends on the choice of the connected component of

the moduli space of the B-field.

To compute WX([C]) in (6.22), we notice that since the Pfaffians in the previous

subsection were computed for the invariant part of the moduli space. It follows that

PfaffX(∂̄VCi (−1)) = PfaffX̃(∂̄ṼCi (−1)) , (6.23)

where the right hand side is given by eqs. (6.19), (6.18), (6.21). In particular, it follows that

PfaffX(∂̄VCi (−1)) = AX,iRX,i , RX,i = RX̃,i , AX,i = AX̃,i . (6.24)

The reason is that, by construction, the gauge connection on V is the equivariant connection

on Ṽ . For the trivial choice of the equivariant structure, it is just the connection on Ṽ

restricted to the invariant part of the moduli space. Since in the previous subsection we

restricted our calculations to the invariant part of the moduli space, the Dirac operators on

both sides in (6.23) depend on the same connection and, hence, their Pfaffians are equal.

Thus, the superpotential in (6.22) becomes

WX([C]) = eiT
1

9∑
i=1

χiAX,iRX,i , (6.25)

where RX,i are also given by (6.18) and AX,i also satisfy the constraints (6.21). Now, the

key observation is that, since the linear combination
∑9

i=1AX,iRX,i = 0 due to the residue

theorem, the linear combination in (6.25)
∑9

i=1 χiAX,iRX,i is non-zero because it is twisted

by the characters χi, most of which are not unity.

As an example let us give some assignment of the characters to the curves. Note that

though 9 different characters χi label 9 inequivalent representations of Z3 × Z3, they can

take only 3 values in C∗ given by 1, e2πi/3, e4πi/3. Assigning, for example,

χ1 = χ2 = χ3 = 1 χ4 = χ5 = χ6 = e2πi/3 , χ7 = χ8 = χ9 = e4πi/3 (6.26)

we obtain

WX([C]) = eiT
1

(
3∑
i=1

AX,iRX,i + e2πi/3
6∑
i=4

AX,iRX,i + e4πi/3
9∑
i=7

RX,i

)
. (6.27)

– 31 –



J
H
E
P
0
1
(
2
0
1
7
)
0
3
8

It is straightforward to check using eqs. (6.18) and (6.21) that the linear combination (6.27)

does not vanish. From eqs. (5.40), (5.41), (6.18) we see that WX([C]) depends on 12 out

of the 13 moduli of M(V ). The remaining modulus parametrizing M(W ) does not show

up in the superpotential (6.27). Our expression for WX([C]) depends on 9 numerical

coefficients AX,i which we cannot fully compute by our algebraic method. However, due

to relations (6.21), only 3 of them are really unknown.

Thus, we have explicitly demonstrated that in our model on X a non-vanishing, non-

perturbative superpotential can be generated in the low-energy field theory.

7 Conclusion and future directions

In this paper, we presented examples of heterotic string compactifications with non-

vanishing non-perturbative superpotentials. In our examples, the superpotential does not

vanish on both the simply connected covering space and the non-simply connected man-

ifold obtained as a quotient by the action of the discrete isometry group. In both cases,

the reason for the non-vanishing of the superpotential can be attributed to the existence of

holomorphic, isolated, genus 0 curves which are unique in their integer homology classes.

It would be interesting to generalize the ideas developed in this paper for realistic

heterotic models and to compute non-perturbative superpotentials in a heterotic MSSM.

The heterotic Standard Model constructed in [1–4] used a different Schoen manifold with a

different action of Z3×Z3. Hence, it would be interesting to see if one can build a heterotic

MSSM on the Schoen manifold used in this paper. Then one can extend the results of this

paper to compute the non-perturbative superpotential in an MSSM, rather than in a toy

model. The result is expected to be non-zero, as in our present examples.

Another possible direction is to apply our methods to realistic heterotic models ob-

tained using the monad construction [5–9, 33]. The crucial difference is that such models

are built on projective Calabi-Yau manifolds satisfying h1,1(X̃) = h1,1(A). Then, accord-

ing to the Beasley-Witten residue theorem, the non-perturbative superpotential vanishes

on the covering manifold X̃. However, on the quotient manifold X it might be non-

zero because the second homology group of X is expected to contain discrete torsion. It

would be interesting to see if one indeed can generate a non-perturbative superpotential

in such models.
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A The normal bundle to the curves in X̃

Here we will compute the normal bundle to the curves in subsection 3.4. Specifically, we

present our calculations for the curve specified by s1 in eq. (3.41). The other curves can

be treated similarly and give the same result.

The curve s1 is of the form

C1 = [t0 : t1]× s1 = [t0, t1]× [1 : −1 : 0]× [1,−1, 0] . (A.1)

Let us first consider the short exact sequence relating the tangent bundle TX̃ and the

normal bundle NX̃ of X̃; that is

0 −→ TX̃
h2−→ TA|X̃

h1−→ NX̃ −→ 0 , (A.2)

where TA is the tangent bundle of the ambient space given by

TA = OP1(2)⊕ TP2 ⊕ TP2 (A.3)

and we have used the fact that the tangent bundle of P1 is OP1(2). Using eqs. (3.3), the

normal bundle NX̃ is

NX̃ = OA(1, 3, 0)|X̃ ⊕OA(1, 0, 3)|X̃ . (A.4)

We now want to restrict the sequence (A.2) to the curve C1. For the curve of the form (A.1),

we obtain

TA|C1 = OC1(2)⊕O4
C1
, NX̃|C1 = OC1(1)⊕OC1(1) . (A.5)

The sequence (A.2) then becomes

0 −→ TX̃|C1

h2|C1−→ OC1(2)⊕O4
C1

h1|C1−→ OC1(1)⊕OC1(1) −→ 0 . (A.6)

Let us now analyze the maps h1 and h2. The map h1 is defined as a map from tangent

directions ∂ along A to the column vector (∂F1, ∂F2)T . Since TA is of rank 5 and NX̃ is

of rank 2, h1 is a 2× 5 matrix. Evaluating the derivatives of F1 and F2 and restricting the

results to the curve (A.1) gives

h1|C1 =

(
0 3t0 t1 0 0

0 0 0 3(λ1t0 + t1) λ2t0 + λ3t1

)
. (A.7)

Since the sequence (A.6) is exact, it follows that h1 and h2 satisfy the composition rule

h1 ◦ h2 = 0. This determines h2|C1 to be

h2|C1 =


1 0 0

0 t1 0

0 −3t0 0

0 0 λ2t0 + λ3t1
0 0 −3(λ1t0 + t1)

 (A.8)

up to an arbitrary holomorphic section h0 on C1 which is a homogeneous polynomials of

degree k ≥ 0 in [t0 : t1]. Since any vector bundle on C1 ' P1 is a sum of line bundles,
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TX̃|C1 must be of the form OC1(m1) ⊕OC1(m2) ⊕OC1(m3) where, from (A.6), it follows

that m1+m2+m3 = 0. Examining the sequence (A.6), it is easy to see that these conditions

have only one consistent possibility, namely m1 = 2,m2 = m3 = −1. This means that

TX̃|C1 = OC1(2)⊕OC1(−1)⊕OC1(−1) . (A.9)

Finally, let us consider the short exact sequence relating the tangent bundle TC1 and the

normal bundle NC1 of C1 given by

0 −→ TC1 −→ TX̃|C1 −→ NC1 −→ 0 . (A.10)

Using eq. (A.9), we obtain

0 −→ OC1(2) −→ OC1(2)⊕OC1(−1)⊕OC1(−1) −→ NC1 −→ 0 . (A.11)

This implies that the only possible form for NC1 is

NC1 = OC1(−1)⊕OC1(−1) . (A.12)

B Extension of W̃ and Ṽ

In this appendix, we calculate the number of extensions of W̃ and Ṽ and prove eq. (5.11).

Our calculations will be similar to the ones performed in [3], where additional details can

be found.

B.1 Extensions of W̃

The extensions of W̃ are given by the dimension of the cohomology group

H1(X̃, L1 ⊗ L∗2) = H1(X̃,OX̃(−2φ+ τ1 + 2τ2)) . (B.1)

Let us consider the direct image π1∗L1⊗L∗2 under the projection π1 in the diagram (3.10).

Using the definitions of φ, τ1, τ2 in (3.16), we can give L1 ⊗ L∗2 in the form

L1 ⊗ L∗2 = π∗1OB1(t− 2f)⊗ π∗2OB2(2t) . (B.2)

From the diagram (3.10), it follows that the projections satisfy

π1∗π
∗
2 = β∗1β2∗ . (B.3)

Then we obtain

π1∗L1⊗L∗2 = OB1(t− 2f)⊗ β∗1β2∗OB2(2t) = β∗1OP1(−2)⊗OB1(t)⊗ β∗1β2∗OB2(2t) . (B.4)

Computing R1π1∗L1 ⊗ L∗2, we find that

R1π1∗L1 ⊗ L∗2 = 0 . (B.5)
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To show this, note that at each point p on B1, R1π1∗L1 ⊗ L∗2 is generated by the first

cohomology group

H1(Fp,OX̃(−2φ+ τ1 + 2τ2)|Fp) (B.6)

on the elliptic fiber Fp of the projection π1 at p. Using eqs. (3.15), (3.16) we find that the

line bundle OX̃(−2φ+τ1 +2τ2)|Fp has degree 3 and by the Kodaira vanishing theorem (see

e.g [44]) the cohomology group in (B.6) vanishes. This proves (B.5). As the next step we

similarly project (B.4) to the base of B1. We obtain

β1∗π1∗L1 ⊗ L∗2 = OP1(−2)⊗ β1∗OB1(t)⊗ β2∗OB2(2t) , (B.7)

R1β1∗π1∗L1 ⊗ L∗2 = 0 . (B.8)

Using the identities [3]

βk∗OBk(t) = O⊕3
P1 , βk∗OBk(2t) = O⊕6

P1 , k = 1, 2 (B.9)

we find that

β1∗π1∗L1 ⊗ L∗2 = OP1(−2)⊕18 . (B.10)

Since the higher direct images in eqs. (B.5), (B.8) vanish from a Leray spectral sequence,

it follows that

h1(X̃, L1 ⊗ L∗2) = h1(P1, β1∗π1∗L1 ⊗ L∗2) = h1(P1,OP1(−2)⊕18) = 18 . (B.11)

B.2 Extensions of Ṽ

The number of extensions of Ṽ (for a fixed extension W̃ in [W̃ ]) is given by H1(X̃, W̃⊗L∗3).

To compute this cohomology group, we consider the short exact sequence

0 −→ L1 ⊗ L∗3 −→ W̃ ⊗ L∗3 −→ L2 ⊗ L∗3 −→ 0 , (B.12)

where

L1 ⊗ L∗3 = OX̃(−4φ+ 5τ1 + τ2) , L2 ⊗ L∗3 = OX̃(−2φ+ 4τ1 − τ2) . (B.13)

The sequence (B.12) implies the following long exact sequence of cohomology groups

0 −→ H0(X̃, L1 ⊗ L∗3) −→ H0(X̃, W̃ ⊗ L∗3) −→ H0(X̃, L2 ⊗ L∗3) −→
H1(X̃, L1 ⊗ L∗3) −→ H1(X̃, W̃ ⊗ L∗3) −→ H1(X̃, L2 ⊗ L∗3) −→
H2(X̃, L1 ⊗ L∗3) −→ . . . . (B.14)

The cohomology of L1 ⊗ L∗3 and L2 ⊗ L∗3 can be computed using direct images, just as in

the previous subsection. Using the identities [3]

βk∗OBk(4t) = O⊕9
P1 ⊕OP1(1)⊕3 ,

βk∗OBk(5t) = O⊕9
P1 ⊕OP1(1)⊕6 ,

R1βk∗OBk(−t) = OP1(−1)⊕3 (B.15)
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and following the same steps as in the previous subsection, we obtain

H0(X̃, L1 ⊗ L∗3) = H2(X̃, L1 ⊗ L∗3) = 0 ,

H1(X̃, L1 ⊗ L∗3) = H1(P1, β1∗π1∗L1 ⊗ L∗3) = H1(P1,OP1(−4)⊕27 ⊕OP1(−3)⊕18) ,

h1(X̃, L1 ⊗ L∗3) = 117 ,

H0(X̃, L2 ⊗ L∗3) = H1(X̃, L2 ⊗ L∗3) = H2(X̃, L2 ⊗ L∗3) = 0 . (B.16)

Then from (B.14) we see that

H1(X̃, W̃ ⊗ L∗3) = H1(X̃, L1 ⊗ L∗3) , h1(X̃, W̃ ⊗ L∗3) = 117 . (B.17)

C Stability of W̃ and Ṽ

Since we are only considering a toy model, we will not give a comprehensive proof that W̃

and Ṽ are stable. Instead, we examine the most important necessary condition for this to

be the case.

Let us recall that a vector bundle Ṽ on X̃ is called stable if for any subsheaf S of lower

rank we have

µ(S) < µ(Ṽ ) . (C.1)

Here, the slope µ(S) is defined by

µ(S) =
1

rk(S)

∫
X̃
c1(S) ∧ ωX̃ ∧ ωX̃ , (C.2)

where ωX̃ is the Kahler form on X̃.

From eqs. (5.3), we observe that the line bundle L1 injects into W̃ and W̃ injects

into Ṽ . We now discuss whether L1 and W̃ destabilize W̃ and Ṽ respectively. Using the

definition of W̃ in (5.3), we see that W̃ has rank 2 and its first Chern class is given by

c1(L1) + c1(L2). Then the condition µ(L1) < µ(W̃ ) can be stated as∫
X̃

(c1(L1)− c1(L2)) ∧ ωX̃ ∧ ωX̃ < 0 ⇔ µ(L1 ⊗ L∗2) < 0 . (C.3)

Since L1 and L2 are equivariant and constructed out of the invariant classes, we can replace

ωX̃ in (C.3) with its invariant part ωX in (3.18). Using the expression for the invariant

part of the Kahler form in (3.18), we can rewrite (C.3) in the form∫
X̃

(−2ωφ + ωτ1 + 2ωτ2) ∧ (t1ωφ + t2ωτ1 + t3ωτ2)2 < 0 . (C.4)

Using the triple intersection numbers (3.17), we then obtain the following inequality for

the Kahler parameters:

(t3)2 + 4(t1)2 + 6t1t3 + 24t1t2 − 6t2t3 < 0 . (C.5)
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Let us now study the condition that µ(W̃ ) < µ(Ṽ ). Note that c1(W̃ ) = c1(L1)+c1(L2)

and, since L1 ⊗ L2 ⊗ L3 is trivial, it follows that c1(W̃ ) = c1(L∗3). Also note that since

c1(Ṽ ) = 0, it follows that µ(Ṽ ) = 0. Then the condition µ(W̃ ) < µ(Ṽ ) can be stated as

µ(L∗3) < 0 ⇔
∫
X̃

(−2ωφ + 3ωτ1) ∧ (t1ωφ + t2ωτ1 + t3ωτ2)2 < 0 . (C.6)

Using the triple intersection numbers (3.17), we then obtain the inequality

(t3)2 + 6t1t3 − 4t2t3 < 0 . (C.7)

The bundles W̃ and Ṽ are not destabilized if there exists a region in the Kahler moduli

space where both inequalities (C.5) and (C.7) are simultaneously satisfied. It is easy to see

that it is indeed the case. For example, if we take t2 ≈ t3 and t1 � t2, t3 both inequalities

are satisfied.

D Parameterization of the moduli space of V

Let us recall from section 5 that the invariant extensions in [Ṽ ], as well as the space of

extensions [V ], are described by the invariant subspace of the quotient

H1(A,OA(−4, 5, 1))

F1 ·H1(A,OA(−5, 2, 1))
. (D.1)

The elements of the numerator were parameterized as

vinv = r2
0f1(x,y) + r0r1f2(x,y) + r2

1f3(x,y) , (D.2)

where f1, f2, f3 are invariant polynomials of degree (5, 1) on P2× P2 and {r0, r1} is a basis

in the vector space H1(P1,OP1(−3)) dual to the basis {t0, t1} in H0(P1,OP1(1)). The

polynomials f1, f2, f3 can be expanded in the basis (5.38)

f1 =
7∑

α=1

aαEα , f2 =
7∑

α=1

bαEα , f3 =
7∑

α=1

cαEα . (D.3)

The aim of this appendix is to describe the process of factoring out F1 ·H1(A,OA(−5, 2, 1)).

This will give a parameterization of the invariant part of the moduli space of Ṽ and of the

moduli space of V .

Consider an element u in H1(A,OA(−5, 2, 1)). Let us write it in the form similar

to (D.2). Using the Kunneth and Bott formulas, we can express H1(A,OA(−5, 2, 1)) as

H1(A,OA(−5, 2, 1)) = H1(P1,OP1(−5))⊗H0(P2 × P2,OP2×P2(2, 1)) . (D.4)

In the first factor

H1(P1,OP1(−5)) ' H0(P1,OP1(3))∗ (D.5)

we can introduce a natural basis {r3
0, r

2
0r1, r0r

2
1, r

3
1} dual to the basis {t30, t20t1, t0t21, t31} of

homogeneous polynomials of degree 3 in H0(P1,OP1(3)). Then u can be written as

u = r3
0g1(x,y) + r2

0r1g2(x,y) + r0r
2
1g3(x,y) + r3

1g4(x,y) , (D.6)
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where g1, g2, g3, g4 are homogeneous polynomials of degree (2, 1) on P2 × P2. To restrict

to invariant elements uinv, we take g1, g2, g3, g4 to be invariant polynomials. The basis of

invariant polynomials of degree (2, 1) can be chosen to be

e1 = x2
0y0 + x2

1y1 + x2
2y2 ,

e2 = x1x2y0 + x2x0y1 + x0x1y2 . (D.7)

Now let us consider the map F1. Using eq. (3.3), we can write it in the form

F1 = t0σ0(x) + t1σ1(x) where σ0(x) = x0x1x2 , σ1(x) = x3
0 + x3

1 + x3
2 . (D.8)

Let us multiply uinv by F1, using the fact that the bases {r0, r1} and {t0, t1} are dual to

each other. We obtain

F1uinv = r2
0(σ0g1 + σ1g2) + r0r1(σ0g2 + σ1g3) + r2

1(σ0g3 + σ1g4) . (D.9)

Comparing this to eq. (D.2), we see that we have to mod out by the equivalence relations

f1 ∼ f1 + σ0g1 + σ1g2 , f2 ∼ f2 + σ0g2 + σ1g3 , f3 ∼ f3 + σ0g3 + σ1g4 . (D.10)

Now our aim is to represent F1 in matrix form. From (D.9), we see that we can write it as

F1 =

σ0 σ1 0 0

0 σ0 σ1 0

0 0 σ0 σ1

 . (D.11)

This matrix acts on the column vector (g1, g2, g3, g4)T . Let us now write this matrix in

the bases Eα in (5.38) and eβ in (D.7). In this basis, F1 is a 7 · 3 × 2 · 4 = 21 × 8

matrix. To fully express this matrix, we have to study the action of σ0 and σ1 on the basis

polynomials in (D.7) and present the result in terms of the basis polynomials in (5.38). It

is straightforward to show that

σ0e1 ≡ (σ0)α1Eα = E1 + E2 + E3 , σ0e2 ≡ (σ0)α2Eα = E4 + E5 + E6 ,

σ1e1 ≡ (σ1)α1Eα = E4 , σ0e2 ≡ (σ0)α2Eα = E7 . (D.12)

This leads to the following matrices for (σ0)αβ and (σ1)αβ :

(σ0)αβ =



1 0

1 0

1 0

0 1

0 1

0 1

0 0


, (σ1)αβ =



0 0

0 0

0 0

1 0

0 0

0 0

0 1


. (D.13)

Inserting (D.13) into (D.11), gives the full matrix F1.
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Performing the quotient action in (D.1) is now equivalent to finding the cokernel of the

matrix F1 in (D.11), (D.13). This is, in turn, equivalent to finding the kernel of the matrix

(F1)T which acts on the parameters of the polynomials f1, f2, f3; that is, on the column

vector (a1, . . . , a7, b1, . . . , b7, c1, . . . , c7)T . Finding the kernel of (F1)T means solving the

linear system of equations

(F1)T (a1, . . . , a7, b1, . . . , b7, c1, . . . , c7)T = ((a1, . . . , a7, b1, . . . , b7, c1, . . . , c7)F1)T = 0 ,

(D.14)

which is equivalent to

(a1, . . . , a7, b1, . . . , b7, c1, . . . , c7)F1 = 0 . (D.15)

Using the matrix form of F1 in eqs. (D.11) and (D.13), it is easy to see that the system of

linear equations (D.15) in components becomes (5.40).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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