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tial from all holomorphic, isolated, genus 0 curves with minimal area. The reason for the
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1 Introduction

Compactification of Eg x Eg heterotic string theory on smooth Calabi-Yau (CY) threefolds
can lead to realistic particle physics models. For example, heterotic M-theory vacua con-
sisting of stable, holomorphic SU(4) vector bundles defined by “extension” over a class of
Schoen CY threefolds can produce exactly the spectrum of the minimal supersymmetric
standard model (MSSM) with gauged B — L symmetry [1-4]. Similarly, heterotic M-theory
compactified on other classes of CY threefolds, such as the tetra-quadric, carrying “monad”
vector bundles can lead to the MSSM at low energy, with or without gauged B — L sym-
metry [5-9]. Although these string vacua realize the correct spectrum and interactions
of low energy particle physics, there remains a fundamental problem; that is, that the
associated threefolds and vector bundles have moduli that generically have no potential
energy. Therefore, the vacuum values of these fields can be dynamically unstable and, even
if time-independent, cannot be uniquely specified — thus rendering explicit predictions of
the values of supersymmetry breaking and physical parameters impossible. It follows that
the stabilization of both geometric and vector bundle moduli is one of the most important
problem in heterotic string theory.

A non-vanishing potential energy for the geometric moduli, that is, the complex struc-
ture [10] and Kahler moduli, can occur for specific heterotic string vacua due to both
perturbative and non-perturbative effects. This leads to partial, and in some toy cases
complete, stabilization of these moduli [11]. However, the situation for vector bundle
moduli is more difficult. Here, there is no perturbative contribution to their potential
energy and one must examine possible non-perturbative effects. A non-perturbative super-
potential can, in principal, be generated by string instantons [12-20]. It depends (inversely)
exponentially on the Kahler moduli, and also contributes to a potential energy for both
complex structure and, importantly, the vector bundle moduli through 1-loop determi-
nants. However, it is difficult to compute these 1-loop quantities. So far, this has only
been carried out for specific examples of elliptically fibered CY threefolds with spectral
cover vector bundles [21, 22]. It is important, therefore, to generalize these constructions
to more realistic vacua, such as those mentioned above. Even then, to find the complete
superpotential one has to sum up the contributions from all holomorphic, isolated, genus
0 curves. Beasley and Witten showed that, in a large class of models, these contributions
cancel against each other [23, 24]. Hence, in addition to calculating the instanton gener-
ated superpotential for specific curves in more realistic vacua, one must then show that
these contributions do not cancel each other; that is, that the Beasley-Witten theorem is
not applicable to these theories. In this paper, we take a first step in that direction by
explicitly calculating the complete leading order instanton superpotential for a heterotic
vacuum consisting of a Schoen [25] threefold geometry and a simple “extension” SU(3) vec-
tor bundle — similar, but not identical, to the heterotic standard model in [4]. Although
our Schoen threefold is a complete intersection CY manifold (CICY) and the vector bundle
descends from a vector bundle on the ambient space — two of the three main conditions
required by the Beasley-Witten theorem — we find in this theory that the Beasley-Witten
theorem is not applicable and that the superpotential indeed does not vanish. Extending
this work to exact heterotic standard model vacua will be carried out elsewhere.



We start our analysis with a theory on a Schoen threefold X which is a CICY in the
ambient space A = P! x P2 x P2, We will also consider only those vector bundles V on X
that descend from a vector bundle V on A. These vacua satisfy two of the three conditions
of the residue theorem of Beasley and Witten and, therefore, one might expect the complete
non-perturbative superpotential to vanish. However, we point out that the Beasley-Witten
residue theorem additionally assumes that the area of all holomorphic curves on the CICY
is computed using the restriction of the Kahler form on the ambient space. Usually, this
restriction does give the complete Kahler form on the CY manifold — but there are cases
when it does not. These more subtle cases arise when the CICY manifold has more (1,1)
classes than does the ambient space. As a result, curves which have the same area with
respect to the restriction of the Kahler form of the ambient space, can actually have
different area with respect to the true Kahler form on the Calabi-Yau space and, hence,
can lie in different homology classes. The Schoen manifold studied in the paper has this
property. It has 19 (1,1) classes whereas the ambient space has only 3. We show that
there are holomorphic, isolated, genus 0 curves in this manifold which are unique in their
homology classes despite having the same area with respect to the restriction of the Kahler
form of A. Thus, for an arbitrary vector bundle the contributions to the non-perturbative
superpotential due to these curves cannot cancel each other because they are weighted with
different area. This way, one can get around the Beasley-Witten residue theorem.

Furthermore, our CICY Schoen threefold is chosen to have a freely acting Zs x Zs
symmetry group. We then mod our this discrete action, to obtain a non-simply connected
Calabi-Yau space with m; = Z3 x Zs. For a toy choice of a vector bundle which descends
from the ambient space, the non-perturbative superpotential for all holomorphic, isolated,
genus 0 curves with minimal area is computed. For simplicity, we perform our calculations
for a fixed complex structure. Hence, the only 1-loop determinant which needs to be
computed is the Pfaffian of the Dirac operator on these curves. Since we do not know
either the metric or the gauge connection, we use an algebraic method (similar to the
one developed in [21, 22]) to compute the Pfaffians. They turn out to be homogeneous,
degree 2 polynomials on the moduli space of vector bundles. We show that the sum of the
contributions from these curves is non-zero. Here, the main reason for the non-vanishing
of the superpotential is the discrete part of the second homology group, called discrete
torsion. Due to torsion, curves which have the same area actually lie in different classes
of the second homology group with integer coefficients. These different classes are labeled
by the characters of the torsion subgroup — which in the present case is Z3 & Zs3. Hence,
in this case the non-vanishing of the superpotential can also be attributed to existence of
holomorphic, isolated, genus 0 curves which are unique in their integral homology classes.

The paper is organized as follows. In section 2, we start with reviewing the structure
of the non-perturbative superpotential in heterotic string theory, mostly following [17].
Then we review the residue theorem of Beasley and Witten, pointing out that it is directly
applicable only when the Kahler form on the Calabi-Yau manifold is the restriction of the
Kahler form of the ambient space. We also discuss how the structure of the superpotential
is modified if the second homology group with integer coefficients contains discrete torsion.
Holomorphic, isolated, genus 0 curves which are in the same real homology classes and



which, hence, have the same area, are distributed among different torsion classes labeled
by the characters of the torsion group. These characters arise as extra factors in the
superpotential. In section 3, we review some mathematical propeties of the Schoen manifold
and of its quotient by Zs x Zs. We also review the type II prepotential on the quotient
computed in [26-28]. We point out that there are 9 holomorphic, isolated, genus 0 curves
of the quotient having the same minimal area, but each lying in its own torsion class. In
section 4, we show that the pre-image of these curves on the covering Schoen manifold
consists of 81 curves lying in 81 different homology classes. These curves have different
area due to the Kahler classes which are non-invariant under Zs & Z3 and, hence, do not
descent to the quotient. In particular, this implies that the superpotential on the Schoen
manifold is non-zero. In the remaining part of the paper, we compute the superpotential on
the quotient manifold due to the above 9 isolated curves with minimal area. In this paper,
we do the calculation for a toy model. More realistic vacua will be discussed elsewhere. In
section 5, we construct a toy vector bundle with structure group SU(3) which descends to
the quotient manifold. We show that its moduli space is a projective space and find its
explicit parametrization. In section 6, we compute the Pfaffian of the Dirac operator on
the curves of interest. On each curve, the result is a homogeneous polynomial which we
find explicitly up to an overall coefficient. We show that, since all curves are in different
integral homology classes, their contributions pick up different torsion factors and, hence,
they do not cancel each other. In the Conclusion, we summarize our results and discuss
directions for further research. Finally, appendices A, B, C and D are devoted to discussing
various technical details.

2 Non-perturbative superpotentials in heterotic string theory

2.1 The general structure of non-perturbative superpotentials

We consider Fg x Fg heterotic string theory compactified to four-dimensions on a Calabi-
Yau threefold X. As was extensively studied in a variety of contexts and papers [12-22], the
effective low-energy field theory may, in principle, develop a non-perturbative superpoten-
tial for the moduli fields generated by worldsheet/worldvolume instantons. The structure
of the instantons is slightly different in the weakly and strongly coupled heterotic string
theories. Be that as it may, the superpotential has the same generic form. For concrete-
ness, we will discuss the weakly coupled case where the superpotential is generated by
strings wrapping holomorphic, isolated, genus 0 curves in X.! Furthermore, for simplicity,
we will restrict our discussion to the “observable” sector; that is, to the superfields associ-
ated with the first Fg factor of the gauge group.The superpotential is then determined by
the classical Euclidean worldsheet action S evaluated on the instanton solution and by
the 1-loop determinants of the fluctuations around this solution. Let C be a holomorphic,
isolated, genus 0 curve in X. Then the general form of the superpotential induced by a
string wrapping C' is [17]

_ AC) . Pfaff Oy, (-1))
wi©) _eXp[_ oral /CB ] [det’ (90 2det(Dnc) 21)

"Holomorphic, non-isolated and/or higher genus curves contribute to higher order F-term interac-
tions [24].



Let us review various ingredients in this formula. The expression in the exponent is the
classical Euclidean action evaluated on C'. In the first term, A(C), is the area of the curve
given by

A(C) = /C W, (2.2)

where w is the Kahler form on X. In the second term, B is the heterotic string B-field
which, in this expression, can be taken to be a closed 2-form, dB = 0. Let w; be a basis of
(1,1)-forms on X, I =1,...,hY!. Then we can expand

hl’l hl’l

w:ZtIWI, B:Z¢1w1. (2.3)
I=1 I=1

Let us define the complexified Kahler moduli

H
T =o' +i : 2.4
¢ +iz— (2.4)
Then the exponential prefactor becomes
eerOT o (0) = / wr . (2.5)
C

By construction Re(ia;(C)TT) < 0.
Note that the exponential factor in (2.1) can also be understood as a map from the
curve C' to the non-zero complex numbers C*. That is,

C—>exp[— A(C) +z’/CB] . (2.6)

2ma

Since the value of the integrals depends only on the homology class of the curve, the map
is more appropriately expressed as

e~ . Hy(X,Z) — C*. (2.7)

However, here there is an important caveat. In egs. (2.3), (2.7) we are assuming that the
moduli space of the B-field is connected. As we will discuss below, this is not necessarily
the case. Hence, the map (2.7) needs to be refined.

Let us now discuss the 1-loop determinants. The first determinant is the Pfaffian of
the Dirac operator which comes from integrating over the right moving fermions in the
worldsheet theory. In heterotic compactifications, we have to specify the internal gauge
field A on X which satisfies the Hermitian Yang-Mills equations

Fun=0, Fna=0, ¢""Fup=0, (2.8)

where m and m are holomorphic and anti-holomorphic indices on X and ¢,,5 is the Ricci
flat metric on X. According to the theorem of Donaldson-Uhlenbeck-Yau, A is a connection
on a holomorphic polystable vector bundle V on X whose structure group is a subgroup
of Fg. Then the Pfaffian in (2.1) is the Pfaffian of the Dirac operator depending on the



connection A restricted to the curve C. Since the spin bundle on a genus 0 curve is Oc(—1),
we additionally tensor V with O¢(—1) and denote Vo (—1) = V]|c®@Oc(—1). Plaff (v, (_1))
depends on the moduli of the vector bundle V. In principle, it can be explicitly expressed
as a function of the gauge connection A using the WZW model [22]. However, since no
explicit solutions to the Hermitian Yang-Mills equations on X are known, it is unclear how
to use this in practice. Since right moving worldsheet fermions are Weyl, the Pfaff(dy, o(=1))
is anomalous. However, this anomaly is cancelled by the variation of the B-field [22]. As
the result, the Pfaffian of the Dirac operator is not a function on the moduli space of V
but, rather, a section of some line bundle. In the denominator in (2.1), det(dxc) comes
from integrating over bosonic fluctuations and is the determinant of the d-operator on
the normal bundle to the curve C. For an isolated, genus 0 curve, the normal bundle is
NC = Oc(—1) ® Oc(—1). Hence, det(dnc) = [detdo,(—1)]*. Finally, [det’(0p)]* is the
0-operator on the trivial line bundle which is a constant.

In general, a given homology class of X contains more than 1 holomorphic, isolated,
genus 0 curve. The number of these curves is referred to as to Gromov-Witten invariant.
All such curves in the same homology class have the same area, the same classical action
and the same exponential prefactor in (2.1). However, the 1-loop determinants, in general,
are different. Hence, the contribution to the superpotential from all curves C; in the
homology class [C] of the curve C is given by (for simplicity, we remove the constant
factor [det’(00)]72)

B CAC) | A Pfaff(dy,, (-1))
W) —exp[ +Z/CB} AR (2.9)

2ma! — [detéoci(,l)]Q ’

where njcj is the number of the holomorphic, isolated, genus 0 curves in the homology class
[C]. To find the complete non-perturbative superpotential W, we then have to sum over
all homology classes. That is,

W= Y w(c). (2.10)

[CleH2(X)
2.2 The residue theorem of Beasley-Witten

In [23] (also see earlier papers [29-32]) Beasley and Witten showed that, under some
rather general assumptions, the sum (2.9) must vanish for each homology class [C]. Here,
we review their assumptions since they will be important later in the paper. Let X be
a complete intersection Calabi-Yau threefold in the product of projective spaces? A =
P™ x ... x P That is, X is given by a set of polynomial equations p; = 0,...,pm =0
where Y7 | n; —m = 3. Additionally, assume that the Kahler form w¢ descends from the
ambient space, that is, wg = walg, and that the vector bundle V on X is obtained as
a restriction of a vector bundle V on A, V = V|;. Then, it was shown by Beasley and
Witten that if these assumptions are satisfied, the sum (2.9) vanishes for any homology
class. This result was proven in [23] and interpreted as a residue theorem.

2The results of Beasley and Witten are also expected to be valid for complete intersections in toric
varieties.



The proof in [23] is based on standard arguments of topological field theory and local-
ization. First, they constructed a topological worldsheet action with target space A such
that there exists a set of supersymmetric vacuum solutions — all with CICY threefold X,
wg = walg and V=) - Bach such vacuum is associated with a holomorphic curve
C C X. By the standard arguments of topological field theory, the correlation functions
in this theory do not depend on the coupling. In one limit of the coupling, the correlators
are localized on this set of supersymmetric vacua solutions. This leads to eq. (2.10) for
the total superpotential, where one uses the fact that non-isolated and/or higher genus
curves only contribute to higher F-term interactions,. In another limit, the same corre-
lators vanish because of unsaturated fermionic zero modes. Hence, W = 0. Since the
exponential factor is different for each homology class, Beasley and Witten concluded that
the sum (2.9) vanishes for any homology class. The assumptions of Beasley and Witten
are rather general, which means that in a large class of heterotic string models a non-
perturbative superpotential cannot be generated. This raises a question of whether moduli
in heterotic compactifications can ever be completely stabilized.

The aim of this paper is to present explicit examples where the non-perturbative
superpotential is indeed non-zero.

2.3 Applicability of the residue theorem

As we have discussed, in the analysis of Beasley and Witten in [23] there is the assumption
that w¢ = wa|¢. This assumption is necessary in order for their analysis to be a topological
theory on the ambient space with X as a vacuum solution — and, hence, to use their
residue theorem. It follows that, in their theorem, the area of all curves in (2.9), (2.10) is
measured using the Kahler form w4 on A restricted to X. However, there are cases when
this restriction is not the same as the physical Kahler form on X. Indeed, it is possible that
hL1(X) is not the same as h!' (A) because there can be classes in X which do not come as a
restriction of classes from the ambient space. Hence, the residue theorem, strictly speaking,
is valid only if h"'(X) = hY'(A).2 If ALY(X) > hLI(A) the residue theorem, though
still valid in the topological theory, is not directly applicable to the physical heterotic
string theory. In the former case, the area of holomorphic curves is measured using w4 -
But in the physical theory, it is measured using the actual Kahler form wy on X. As a
result, the curves which have the same area with respect to w4| ¢ might have different area
with respect to wg and, hence, might lie in different homology classes. More precisely, if
AYH(X) > h11(A) we have

Wy :wA|)~(+Aw)~(, (2.11)

where Awg is the contribution to the Kahler form on X from the (1,1) classes which do
not come as a restriction of classes from the ambient space. Then the actual area of a curve

Lox= [[als +aw) 2 [ s (2.12)

3Such models were called favorable in [33].

C is given by




Two curves C; and Cy which satisfy

/wA!Xz/ wal g (2.13)
C1 CZ

and appear to lie in the same homology class from the viewpoint of the residue theorem
can actually have different area due to different contributions from Awy¢ and can lie in
different homology classes.

To say it differently, if h"1(X) > h»'(A) the correlation functions in the topological
theory studied in [23] do not coincide with correlation functions in the physical heterotic
string theory on X. Hence, the cancellation in the residue theorem does not imply an
analogous cancellation in the physical theory. However, we can still apply the residue
theorem to the physical theory. If in the physical theory we ignore Awy; and measure the
area of all curves using w4|¢ only, then we should have the same cancellation as in the
topological theory. Nevertheless, it is important to emphasize that now the cancellation
happens among the 1-loop determinants of the curves in different homology classes but
having the same area measured by w4|g. If we restore the actual area using the Kahler
form w ¢ on X, the contributions of these curves might no longer cancel each other because
they might lie in different homology classes and have different area. That is, in the physical
theory whether or not curves in a given homology class cancel each other cannot be directly
deduced from the residue theorem. Below, we will give an example where the cancellation
cannot happen simply because each curve is unique in its homology class.

2.4 Discrete torsion

Our discussion so far has been missing an important ingredient called discrete torsion. In
general, for an arbitrary complex manifold, X, the second homology group with integer
coefficients is of the form

Hy(X,Z) =7F ® Gor, k>0, (2.14)

where ZF is the free part and Gie, is a finite group called discrete torsion. For example, a
discrete torsion factor of Ha(X,Z) can arise when X is a quotient of another Calabi-Yau
manifold by a freely acting discrete isometry group K — as we will discuss below. The
existence of the torsion classes affects the B-field. Indeed, the B-field is an arbitrary closed
2-form dB = 0. However, in general, it implies that the field strength H = dB vanishes in
H?*(X,R) but not necessarily in H*(X, Z). In the later case the integral [, B is not defined
because the moduli space of the B-field is not connected. From the Universal Coefficient
Theorem (see e.g. [34]) it follows that

HZ(X> Z)tor = Hg(X, Z)tor . (215)

This means that there is one-to-one correspondence between the torsion elements of
Hy(X,Z) and the number of the connected components of the moduli space of the B-
field. These connected components can be labeled by the characters of the discrete group
Gior- Since the B-field is not continuous, we have to replace the exponential prefactor



in (2.1) with a more general map from H?(X,Z) — C* [35]. While we will continue to
denote this map by

e~ Hy(X,Z) — C*, (2.16)
it is no longer given by expression (2.6). Specifically, it now depends on the discrete choice
of the connected component of the moduli space of the B-fields.* Choosing a different

connected component gives a different map (2.16). It is possible to describe the map (2.16)
more explicitly. Let us define the complexified Kahler form

hl,l hl’l

!
I=1

I=1

Then the map (2.6) can be understood as

C = exp [z /C wc] — expliwe - €], (2.18)

where, in the last step, we view wc as the Poincare dual 4-cycle and wc-C' is the intersection
of this 4-cycle with the curve C'. However, wc defined in (2.17) is Poincare dual only to an
element of the free part of Hy(X,Z). Clearly, wc should also contain a torsion part. Let

Gior have r generators (1, ..., 8. Then the complete expression for wc is given by
A1l r
wC:ZTIw1+ZSO‘Ba, (2.19)
=1 a=1

where, slightly abusing notation, we continue to use the same symbol for the complexified
Kahler form including torsion. Since (5, are torsion elements, it follows that for any « there
is an integer m,, for which mq,B, = 0. Hence, we obtain

expliwc - C] = eler(OT! H e PalC) Ba(C) =B C. (2.20)

a=1

Since mqafs = 0 and C is arbitrary, it follows that x, = €” is an mq-th root of unity.
Hence, s can take only discrete values parametrizing the connected components of the
moduli space of the B-field. It also follows that x. is a character of Gi,,. We conclude
that mapping (2.6) now generalizes to

C — O T x5 (2.21)

a=1

The precise values of x, depends on the choice of the torsion part of B; that is, on the
choice of the connected component. Clearly, all curves in the same homology class of
H> (X, Z) have the same value of 5,(C) and, hence, pick up the same character-dependent
factor in (2.21).

1A discrete choice of a vacuum is quite common in heterotic compactifications on non-simply connected
Calabi-Yau manifolds. Other discrete choices may involve a choice of the equivariant structure of a vector
bundle or a choice of a Wilson line.



Let us now refine eq. (2.9) in the presence of discrete torsion. Let [C] be the homology
class of the curve C' in Hy(X,R) = R¥. As we have just discussed, the curves in [C] do
not necessarily lie in the same homology class in Hy(X,Z) because they might belong to
different torsion classes. Curves belonging to different torsion classes pick up different
characters under the map (2.21). Hence, equation (2.9) is modified to become

1<) Pfaff (Oy

W([C]):emf@)T’Z [deta@ ” H 6a(C) (O] € Hy(X,R).  (2.22)

To find the complete non-perturbative superpotential, we have to sum over all homol-
ogy classes [C] € Hy(X,R). Later in the paper, we will analyze expression (2.22) for a
specific example.

3 The Schoen manifold and the prepotential

3.1 The Schoen manifold

Having presented the generic discussion above, we now proceed to calculate the non-
perturbative superpotential for a specific Calabi-Yau threefold. This manifold, denoted
by X, is the quotient of a simply connected, complete intersection Calabi-Yau threefold,
X — chosen to be a specific Schoen manifold [25] — with respect to its fixed-point free
symmetry group K = Zs3 X Zs. This Schoen threefold is defined as follows. We construct
X as a compete intersection in the ambient space A = P! x P? x P? with homogeneous
coordinates

([t() : tl], [.CU[) o CIZQ], [yo Y1 yg]) S Pl X PQ X Pz . (31)

X is then given by a common zero locus of two polynomial equations

Pi(to, t1)Q1 (w0, 71, w2) + Pa(to, t1)Q2(w0, 21, 22) = 0,
Ps(to, t1)@3(y0, y1,y2) + Palto, t1)Qa(vo, y1,y2) = 0. (3:2)
Here Py, ..., Py are homogeneous polynomials of degree 1 and ()1, ..., Q4 are homogeneous

polynomials of degree 3. For the purposes of this paper, we will restrict X to be given by
the following polynomials

F = to(:vg + :c? + l‘%) +ti(zox172) =0,
= (Mito +t1) (v + v +u3) + (Nato + Ast1) (yoy1y2) = 0. (3.3)

This manifold is self-mirror with h%! = h%! =19 [25, 36]. Note that
Y (X) > hbH(A) = 3. (3.4)

It follows that on X there are 16 (1,1) classes which do not arise as the restriction of (1,1)
classes from the ambient space. The manifold X defined by (3.3) is invariant under the

~10 -



action of the K = Z3 x Z3 symmetry generated by

,

[:L'() M A 1'2] — [.%'() : Cacl : C2$Q]
g1 : o [to:t1] — [to : t1] (no action)

[yo = y1: y2] = [yo = Cyn = e

;

(3.5)
[1’0 N A 372] — [:L’l 1 X9 1’0]

92 ¢ g [to : t1] = [to : t1] (no action)

[Yo : Y1 y2] = [y1: 2 : o),

2mi/3  Note that this discrete symmetry does not act on P'. This action has

where ( = e
fixed points on the ambient space A, but not on X. Having constructed X with a free
Z3 x Zg action, we define

X =X/(Zs3 x Zs3). (3.6)

This manifold is also self-mirror with h! = h%! = 3 [27]. From these Hodge numbers, it
follows that Hy(X,R) = R3. However, Hy(X,Z) is more involved. It was shown in [27]
that it contains the discrete torsion subgroup

Gior =Z3 ® Zs . (3.7)
That is, the complete Ho(X,Z) is given by
Hy(X,Z) =773 D Zs. (3.8)
Let us point out that from the Universal Coefficient Theorem it follows that
H*(X, Z)tor = Hi(X, D) tor = Z3 ® Zs3 . (3.9)

Hence, in the present case, the torsion groups of Hy(X,Z) and of H%(X,Z) are the same.

Let us present some mathematical details of X and X following [27]. From eq. (3.3) we
see that for fixed [t : 1] we have two elliptic curves, one in each P?. Thus, each equation
in (3.3) defines a rational elliptic surface dPy € P! x P? and, hence, X is a double elliptic
fibration over P!. The structure of X can be illustrated using the diagram

dime = 3 : X
dim(c =2: Bl BQ . (310)
dimg =1 : P!

Here B; and Bj are the d Py surfaces given by the individual equations in (3.3). The Z3 x Zs
action descends to By and Bs. Since its action is trivial on P!, on each By, for k = 1,2 the
Zs3 x Zs must act by translation along the fiber by two independent sections of order 3.
To simplify notation, we denote these sections on either By by the same symbols ¢ and v
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— unless it is necessary to distinguish them. Additionally, each Bj has the zero section o.
This determines the structure of Kodaira fibers and the Mordell-Weil group to be [37]

sing(B1) = sing(B2) = 413,
MW(Bl) = MW(BQ) =73 ®Zs. (3.11)

The Mordell-Weil group is generated by the zero section ¢ and by the sections p and v of
order 3. Each By has 4 I3 singular fibers, each containing 3 exceptional classes intersecting
in a triangle. These classes will be denoted by 6;;, where j = 1,...,4 labels the singular
fibers and ¢ = 1,2,3 labels the exceptional classes in each such fiber. As was shown
in [38, 39], the basis in Hy(Bg,Z) can be chosen to be

Hy(By,Z) = spang{o, u,v, f,011, 021,031, 032,041,042}, (3.12)

where f is the class of the elliptic fiber. The intersection numbers of these classes can be
found in [27]. Out of these basis elements, it is possible to construct divisors which are
Poincare dual to Zs3 x Zs invariant (1,1) classes in By, (here we will use the same notation
for divisors and Poincare dual (1,1)-forms). The invariant cohomology group of By is
two-dimensional and generated by [27]

H*(By,Z) g = spang{f,t}, (3.13)
where ¢ is a specific linear combination of the classes in (3.12) given by
t=—-30—3f+3u+3v+011+ 02 + 2031 + 2032 + 3041 + 042 (3.14)
The intersection numbers of f and ¢ are [27]
f2=o, f-t=3, ?=1. (3.15)

Using the invariant cohomology classes in By, we can now construct divisors in X
Poincare dual to the invariant (1,1) classes on X. The invariant generators can be defined
using the diagram (3.10) and the invariant classes in (3.13):

¢ =m ' (f1) =75 (f2),

o= t), T=my (). (3.16)
Let us now denote the corresponding Poincare dual (1, 1)-forms as wg, wr,, wr,. They form
a basis of the invariant cohomology group H Q(X' ,2)k, and will descend to the quotient
manifold X. Their triple intersection numbers can be found using the diagram (3.10) and
eq. (3.15) to be

/~W¢AWT1 Nwr, =¢-T1-T2=9,
X

/leAle/\wTQZT1'7'1'7'2:3,
X

/~w71/\w72/\w72:71-72~TQ:3. (3.17)
X
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The remaining triple intersection numbers are zero. We can now, somewhat abusing nota-
tion, define the form wx on X by
wx = thwy + 2wy, + 3w, tI >0, (3.18)

which will descend to the non-torsion part of the Kahler form on X. Let us emphasize,
however, that wx is not the same as the Kahler form on X. This follows from the fact
that on X there are additional classes of H?(X,Z) which are not invariant under Zsz x Zs.
Indeed, as we stated previously, h1*(X) = 19. This means that there are 16 (1,1) classes
on X in addition to Wg, wr, and wr,. That is, the complete Kahler form on X is given by

wg =wx +Awyg, (3.19)
where Aw ¢ stands for the contribution from the additional 16 non-invariant classes. Com-
paring this expression with (2.11), we conclude that

wx =walg - (3.20)

We will give an explanation for this relationship in the following subsection.

3.2 The ambient space description of the invariant (1,1) classes

The above description of the invariant (1,1) classes on X is somewhat abstract. Here, we
will give a simpler description of wg,wr,,ws, in terms of the forms on the ambient space.
Let J1, Ja, J3 be the Kahler forms on the three projective spaces P!, P2, P? forming the
ambient space, normalized as

Ji=1, /JzAjz—l, /jg/\jg_l. (3.21)
Pl P2 P2

Since Zs3 x Zs does not act on P!, the cohomology class of J; is automatically invariant
under Zs X Zs. In the cohomology class of J> (and similarly of [J3), one can choose a
representative to be the Kahler form of the Fubini-Study metric with the Kahler potential

log(]aco\2 + \xl\Z + ‘:UQ’Q) , (3.22)

which is invariant under Zs x Zs. This means that the cohomology classes of J2 and J3
are also invariant classes.
Let us now define the (1,1) classes on X by restriction

Ji=Tl%s Jo = Tol 5 s J3 = T3l ¢ - (3.23)

By construction, the cohomology classes of Ji, Jo, J3 are invariant classes in H 2(X ,Z) and,
hence, form a basis in HQ(X,Z)K. The triple intersection numbers of Jp,Js, J3 can be
computed by the standard methods of complete intersection Calabi-Yau manifolds (see
e.g. [40])° with the following result

/~J1/\J2/\J3:9,
X

/~J2/\J2/\J3—3, /~J2/\J3/\J3—3, (3.24)
X X

50One can also compute them by lifting the triple intersection integrals to the ambient space by inserting
the delta-function current as in [41-43]. See appendix A in [42] for a similar calculation.
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with the remaining ones being zero. Comparing eq. (3.24) with (3.17) we conclude that
w¢ = Jl s Wr = JQ, Wry = Jg . (3.25)

That is, the invariant (1,1) classes wg,ws, ,wr,, Which were constructed in the previous
subsection in a rather abstract way, are simply the restriction of the Kahler forms on the
projective spaces forming the ambient space — thus explaining expression (3.20). Due to
the normalization properties (3.21), the forms Jj, Jo, J3 can be viewed as first Chern classes
of the following line bundles on A:

OA(1707O) ) OA(O,l,O) ) OA(0707 1) . (326)
This implies the following relations between the line bundles
03(¢) = 0a(1,0,0)[3, Ox(m) =04(0,1,0)[3, Ox(r2) =04(0,0,1)[5. (3.27)

These relations will be useful later. For emphasis, we again note note that the Kahler
form (3.19) can be written as

Wy :wA|X+AwX. (328)
We see, therefore, that the Kahler form on X is not simply given by the restriction of the
Kahler form from the ambient space but, rather, contains an additional term Aw ;.

3.3 The prepotential and Gromov-Witten invariants

The number of holomorpic, isolated, genus 0 curves in each homology class of X can
be read off from the prepotential in type II string theory. The prepotential on X was
computed in [26-28]. In this subsection, we will review the result. Since the (1,1) classes
{wg, wr,,wr, } are Zz x Zs invariant on X, they descend to cohomology classes on X. To
simplify our notation, we will label these cohomology classes using the same symbols. Let
{[Cs),[Cr],[Cr]} be the dual homology classes in the free part of Hao(X,Z). If Cy, Cr,,
C,, are arbitrary representatives of these classes, then

/ wg =1, / wr =1, / wr, =1, (3.29)
Cy Cry C,

2

with the other integrals being zero. Let us define

p = e % ([Cy]) :exp[/% (— % —H’B)] — T
g = eSa((C]) :exp[/c <_ ox +iB>} _

1

r= el e [ ) (- o) | =er (3.30)

Since Ho(X,7Z) contains torsion classes, we also have to introduce the image under the map

e~ of the Zs x Zs torsion generators — which we denote by b and by respectively and
satisfy b3 = b3 = 1. Let [C] be a homology class of the form

[C] = (n1,n2,n3,m1,ms) € Hy(X,Z) =73 O L3 D Zs, mi,my =0,1,2.  (3.31)
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Se

Then, as shown in (2.21), the image of this class under e~>< is given by

e 2I([C]) = p"t g r3b M by, (3.32)

where b]"'by'"? is a Zz x Zg character. The prepotential in type II string theory is defined
by the expression

Fx= > ngise™™(C))= > nLis(p™qr™o"b52).  (3.33)
[CleH2(X,Z) [CleH2(X,Z)

Here the sum is over all holomorphic, isolated, genus 0 curves and the polylogarithm Lis
takes proper care of multiple wrappings. If we know Fx, we can expand it in powers of
P, q,7,b1,b2 and read off the Gromov-Witten invariants njc;. The prepotential Fx for the
quotient Calabi-Yau manifold X in (3.6) was computed in [26-28]. Here, we present the
result to low orders in p, q,r. It is given by

Fx =p(1+b1+b7)(1+ba +63)P(q)*P(r)* + O(p?), (3.34)
where the polynomial P(q) is of the form
Plq) =14+ 0O(q). (3.35)

Let us discuss some simple consequences of egs. (3.34), (3.35). It follows that there are
no terms ~ p°. In other words, there are no isolated, genus 0 curves in the homology classes
(0,n2,n3,m1, my). However, there are terms in Fy that are ~ p'. Hence, there are isolated,
genus zero 0 curves in the (1,ng,n3, my, mg) homology classes. It follows from (3.30) that

the contribution of these classes to e~

eiTl +ingT?

<l and, hence, the superpotential is proportional to
+insT® This means that the leading contribution to the superpotential is ~ eiTl;
all terms with ng > 0 and/or ng > 0 being exponentially suppressed. Similarly, the
contribution to the superpotential of any class with ny > 1 is also suppressed relative to
eI Therefore, since we are interested in computing the superpotential, we will focus on
the homology classes of the form (1,0,0,m;,m2). The number of isolated, genus 0 curves

in each such class can be read off from the most leading term in (3.34). This is given by
Fx ~p(14by +b3)(1+ by + b3). (3.36)
It follows that in each torsion class there is precisely 1 curve. That is,
nic) =1 for each class [C] = (1,0,0,m1,mz2), mi,mz =0,1,2. (3.37)

The main aim of the rest of this paper will be to compute the non-perturbative superpo-
tential (2.22) summed over these 9 isolated, genus 0 curves. All of them are in the same
homology class in Ha(X,R) and, hence, have the same area with respect to the Kahler
form on X. However, they are distributed in 9 different homology classes once we take
discrete torsion into account.
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3.4 Explicit construction of the isolated, genus 0 curves

It is possible to explicitly visualize these 9 curves as follows. We see from eq. (3.30)
that, ignoring torsion, they are in the same homology class [Cy] which is dual to the
class of the (1,1)-form wy. Let us lift these curves from X to X. Since on X we have
wy = J1 = Ji| ¢, where J; is the Kahler form on P! C A, the pre-image of these 9 curves
gives 81 holomorphic, genus 0 curves on X which can be parametrized by [to : t1]. Hence,
we can visualize these curves by demanding that egs. (3.3) are solved for arbitrary [t : ¢1].
This is equivalent to solving the system of equations

Tox122 = 0, x%—l—a:?—kx%zo, Yoy1y2 =0, yg—kyi’-{—yg’zo (3.38)

on P2 x P2, It is easy to see that this system is solved by 9 x 9 = 81 distinct points on
P2 x P2. Since the solutions of (3.38) are distinct points, all the corresponding curves in
X are isolated. In appendix A we compute the normal bundle for each of these curves and
check that it is indeed O(—1) & O(—1). Due to the Z3 x Z3 symmetry, the above 81 curves
split into 9 orbits under the action of Z3 x Z3 — each orbit containing 9 curves. The curves
in the same orbit are obtained from each other by the action of the Z3 x Z3 group. When
we descend to the quotient manifold X, all curves in one orbit yield the same curve in X.
Hence, we obtain 9 isolated, genus 0 curves in X which are precisely the curves discussed
at the end of the previous subsection. It follows from the prepotential (3.36) they are in
the same homology class in Ha(X,R) but in 9 different homology classes in Hs (X, Z).

We now present 9 curves in X which do not lie in the Z3 x Zs orbits of each other and
which, therefore, descend to 9 distinct curves in X. To accomplish this, let us write the
generators g; and g2 in (3.5) in the matrix form

100 010
=00, @=]001]. (3.39)
00 &2 100

Since Zsz x Zs acts simultaneously on both P?’s, it is convenient to combine [xo @ @1 : 22
and [yo : y1 : yo| into a 6-vector (zq, 1,22, Y0,Yy1,y2)’ . In this basis, the generators of

0 0
K= (""), ko=|("2"). (3.40)
0 0 g2

Now choose one arbitrary solution of (3.38). For example, pick

Zg X Zg are

s1=(1,-1,0,1,-1,0)7, (3.41)
where the symbol “T” means think of this as a column vector. It corresponds to the curve

Cr=P xs =[tg:t] x[1:=1:0]x[1:=1:0]C X CP!xP?xP?. (3.42)
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Let us now construct the remaining 8 curves C; = P! x s;, i = 2,...,9 by acting on s; as
follows:

Sy = 910 s S3 = Lo s Sq = g2 0 s S5 = L0 s

2 = 01 1 3 — 091 1 4 — 01 1 5 — ng 1,

56 = 9192 0 51 5 = 10 51 55 = g1 0 5 50 = g2 0 5
0 1 ’ 0 9192 ’ 0 g2 ’ 0 ¢

(3.43)

One can check that these curves solve egs. (3.38) and cannot be obtained from each other
by the action of Zs x Zs.

4 Non-vanishing of the superpotential on X

Let us now compactify the Eg x Eg heterotic string on the manifold X, and consider the non-
perturbative superpotential generated by the 81 isolated, genus 0 curves discussed above.
To describe the complete string vacuum, one must also introduce a specific holomorphic
vector bundle — which we will do in the next section. Although we will compute the
superpotential for this specific bundle, the results of the present section are valid for any
vector bundle. Since the curves specified by the solutions of (3.38) are all parameterized
by [to : t1], it is tempting to conclude that they are in the same homology class dual to the
(1,1) class wg = J1| . However, we will see that this is not the case. In fact, we will show
that these curves lie in 81 different homology classes.
First consider the twofold By ~ dPy C P x P? defined by

Fy = to(xd + 23 4+ 23) + t1 (woz129) = 0 . (4.1)

Let us now examine the genus 0 curves parametrized by [to : t1]. They are specified by the
9 solutions of
zorize =0, zp4ai4+23=0. (4.2)

Each solution is a distinct section of the elliptically fibered surface B; ~ dPy. We
denote these sections by o;, ¢ = 1,...,9. Since the order of the Mordell-Weil group
MW (By) = Z3 @ Zs is 9, these sections are in one-to-one correspondence with the ele-
ments of MW (B;) [27]. On the other hand, it was shown in [38] that on a dPy twofold
distinct elements of the Mordell-Weil group are all non-homologous to each other. It fol-
lows that the 9 solutions to (4.2) fall into 9 different homology classes. The same is true
on By ~ dPy defined by

Fy = (Aito + 1) (yg + y7 + y3) + (Aato + Ast1) (yoyrya) = 0 (4.3)
for the 9 genus 0 curves specified by the solutions of
YoYy1Ya = 0, yg’ + y‘;’ + yg’ =0. (4.4)

For reasons of simplicity, we also denote these sections by ¢, i =1,...,9.

17 -



We now extend this result to X. To start with, note that there is a natural map
Hy(X,Z) — Ho(B1,7) x Hy(Bs,7Z). (4.5)
Let us define
oixoj = (0; x 0;) N X € Hy(X,7Z), gp€ MW (B1), o;€ MW(By). (4.6)

This provides a more abstract way to visualize the 81 curves solving egs. (3.38). Then the
map (4.5) acts on the above described solutions as

0;X0j — 0y X 0; € HQ(Bl,Z) X HQ(BQ,Z) . (47)

We note that the 81 elements o; x 0, all being distinct, are in one-to-one correspondence
with elements of the Mordell-Weil group MW (B; x By) of By X By — which is given by
MW (B;)® MW (Bs) and is of order 81 as well. Therefore, we have a map between the set
{oix0;} and the elements of MW (By)® MW (Bs). By construction, it is a surjective linear
map between two finite sets consisting of 81 elements each. Hence, it is one-to-one. Since
all distinct elements of MW (B) & MW (Bz) are non-homologous to each other, it follows
that all 81 curves obtained in (3.38) lie in 81 different homology classes. In particular,
it follows that each of these 81 homology classes has precisely 1 isolated, genus 0 curve.
Hence, as long as the Pfaffian of the Dirac operator of at least one of these curves is not
identically zero — which is expected to be true for a generic vector bundle — the non-
perturbative superpotential in this theory is non-zero. We will show this explicitly for a
specific holomorphic vector bundle in the remainder of this paper.

To finish this section, let us point out that any of the 81 homology classes discussed
above are dual to a (1,1) class of the form [J1|¢ + AwX.G Here, it suffices to recall that
Awy stands for the classes on X which cannot be obtained as a restriction from the
ambient space. All of these 81 curves have equal area with respect to Ji1| and w4y,
but have different areas with the respect to the actual Kahler form wg. Hence, we have
an explicit realization of the situation described in subsection 2.3. As was discussed, this
violates one of the assumptions of the Beasley-Witten residue theorem and, hence, one can
expect a non-vanishing instanton superpotential. Finally, note that since Awy¢ contains
only non-invariant classes under Zs x Z3 which vanish on the quotient manifold X, the area
of the images of the 9 curves in eqs. (3.41), (3.42), (3.43) in X is the same with respect
to the Kahler form wx on X. That is, although the original 81 curves were in different
homology classes on the covering manifold, their images are in the same homology class on
the quotient manifold modulo torsion.

5 The vector bundle

The rest of the paper will be devoted to an explicit computation of the superpotential in
a concrete example of a theory on X. Specifically, we will consider a toy model where

SExplicit calculation of Aw ¢ for each of the 81 curves is a tedious, complicated task which is unnecessary
for the purposes of the paper.
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the holomorphic vector bundle V is taken to have structure group SU(3). A more phe-
nomenologically realistic class of bundles will be studied elsewhere. Since X is a quotient
manifold, it is easiest to first construct a vector bundle V on the covering space X which
is equivariant under the action of K = Zs x Z3. The moduli space of an equivariant vector
bundle V consists of connected components labeled by the characters of K. The vector
bundle V' on the quotient space X is then defined as

V =V /(Zs3 x Zs3), (5.1)

with the moduli space of V consisting of one of the connected components. The choice
of the connected component is referred to as to the choice of the equivariant structure.
Different choices of equivariant structure give different vector bundles V' in (5.1).

First, we will discuss a construction of V in terms of the data on X. We then will
express the same vector bundle as the restriction of a vector bundle V on the ambient space.
The second description is more explicit and will be used in computing the superpotential
in the next section.

5.1 Construction of the vector bundle V on X

We will construct V by specifying the line bundles L1, Lo, L3 on X satisfying the property
L1®L2®L3:OX—. (5.2)
Then we define V as a sequence of extensions

0— L1 — W — Ly —0,

0—W —V — L3 —0. (5.3)

Eq. (5.2) assures that the structure group of V is SU(3) rather than Y (3). The structure
group of the rank 2 vector bundle W is T(2). For V to descend to the quotient manifold
X, it has to be equivariant. To achieve that, it is sufficient to require that the line bundles
L1, Lo, L3 are equivariant. A discussion of equivariant line bundles on the Schoen manifold
can be found in [3]. The action of the discrete group in [3] was chosen to be different from
ours in (3.5). However, the conclusions on equivariance are the same. Here we will simply
state the conclusions, referring to [3] for additional details.

First, any equivariant line bundle L on X has to be constructed out of the invariant
divisors in (3.16). That is, it has to be of the form

L= (’)5((61¢+627‘1 —1—037'2), (5.4)

where c1, co, c3 are integers. In addition, the sum cy + c¢3 has to be divisible by 3. In our
toy model, we will choose L1, Lo, L3 to be

Li = Og(~26+ 21 + 7).
Ly =04(11 — 1),
Ly = O (20— 3m). (5.5)
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Note that eq. (5.2) is satisfied. We will take the trivial choice of the equivariant structure;
that is, we will assume that the moduli space of V' given by (5.1) consists of the component
of the moduli space of V which is invariant under Zs X Zs3.

For V to have structure group SU(3) rather than its subgroup, we have to make sure
that there exist non-trivial extensions in (5.3). The spaces of non-trivial extensions are
given by

HYX,Li®Ly) and  HY(X,W® L)) (5.6)

respectively. For simplicity, we will often denote them by [W] and [V};]. Note that
HY (X, W @ L) is the space of extensions for a fixed extension W in [W]. That is why we
denote it by [VW] Each element in the extension class defines a vector bundle. However, it
is important to take into account that different elements in the extension class can define
isomorphic vector bundles. Let Wl and Wg be two vector bundles from the same extension

class [W]. That is, they both satisfy

0— L1 — Wy — Ly — 0,

0— Ly — Wy — Ly — 0. (5.7)

For any line bundle L there is an isomorphism L — AL, where we multiply all elements of
the fiber of L by a non-zero complex number A. Let us consider the following isomorphisms
of Ly and Le: Ly — Ly, Ly — ALy. Then from the “five” lemma (see e.g. [34]), it follows
that W, and W, are isomorphic. This means that elements in H'! (X , L1 ® L%) related
by a multiplication by A € C* correspond to the same vector bundle. Therefore, the
moduli space M(W) of vector bundles corresponding to the extension class [IW] is the
projectivization of H'(X, L1 ® L}):

MW)=PHYX,L1 ® L}). (5.8)

Note that
dimM (W) = h'(X, Ly ® L}) — 1. (5.9)
Similarly, the moduli space M(VW) of vector bundles corresponding to the extension class
[Vii] is given by
M(Vy,) =PHYX,W®L}),  dimM(Vy)=r"(X,W®L}) —1. (5.10)

The full moduli space M(V) of V can be then understood as a fibration over M(W) =
PH'(X, Ly®L3), where the fiber at a fixed extension W is given by M(Vj;,) = PHY(X, W®
L%). In appendix B, we compute the dimensions of the spaces in (5.6). We find

RYX, Ly ® Ly =18,  RYX,W ®L}) =117. (5.11)
This means that
dimM (W) =17, dimM(V};) = 116 (5.12)
and, hence,
dimM (V) = 17+ 116 = 133. (5.13)
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Note that if we introduce coordinates in the vector space of extensions, it is straightforward
to introduce coordinates on its projectivization; that is, we simply treat these coordinates
as homogeneous ones.

Since the line bundles Ly, Lo, L3 are equivariant, they descend to the quotient manifold
X. To simplify notation, we will denote the corresponding line bundles on X by the same
letters Ly, Lo, Ls. Hence, the vector bundles W and V on X, obtained by modding out W
and V by the action of Z3 x Z3, can be defined by the similar extension sequences on X

0—L — W —Ly,—0,
0—W —V  — L3 —0. (5.14)

As we mentioned before, we will take the trivial choice of the equivariant structure. This
means that the the extension classes [W] and [Vjy] can be taken to be the invariant com-
ponents of (5.6). That is,

RMX, L@ L) =2, hYX,W®L}) =13, (5.15)

where we have simply divided the dimensions in (5.11) by the order of Zs x Zs. Then it
follows that

dimM(W) =1, dimM(Viy) =12, dimM(V)=1+12=13. (5.16)

To show that V and, hence, V admits an Hermitian connection satisfying eq. (2.8), we need
to prove that the extensions described above correspond to stable vector bundles. This is
discussed in appendix C.

5.2 The ambient space description of \%

As was shown in the previous section, the line bundles Oz (¢),O¢(71),O¢(72) can be
obtained as restrictions of line bundles on the ambient space. Using (3.27), we find that
L1, Ly, L3 are also restrictions of line bundles on A. Let us define

L1=04(-2,2,1), L3=04(0,1,—1), L3=04(2,-3,0). (5.17)

Then Ly = Li|g, L2 = La| g, L3 = L3];. This implies that the extensions W and V are
also restrictions of extensions on A, which we denote by W and V respectively. They satisfy

0— L — W — Ly —0,
0—W-—V—L3—0. (5.18)

Let us denote by W] and [V); ] the extension classes whose elements form the vector spaces
HYA, L1 ®L3) = HY(A,04(=2,1,2)) and  HY (AW®LE). (5.19)

Similarly to our discussion in the previous subsection, we can introduce the moduli spaces
of the corresponding vector bundles

MW) =PHY A, L1 ® L), dimMOW) = (A, L1 @ L) — 1,

MWyi,) =PHY AW ® L), dimM(Vy,) = k(AW L5) — 1. (5.20)
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Let us now study how the spaces (5.19), (5.20) are related to the similar spaces
in (5.6), (5.8), (5.10). The dimension of the first cohomology group in (5.19) can be
computed using the Kunneth formula and the Bott’s formula

( |
M forq=0,n>0, k>0
nlk!
h1(P", Opn (k) = (=k—1)! _ : 5.21
( pr (K)) oy ——y forg=n,n>0, k<—(n+1) (5.21)
0 otherwise
We then find that
h'(A L1 ® L3) =18. (5.22)

Comparing with (5.11), we observe that h' (X, L1 ® L}) = h'(A, £; ® £5) = 18. This means
that all extensions in [W] descend to non-trivial extensions on X, and that all extensions
in [W] are obtained as a restriction of extensions in [W]. The dimension of the second
cohomology group in (5.19) can be obtained by tensoring the first line in (5.18) with £}
to get

0 — OA(—4,5,1) — W® L, — O4(—2,4,-1) — 0. (5.23)

Now the dimension of H* (A,W ® L3) can be computed from the cohomology long ex-
act sequence corresponding to (5.23), again using the Kunneth and Bott’s formulas. We
find that

RY AW ® LE) =189. (5.24)
Comparing this with eq. (5.11), we see that h'(A,W @ L£%) > h'(X, W @ L}). This means
that 189 — 117 = 72 non-trivial extensions of DN)VV] on A get restricted to zero on X.

Let us now describe the space of extensions on X in terms of the cohomology groups
on the ambient space. Cohomology groups on projective spaces can be written in terms
of polynomials. Hence, this way we will obtain an explicit polynomial representation of
the elements of [IW] and [VW] Furthermore, taking those polynomials which are invariant
under Zs x Zg will give us an explicit polynomial parametrization of [W] and [Viy]. Taking
the projectivization of the corresponding vector spaces will give us a parametrization of
the moduli spaces M (W) and M (Viy).

The relation between cohomology groups on A and on X C A can be obtained using
the Koszul sequence — as we now explain. The Calabi-Yau threefold X is defined as a
submanifold in A using eqs. (3.3). Since X is of co-dimension 2, its normal bundle is a
rank 2 vector bundle. From egs. (3.3) we find that it is a restriction of the following vector
bundle on A:

N =N ®Ny, N1 =04(1,3,0), Ny=04(1,0,3). (5.25)

Let £ be a vector bundle on A and L = £| ;. They are related to each other by the Koszul
sequence

0— 2N 0L DN e e D —o0. (5.26)
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The map r is the restriction map, the map F' is multiplication (from the left) by the row
vector (I, F») of the defining polynomials in (3.3) and the map F” is determined by the
composition rule F' o F' = 0, which follows from the exactness of (5.26). This implies that
F'is a column vector (Fy, —F1)T. Note that the sequence (5.26) is not short and, hence, we
cannot write the long exact cohomology sequence directly. However, one can split (5.26)
into two short exact sequences by introducing an auxiliary sheaf S:

0—>/\2N*®£—>N*®£ 5SS —0,
0— 82 5L L—0, (5.27)

where the maps H1, Hs satisfy Hoo H; = F. Writing the long exact cohomology sequences
for (5.27) allows us to compute the cohomology groups of L in terms of the cohomology
groups of L, N* ® £ and A’N* ® L. These, in turn, can be calculated using the Kunneth
and Bott formulas. We will not present the details of these laborious calculations and only
give the results.

To compute the space of extensions [IW] we apply the Koszul sequence (5.25) to L =
Ly ® L. Then we find that

HY X, L@ Ly) = HY (A, L1 ® L) = H' (A,04(-2,1,2)). (5.28)

To compute the space of extensions [VW], we apply the Koszul sequence (5.26) to L =
W L3. But first we have to find the cohomology groups of W ® L3, W e L5 @ N* and
W ® L5 ® A2N* using (5.18). We obtain

W (AW ® L5) = h* (A, O4(—4,5,1)) = (0,189,0,0,0,0), (5.29)

(AW @ N* ® L3) = (0,72,0,36,0,0),
AW RN* @ L5) = h' (A, 0a(—5,2,1)) = 72,
AW QN @ L) = h3(A, 04(-3,4,—4)) = 36, (5.30)

W (AW @ N2N* @ L5) = h*(A, O.4(—4,1,—4)) = (0,0,0,27,0,0). (5.31)

Now, from the Koszul sequence (5.26) applied to L = W ® L} we find

- HY (AW @ L) HY(A,04(—4,5,1))
Hl X,W@L* — 7~ 3 — ) )Yy 7
( V= E AW e ey B HI(AO4(-52,1)
RYX, W @ L}) =189 — 72 = 117. (5.32)

Here Fj is the first defining polynomial in (3.3). It can be viewed as an element of
H(A,04(1,3,0)). When we multiply F; by a differential in H'(A, O4(=5,2,1)), we
naturally obtain a differential in H'(A, O4(—4,5,1)). Eq. (5.32) simply means that to
find the extension class [VW] on X we have to mod out by the image of the map Fj. The
elements in the image of Fi, that is, the denominator in (5.32), are precisely the extensions
on the ambient space which do not correspond to extensions on X. From eq. (5.32) we see
that they become zero when we restrict to X, since F; vanishes on X.
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Note that the right hand side of eq. (5.32) does not depend on the choice of an element
W in [W] or in M(W). This means that the moduli space M(V) is the trivial fibration

M(V) = M(W) x M(Viz), (5.33)

where the first factor is the projectivization of the vector space in (5.28) and the second
factor is the projectivization of the vector space in (5.32).

5.3 Parametrization of the moduli space

The aim of this subsection is to derive a parameterization of the moduli spaces M(VW)
and M(Viy). Parametrization of the moduli spaces of extensions M (W) and M(W) can
be derived in a similar way, but is not required in this paper.

First, we consider the numerator in (5.32). According to the Kunneth and Bott
formulas,

H' (Av OA(_47 9, 1)) = Hl(]P)lv OIP’l(_4)) ® HO(]P)z X ]P)za Op2 xp2 (57 1)) : (534)
Let us consider the vector space
H' (P, 0p:(=3)) ~ HO(P', Ops (1)), (5.35)

where we have used Serre duality. This vector space is 2-dimensional and we denote its
basis as {rg,71}. This basis is chosen to be dual to the basis {to,¢1} of homogeneous degree
1 polynomials on P!. The vector space of interest,

HY (P!, Op1(—4)) ~ HO(PY, Op1(2))*, (5.36)

is 3-dimensional with a natural basis {r3, ror1,77} dual to the basis {t2,tot1,t3} of degree
2 polynomials on P!. It follows that an arbitrary element v € H'(A, O 4(—4,5,1)) can be
written as

v= T(Q)fl (Xa y) + 7/‘07"1.]82(X7 Y) + T%ffﬁ(X? Y) ) (537)

where f1, fa, f3 are homogeneous polynomials on P? x P? of degree (5,1). Here, to simplify
our notation, we let x denote the coordinates on the first P2, x = [xg : #1 : x2] and,
similarly, y denotes the coordinates on the second P2, y = [yo : y1 : y2]. The coefficients
in the polynomials f1, fo, f3 can be viewed as coordinates on H'(A, O4(—4,5,1)). As we
computed in (5.29), there are 189 such coefficients.

Since eventually we are interested in the moduli space of the vector bundle V on X, we
restrict H'(A, O4(—4,5,1)) to its subspace consisting of elements v;,, which are invariant
under Zz x Zs. Since the discrete group does not act on P! (see eq. (3.5)), the elements 7
and r1 are automatically invariant. Hence, v;p, is of the form (5.37) where the polynomials
f1, f2, f3 are restricted to be the Zs x Zs invariant polynomials of degree (5,1). Let us
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introduce a basis for these invariant polynomials:

Ey = xgyo + z3y1 + 25y2,

Ey = agatyo + aiwdys + w3xdys

E3 = 93%1/‘%90 + ﬂf%?)yl + l“%f;’yz )

Ey = aga1ayo + 13 Tamoy1 + 2302112
Es = z12oyo + 23Toy1 + T5T1Y2

Ee = z0yo + 23y1 + 73y2,

Er = x125y0 + 2200y1 + To1y2 - (5.38)

The invariant polynomials f1, fo, f3 are then given by

7 7 7
flzzaaEaa fQZZbaEaa f3:ZCaEa7 (5-39)
a=1 a=1 a=1

where (aq,bq,co) are coordinates on the 21(=189/9)-dimensional invariant subspace of
H'(A, O4(—4,5,1)). However, to obtain the invariant part of the extension class [VW]
we have to mod out by those elements which can be obtained by multiplying the defining
polynomial Fj by elements of H'(A, O 4(—5,2,1)). We discuss this in detail in appendix D.
Here we simply state the result. Dividing by the the denominator in (5.32) is equivalent
to imposing the following constraints on the coordinates (aq, ba, Ca):

a1 +as+a3=0, as +as+ag =0,
s+ b1+ by + by =0, a7+ by +bs+bs =0,
by+c1+co+c3=0, br+cy+c5+c6 =0,
ca =0, c7=0. (5.40)
We can choose
a1, az, as, by, be, bs, bs, be, c1, c2, c3, ¢5, Co (5.41)

as independent parameters, with the others being determined using eqgs. (5.40). The param-
eters in (5.41) can be viewed as the 13 coordinates on the invariant subspace of the vector
space of extensions. Note that this is consistent with (5.16). According to our previous
discussion, the moduli space M(Vyy) is obtained by projectivization of this vector space.
This simply means that we should view the coordinates (aq, ba, co) as homogeneous ones.

To conclude this section, let us summarize the structure of the moduli space of V. It
is given by the trivial fibration

M(V) = M(W) x M(Viy), (5.42)

where

MW) =P, MV = P12, (5.43)

In total, we have 13 moduli of V. The parametrization of the second factor, M(Vyy), is
explicitly given by 21 homogenous coordinates (ay,...,a7,b1,...,b7,c1,...,c7) subject to
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8 linear constraints (5.40). We can choose 13 independent variables, as in eq. (5.41), and
view them as 13 homogeneous coordinates on M(Vyy ). By similar methods, we can obtain
a parametrization of M(W) — but we do not need it in this paper.

6 The superpotential on X

In this section, we will compute the leading non-perturbative superpotential, that is, ~
p=el" (see eq. (3.30)), in a heterotic string vacuum specified by (X, V). To simplify our
analysis, we will perform the calculations for fixed complex structure. Then (detgoci(—n)
in (2.22) become numerical constants which will not play any role and will be ignored. Our
aim in this section will be to compute the Pfaffians. First, we will calculate them on the
covering space X and then on the quotient space X. Since we would like to compare these
two calculations, in the theory on X we will restrict ourselves to the invariant component
of the moduli space which will descend to X. The method of computing the Pfaffians will
be similar to the one introduced in [21, 22]. Since we do not know either the metric or the
connection, we will rely on an algebraic approach whose essence is to understand under
which conditions each Pfaffian vanishes. The conditions will be derived as a homogeneous
polynomial equation on the moduli space. Since the Pfaffian is a section of a line bundle
on the moduli space and the moduli space is a projective space, this polynomial will be the
Pfaffian up to a numerical coefficient which cannot be determined by our algebraic method.

Let us now review the general condition for the vanishing of a Pfaffian on a holo-
morphic, isolated, genus 0 curve C [15, 21, 22]. The Pfaffian vanishes if and only if
the operator 5Vc(—1) has a zero mode. The zero modes of O are elements of the Dol-
beault cohomology group. In the present case, the cohomology group of interest is
H°(C,V|c®0c(—1)). Hence, the Pfaffian vanishes if and only if h°(C, V|c®@0Oc(—1)) # 0.
Since h(C, V|c®Oc(—1)) is not a topological invariant, it depends on where we are in the
moduli space of V. For generic values of the moduli, h°(C, V|c ® O¢(—1)) will be zero and
5‘/0(,1) will not have zero modes. However, at a specific co-dimension 1 subspace of the
moduli space h'(C, V|c ® Oc(—1)) will jump — thus producing a zero mode. The Pfaffian
of évc(,l) will be determined by the equation defining this co-dimension 1 subspace.

6.1 Calculation of the Pfaffians

As was discussed in section 3.4, on X there are 81 isolated curves of interest. These curves
split into 9 orbits under the action of Zs x Z3 with 9 curves in each orbit. If we restrict
ourselves to the invariant part of the moduli space, all curves in the same orbit will give
an identical contribution. Hence, in this case we need to compute the Pfaffians of the
Dirac operator on any 9 curves which do not lie in the orbits of each other. An example
of such curves was given in egs. (3.41), (3.42), (3.10). Let us recall that these curves lie in
different homology classes and, hence, have different areas measured by the Kahler form
on X. However, they have the same area when measured using the invariant part of the
Kahler form w4|¢. Therefore, the images of these curves in X have the same area with
respect to the Kahler form wyx.
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Let us now study under which conditions h°(C,V|c ® Oc(—1)) # 0 for the curves C
of the type P! xx xy € X C P! x P2 x P2. We denote B = P2 x P2 and define pp to be the
projection pg : A — B with fibers being P!. Now consider a particular extension element
W on A,

0— L — W — Ly —0, (6.1)

and tensor this sequence with O4(—1,0,0) to obtain
0 — 04(—3,2,1) — W(—1,0,0) — O4(—1,1,1) — 0, (6.2)

where we have used egs. (5.17) and defined W(—1,0,0) = W® 0 4(—1,0,0). Now take the
direct image of this sequence with the projection pg. This leads to the exact sequence

0— pB0a(-3,2,1) — ppIV(—1,0,0) — pp.Oa(—1,1,1) —>
R'pp.04(—3,2,1) — R'pp,WV(—1,0,0) — R'pp,Oa(—1,1,1) — 0. (6.3)

At each point on B and for any line bundle £, pp.L is generated by the cohomology
group of the fiber at this point; that is by HO(P!, £|p1). Similarly, R'pg.L is generated by
HY (P!, L|p1). Clearly, for £ of the form £ = O4(my,mz2,m3), we have L|p1 = Op1(m1).
Then, using the Bott’s formula, we compute that

pE04(=3,2,1) = 0, pp.0a(—1,1,1) =0, R'pp.O4(-1,1,1) =0,
Rl'pp.04(—3,2,1) = HY(P', Opi(—3)) @ Op(2,1). (6.4)

Therefore, from eq. (6.3) we obtain

p5.W(=1,0,0) = 0,
R'p,V(—=1,0,0) = R'p,O4(—3,2,1) = H' (P!, Op: (—3)) ©® Op(2,1).  (6.5)

Note that the right hand side in egs. (6.5) is independent of the choice of the extension
representative W.

As the next step, we consider the sequence defining V tensored with O 4(—1,0,0).
Using egs. (5.17), (5.18) we obtain

0 — W(—1,0,0) — V(—1,0,0) — O4(1,-3,0) — 0, (6.6)

where V(—1,0,0) = V ® O4(—1,0,0). Taking the direct image of this sequence with the
projection pg and using (6.5) we obtain

0— PB*V(—l,O, 0) —
0(pl @ 1/l
HP(P, Op1 (1)) ® Op(—3,0) H (P", Op(-3)) ® Op(2,1) —
R'pp.V(—1,0,0) —0. (6.7)
Here 5(]}) is a map depending on the moduli of V. Note that the vector spaces

HO(P', Op1(1)) and H'(P!, Op1(—3)) are 2-dimensional, which implies that §()) can be
represented by a 2 X 2 matrix.
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Let us now consider the sequence (6.7) at any point x x y C B which corresponds to
a curve C = P! x x x y C A. This curve is also a curve in X if the point x x y satisfies
equations (3.38). At any point x x y € B, ps.V(—1,0,0) is generated by the cohomology
group HO(C,V|c ® Oc(—1)). If x X y is chosen to satisfy eq. (3.38), then we also have
HO(C,V|c ® Oc(—1)) = H(C,V|c ® Oc(—1)) — which is precisely the space of zero

modes of the Dirac operator. This space is non-empty if and only if the map §(V)|xxy has

a non-trivial kernel. Let us define (V) = 6(V)|¢. Note that if x x y corresponds to a curve
in X, then we have 6(V)|xxy = 6(V)|xxy- If we represent §(V)|xxy by a 2 x 2 matrix, it
then follows that

Pfaff ¢ (Oy, (—1)) =0  if and only if  det[5(V)|xxy] = 0. (6.8)

Let us now construct the matrix 6(V') which provides a map §(V) : Hy — Ha, where
we denoted

Hi = HO(P',0p1 (1)) @ Op(-3,0),
Ho = HY(PY, Op1(—3)) ® 0p(2,1). (6.9)

Recall from eq. (5.32) that modulo the denominator — which will be taken into account
later — the space of extensions is given by the elements

ve HY A 04(—4,5,1)) = HO (P!, Op1 (—4)) @ HY(B, 05(5,1)), (6.10)
where v can explicitly be written as (see (5.37))

U:T'(Q)f1<X,y)+T0T1f2(X,y)+T‘%f3(X,y). (611)

Comparing eq. (6.9) and eq. (6.10), we conclude that 6(V') is given by multiplication by v.
As was discussed around eq. (5.35), we can introduce the basis {to,t1} for HO(P!, Op1(1))
and the dual basis {rg, 1} for H'(P', Op1(—3)). To construct the matrix §(V), we simply
multiply v by the basis elements {tg,%1} to get

v(to) = rof1 +711f2, v(t1) =rofe +71f3 (6.12)

and present the answer in the matrix form

5(V) (”’) . (6.13)
1

This gives

5(V) = (? f) L detld(V)] = fufs — f3. (6.14)

If C is a curve corresponding to a specific point x x y € P? x P2 then we get

det[5(V)|xxy) = (fifs = [3)(x,y). (6.15)
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After we evaluate fif; — f2 at points of P? x P2, the right hand side of (6.15) becomes
a degree 2 homogeneous polynomial of the parameters of fi, fo, f3. For the purposes of
our paper, we can restrict f1, fa, f3 to be the invariant polynomials under Zs x Zs. They
are explicitly given by egs. (5.38), (5.39). Furthermore, we recall that to describe the
extensions of V rather than those of V, we have to impose the relations (5.40). We also
recall that to describe the moduli space of V, we projectivize the corresponding space of
extensions. This simply means that we view the parameters (aq, bq, ¢o) of the polynomials
f1, f2, f3 as homogeneous coordinates. Since the moduli space is a projective space and
(fifs — f2)(x,y) is a homogeneous polynomial of degree 2, we conclude that (6.15) is a
section of a line bundle of degree 2 on the moduli space. Finally, we notice that eq. (6.15)
depends only on the coordinates of M(VW) The coordinates of M (W) drop out from
our calculations.

From eq. (6.8) and the fact the Pfaffian is a section of a line bundle on the moduli
space, we conclude that

7
Plaff ¢ (Dvo(—1)) ~ (fifa = [3)(x¥) = Y (aacs — babs) EaEs(x,y) (6.16)
a,f=1

up to a numerical coefficient — which we are not able to compute by our method. Let us
now apply this result to the curves (3.41), (3.43). Denote

Rg.=(fifs=f)s), i=1,...,9. (6.17)

Substituting the points (3.41), (3.43) into (6.17), we obtain the following expressions for
Ri (C — 6271'1'/3):

Ry, =—(2b1— b2 —b3)? + (2a1 — ag — az)(2c1 — ¢z — c3),
R o= —(ba +b3¢* +b10)* + (a2 + az¢® + a1()(c2 + e3¢% + c1()
Ry = —(ba+b3C + b1C?)? + (a2 + a3z + a1¢?)(c2 + e3¢ + 1)
RX4 —(- b1—|—b3—|—b5—b6) + (—a1+as+as —ag)(—c1 + 3+ 5 — cg),
Ry —(=by + by — b5+ b6)* + (—a1 + a2 — as + ag)(—c1 + c2 — ¢5 + ),
RX 6= —(=b1+b3+ (b5 — b6)C*)? + (—a1 + az + (a5 — a6)C®)(—c1 + e3 + (c5 — ¢6)(7)
Rz =—(=bi+by— (b5 — b6)(?)? + (—a1 + as — (a5 — ag)(*)(—c1 + c2 — (5 — ¢6)C?)
Ry =—(=b1+by— (b5 —b6)C)* + (—a1 + az — (a5 — ag)¢)(—c1 + 2 — (¢5 — c6)C)
Ryg=—(=b1+b3z+ (b5 — b6)¢)* + (—a1 + az + (a5 — ag)¢)(—c1 + 3 + (c5 — ¢6)C) -

(

6.18)

The parameters (aq,ba, ¢) satisfy the relations (5.40), but substituting them into (6.18)
does not lead to a simplification. Note that none of the polynomials R ¢ , depends on the
parameters aq, a7, by, by, cq4,c7. The reason is because the corresponding’; polynomials Ey
and E7 in (5.38) vanish on any curve satisfying egs. (3.38).

Let us now introduce the proportionality coefficient into (6.16). For each of our 9
curves, we denote it by AX,z‘ where 1 = 1,...,9. That is, we have

Paff ¢ 9y, (1)) = A% R, (6.19)
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Note that every Ag . is non-zero because the Pfaffians vanish only along the zero locus
of the polynomials 7,35( ; and do not vanish identically. We are not able to compute the
coefficients A , by our algebraic method. However, it is possible to constrain them using
the Beasley—W{tten residue theorem, which we will now discuss.

6.2 The residue theorem on X

Our theory on X formally satisfies the assumptions of Beasley and Witten in [23], which
we reviewed in subsection 2.2. Indeed, the Calabi-Yau threefold X is, by construction, a
projective complete intersection manifold and the vector bundle V is the restriction of a
vector bundle V. Nevertheless, as we discussed in subsection 2.3, the residue theorem of
Beasley-Witten is not directly applicable here since h'''(X) > h'"1(A). However, indirectly
we can still apply it. If we measure the area of curves in X using the (1,1) form w4| %
then, according to the residue theorem, the sum of the Pfaffians of all curves with the same
area has to vanish. The 81 curves found in subsection 3.4 have the same area with respect
to walg and, hence, we can apply the residue theorem to them. Since we are restricting
ourselves to the invariant part of the moduli space, all curves in the same Zs x Zs3 orbit
will have an identical Pfaffian. This means that it is enough to sum the Pfaffians of the
curves which do not lie in the orbit of each other. These Pfaffians are given in eqs. (6.18)
and (6.19). Hence, the residue theorem implies that

9
> Ag Rz, =0. (6.20)
i=1
Let us stress again that eq. (6.20) does not imply that the superpotentail in the heterotic
theory on X vanishes because in (6.20) we are summing the Pfaffians of curves lying in
different homology classes and having different area with respect to the proper Kahler form
wg. Hence, in the superpotential these Pfaffians will be weighted with different exponential
prefactors and cannot cancel each other. Eq. (6.20) constrains the coefficients A .. It is
possible to satisfy eq. (6.20) if and only if the polynomials R ¢ . in (6.18) are finearly
dependent — which is a non-trivial consistency check on our calculations. Tt is possible
to check (using e.g. MATHEMATICA) that these polynomials are indeed linearly dependent
and it possible to adjust the parameters Af(,i so that the sum in (6.20) vanishes. More
precisely, requiring that the sum in (6.20) vanish puts the following constraints on A X4

A)Z’,l = _A)?A - AX',S ’

Ago= ei”/?’A;{A - Az

AX,3 - _em/gAX,s + eim/g(AXA - AX,7) 5
Age=Aga+ Az~ Az 7,

Agg= €i7r/3AX75 _ 62“‘—/3145(’7,

Agog=Ag, +e ™Az~ Agy). (6.21)

These results will play a role in constructing the superpotential on the quotient Calabi-Yau
manifold X.
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6.3 The explicit formula for the superpotential on X

Since the curves C; corresponding to solutions (3.41), (3.43) lie in different Z3 x Zs orbits,
they descend to 9 different curves on X. To simplify our notation, we will still denote these
curves by C;. The non-perturbative superpotential for these curves is then given by

9
Wx([C) = ™" > Paff x (By, (1) - (6.22)
i=1
As was discussed in section 3, these 9 curves lie in the same homology class in Ha(X,R)
but in 9 different homology classes in Ho(X,Z). This means that the contribution for each
curve will pick up a distinct Zgz x Zs character x;. As we discussed in subsection 2.4, as long
as the curves in the same homology class in Hy(X, Z) receive the same character and curves
in different homology classes receive different characters, the distribution of the characters
among the curves is arbitrary and depends on the choice of the connected component of
the moduli space of the B-field.
To compute Wx([C]) in (6.22), we notice that since the Pfaffians in the previous
subsection were computed for the invariant part of the moduli space. It follows that

Pfaffx (dy,, (1)) = Pfaft X(évci(_l)) : (6.23)
where the right hand side is given by egs. (6.19), (6.18), (6.21). In particular, it follows that
Paffx Oy, (-1)) = Ax;Rxi.  Rxi=Rgz,, Axi=Ag,. (6.24)

The reason is that, by construction, the gauge connection on V' is the equivariant connection
on V. For the trivial choice of the equivariant structure, it is just the connection on 1%
restricted to the invariant part of the moduli space. Since in the previous subsection we
restricted our calculations to the invariant part of the moduli space, the Dirac operators on
both sides in (6.23) depend on the same connection and, hence, their Pfaffians are equal.
Thus, the superpotential in (6.22) becomes

9
Wx(C]) = e > XiAxRaxi, (6.25)

i=1
where Rx ; are also given by (6.18) and Ay ; also satisfy the constraints (6.21). Now, the
key observation is that, since the linear combination Z?:l Ax iRx,; = 0 due to the residue
theorem, the linear combination in (6.25) Z?:l XiAx iR x,; is non-zero because it is twisted

by the characters x;, most of which are not unity.

As an example let us give some assignment of the characters to the curves. Note that
though 9 different characters y; label 9 inequivalent representations of Zs x Zs, they can

take only 3 values in C* given by 1,e2™/3 ¢47mi/3  Assigning, for example,
Xi=x2=xs=1 xa=xs=x6=€""%, xr=x3=x0=e""* (6.26)
we obtain
Wx([C]) = e'T ( D AxiRxi+ Y Ax iRy + et RX> . (6.27)
i=1 i=4 =7
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It is straightforward to check using egs. (6.18) and (6.21) that the linear combination (6.27)
does not vanish. From egs. (5.40), (5.41), (6.18) we see that W ([C]) depends on 12 out
of the 13 moduli of M(V'). The remaining modulus parametrizing M (W) does not show
up in the superpotential (6.27). Our expression for Wx([C]) depends on 9 numerical
coefficients Ay ; which we cannot fully compute by our algebraic method. However, due
to relations (6.21), only 3 of them are really unknown.

Thus, we have explicitly demonstrated that in our model on X a non-vanishing, non-
perturbative superpotential can be generated in the low-energy field theory.

7 Conclusion and future directions

In this paper, we presented examples of heterotic string compactifications with non-
vanishing non-perturbative superpotentials. In our examples, the superpotential does not
vanish on both the simply connected covering space and the non-simply connected man-
ifold obtained as a quotient by the action of the discrete isometry group. In both cases,
the reason for the non-vanishing of the superpotential can be attributed to the existence of
holomorphic, isolated, genus 0 curves which are unique in their integer homology classes.

It would be interesting to generalize the ideas developed in this paper for realistic
heterotic models and to compute non-perturbative superpotentials in a heterotic MSSM.
The heterotic Standard Model constructed in [1-4] used a different Schoen manifold with a
different action of Zgz x Z3. Hence, it would be interesting to see if one can build a heterotic
MSSM on the Schoen manifold used in this paper. Then one can extend the results of this
paper to compute the non-perturbative superpotential in an MSSM, rather than in a toy
model. The result is expected to be non-zero, as in our present examples.

Another possible direction is to apply our methods to realistic heterotic models ob-
tained using the monad construction [5-9, 33]. The crucial difference is that such models
are built on projective Calabi-Yau manifolds satisfying k"' (X) = h''(A). Then, accord-
ing to the Beasley-Witten residue theorem, the non-perturbative superpotential vanishes
on the covering manifold X. However, on the quotient manifold X it might be non-
zero because the second homology group of X is expected to contain discrete torsion. It
would be interesting to see if one indeed can generate a non-perturbative superpotential
in such models.

Acknowledgments

The authors are very grateful to Tony Pantev for valuable discussions. The authors would
also like to thank Ling Lin for helpful conversations. The work of E. I. Buchbinder was
supported by the ARC Future Fellowship FT120100466 and in part by the ARC Discovery
project DP140103925. B. A. Ovrut is supported in part by the DOE under contract No.
DE-SC0007901. E.I.B. would like to thank the physics department at the University of
Pennsylvania where some of this work was done for warm hospitality.

~32 -



A The normal bundle to the curves in X

Here we will compute the normal bundle to the curves in subsection 3.4. Specifically, we
present our calculations for the curve specified by s in eq. (3.41). The other curves can
be treated similarly and give the same result.

The curve s7 is of the form

Ci = [to : tl] X 81 = [to,tl] X [1 —1: 0] X [1, —1,0]. (Al)

Let us first consider the short exact sequence relating the tangent bundle TX and the
normal bundle NX of X; that is

0—TX 2 TA; M NX —0, (A.2)
where T'A is the tangent bundle of the ambient space given by
TA= Op(2) ® TP? & TP? (A.3)

and we have used the fact that the tangent bundle of P! is Op1(2). Using eqs. (3.3), the
normal bundle NX is

NX =04(1,3,0)| 3 ©04(1,0,3) - (A.4)
We now want to restrict the sequence (A.2) to the curve C;. For the curve of the form (A.1),

we obtain

TAlc, = 0c,(2) ® 0f,,  NXlc, = O0c, (1) & Oc, (1). (A.5)
The sequence (A.2) then becomes

~ h h
0 TX|e, 2% 00, @) @ 0%, "% 0, (1) & 0c, (1) — 0. (A.6)
Let us now analyze the maps hi and hs. The map h; is defined as a map from tangent
directions 9 along A to the column vector (0Fy,0F»)T. Since T'A is of rank 5 and N X is
of rank 2, h; is a 2 X 5 matrix. Evaluating the derivatives of F} and F5 and restricting the
results to the curve (A.1) gives

0 3ty t1 0 0
h = . A7
! ‘Cl (0 0 0 3(A\ito+1t1) Aoto+ )\3251) ( )

Since the sequence (A.6) is exact, it follows that hy and he satisfy the composition rule
hi o hy = 0. This determines ha|c, to be

0 0
t 0
ho|cy, = —3to 0 (A.8)

0 Aoty + Asty
0 —3(/\1t0 + t1>

o O O O

up to an arbitrary holomorphic section hg on C; which is a homogeneous polynomials of
degree k > 0 in [tg : t1]. Since any vector bundle on C; ~ P! is a sum of line bundles,
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TX|c, must be of the form O¢, (m1) ® O¢, (mg) ® Oc, (n3) where, from (A.6), it follows
that m1+ma+ms3 = 0. Examining the sequence (A.6), it is easy to see that these conditions
have only one consistent possibility, namely m; = 2, my = m3 = —1. This means that

TX‘C& = 001 (2) D OCl(_l) D 001(_1) . (AQ)

Finally, let us consider the short exact sequence relating the tangent bundle T'C; and the
normal bundle NC; of C; given by

0—TC, — TX|c, — NC; — 0. (A.10)
Using eq. (A.9), we obtain
0— O0c,(2) — Oc,(2) ® Oc, (1) ® O¢, (-1) — NC1 — 0. (A.11)
This implies that the only possible form for NCj is

NCq = OCl(_l) S5 Ocl(—l) . (A.l?)

B Extension of W and V

In this appendix, we calculate the number of extensions of W and V and prove eq. (5.11).
Our calculations will be similar to the ones performed in [3], where additional details can
be found.

B.1 Extensions of W

The extensions of W are given by the dimension of the cohomology group
HY X, L1 ® L3) = H(X,04(-2¢ + 71 +2m)). (B.1)

Let us consider the direct image m1,L1 ® L3 under the projection 71 in the diagram (3.10).
Using the definitions of ¢, 71,72 in (3.16), we can give L; ® L} in the form

Li® L5 =m10p,(t —2f) @ m50p,(2t). (B.2)
From the diagram (3.10), it follows that the projections satisfy
T1«Ty = 37 Box . (B.3)
Then we obtain
T1eLn ® Ly = Op, (t = 2f) ® 51 f2.0B,(2t) = 51 O0p1(—2) ® O, (t) @ B12:0p,(2t) . (B.4)
Computing R'm,L1 ® L5, we find that

Rr,Liy®Ly=0. (B.5)
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To show this, note that at each point p on By, R'm.L1 ® L3 is generated by the first
cohomology group
H'(Fp, 03(—2¢ + 11 +272)|F,) (B.6)

on the elliptic fiber F), of the projection m; at p. Using egs. (3.15), (3.16) we find that the
line bundle O ¢(—2¢ 471 +272)|F, has degree 3 and by the Kodaira vanishing theorem (see
e.g [44]) the cohomology group in (B.6) vanishes. This proves (B.5). As the next step we
similarly project (B.4) to the base of B;. We obtain

ﬁl*ﬂ'l*Ll X L; = (9]1:»1(*2) & 51*031 (t) ® BQ*OBQ (27f) s (B?)
Rlﬂl*ﬂ'l*Ll &® L; =0. (B.S)

Using the identities [3]

BrsOp, (t) = O}, BrOp, (2t) = OF°, k=1,2 (B.9)
we find that
/31*7T1*L1 &® L2 O[p:l( )®18 . (BIO)

Since the higher direct images in eqgs. (B.5), (B.8) vanish from a Leray spectral sequence,
it follows that

hY(X, L1 ® L3) = h'(PY, Bramin L1 © L) = hY(PL, Op1 (—2)%18) = 18. (B.11)

B.2 Extensions of V

The number of extensions of V' (for a fixed extension W in [W]) is given by H'(X, W ® L3).
To compute this cohomology group, we consider the short exact sequence

0—L1®Ly — WL, — Ly® L; — 0, (B.12)
where
Li®Ly=04(-40+5m+ 1), Lo®Ly=05(-2¢0+4m — 7). (B.13)
The sequence (B.12) implies the following long exact sequence of cohomology groups

0— HYX,L1® L) — HY(X,W®L}) — H'(X,Ly® L}) —
HY X, [y ® Ly) — H(X,W®L}) — HY(X, Ly ® L}) —
H> (X, L1 ® L) — .... (B.14)

1%
1%
The cohomology of L1 ® L3 and Lo ® L3 can be computed using direct images, just as in

the previous subsection. Using the identities [3]

BrOp, (4t) = 0@9 ® Op1(1)3
BrxOp, (5t) = OP? @ Op1 (1)%9
R'B1.Op, (1) = (’)]Pu(—l)@3 (B.15)

— 35 —



and following the same steps as in the previous subsection, we obtain

HYX,Ly® L) = HY(X,L1 ® L) =0,

HYX,L; ® L) = HY(PY, BraminL1 @ L3) = HY (P, Op1 (—4)P%7 @ Op (—3)18)
WX, Ly ® L) = 117,

HY(X,Ly® L}) = H (X, Ly ® L3) = HX(X, Ly ® L}) = 0. (B.16)

Then from (B.14) we see that

H (X, WeLj)=H(X,[ioL;), hXWeLj)=117. (B.17)

C Stability of W and V

Since we are only considering a toy model, we will not give a comprehensive proof that W
and V are stable. Instead, we examine the most important necessary condition for this to
be the case.

Let us recall that a vector bundle V on X is called stable if for any subsheaf S of lower
rank we have

u(S) < u(V). (€1)
Here, the slope u(S) is defined by

Cl(S)/\WX Nws, (CQ)

=
&)
[l
[
=
&)
.

where w ¢ is the Kahler form on X.

From eqs. (5.3), we observe that the line bundle L injects into W and W injects
into V. We now discuss whether L; and W destabilize W and V respectively. Using the
definition of W in (5.3), we see that W has rank 2 and its first Chern class is given by

c1(L1) + ¢1(L2). Then the condition p(L1) < u(W) can be stated as

/X(cl(Ll) C (L) Awg Awg <0 & p(Li® L) <0, (C.3)

Since L1 and Lo are equivariant and constructed out of the invariant classes, we can replace
wg in (C.3) with its invariant part wy in (3.18). Using the expression for the invariant
part of the Kahler form in (3.18), we can rewrite (C.3) in the form

/~ (—2wy + Wy + 2wry) A (Hwg + 2wy, + tPw,)? < 0. (C4)
X

Using the triple intersection numbers (3.17), we then obtain the following inequality for
the Kahler parameters:

(t3)? 4 4(th)? + 6t113 4 24142 — 6t%3 < 0. (C.5)
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Let us now study the condition that u(W) < u(V'). Note that ¢; (W) = ¢1(L1)+c1(L2)

and, since Ly ® Ly ® L3 is trivial, it follows that ¢;(W) = ¢1(L5). Also note that since

c1(V) =0, it follows that p(V) = 0. Then the condition p(W) < (V) can be stated as
WD <0 o /X (=205 + 3wm,) A (g + or, +BPwr)? < 0. (C.6)
Using the triple intersection numbers (3.17), we then obtain the inequality
(t%)% + 6t1¢ — 4283 < 0. (C.7)

The bundles W and V are not destabilized if there exists a region in the Kahler moduli
space where both inequalities (C.5) and (C.7) are simultaneously satisfied. It is easy to see
that it is indeed the case. For example, if we take t* ~ 3 and t' < t2,t3 both inequalities
are satisfied.

D Parameterization of the moduli space of V'

Let us recall from section 5 that the invariant extensions in [f/], as well as the space of
extensions [V], are described by the invariant subspace of the quotient

HY(A,04(—4,5,1))

. D1
F 'Hl(Av OA(_5,2,1)) ( )

The elements of the numerator were parameterized as
Viny = rgfl(xa}I) +T0T1f2(X7Y) +T%f3(xay) ) (D2)

where f1, fo, f3 are invariant polynomials of degree (5,1) on P2 x P? and {ro, 71} is a basis
in the vector space H'(P!, Opi(—3)) dual to the basis {to,t1} in H°(P!, Opi(1)). The
polynomials f1, fa, f3 can be expanded in the basis (5.38)

7 7 7
flzzaaEaa fQZEbaEaa f3:ZCaEa- (D'S)
a=1 a=1 a=1

The aim of this appendix is to describe the process of factoring out Fy-H'(A, O4(-5,2,1)).
This will give a parameterization of the invariant part of the moduli space of V and of the
moduli space of V.

Consider an element u in H'(A, O4(—5,2,1)). Let us write it in the form similar
o (D.2). Using the Kunneth and Bott formulas, we can express H!(A, O4(—5,2,1)) as

HY (A, 04(-5,2,1)) = HY (P, Op1(—5)) @ H*(P? x P?, Opayp2(2,1)) . (D.4)

In the first factor
HY(P', Op1(=5)) = H(P', Op1 (3))* (D.5)

we can introduce a natural basis {r3,rgr1,ror?, 73} dual to the basis {t3,t3t1,tot3,t3} of
homogeneous polynomials of degree 3 in HY(P!, Op1(3)). Then u can be written as

u=14g1(X,y) +19r192(%, y) + rorigs(x,y) + rig4(x,¥) (D.6)
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where g1, g2, g3, g4 are homogeneous polynomials of degree (2,1) on P? x P2. To restrict
to invariant elements w;n,, we take g1, g2, g3, g4 to be invariant polynomials. The basis of
invariant polynomials of degree (2,1) can be chosen to be

2 2 2
e1 = TpYo + Y1 + TY2,

€2 = T1Z2Y0 + T2ToY1 + ToT1Y2 - (D.7)
Now let us consider the map F;. Using eq. (3.3), we can write it in the form
Fi = tooo(x) + t1o1(x)  where o0o(x) = zox122, 01(X) = 25 + 25 + 25 . (D.8)

Let us multiply w;n, by Fi, using the fact that the bases {rg,r1} and {to,t1} are dual to
each other. We obtain

Fittiny = 13 (0091 + 0192) + ror1(coga + 0193) + 73 (0093 + 0194) - (D.9)

Comparing this to eq. (D.2), we see that we have to mod out by the equivalence relations

fi~ fitoog o192, fa~ fotoog2 o193, f3~ f3+ o093+ o194 (D.10)
Now our aim is to represent Fj in matrix form. From (D.9), we see that we can write it as

gpop 0 0
Fi=10o0001 0. (D.11)
0 0 o9 oy

This matrix acts on the column vector (g1, g2,93,94)7. Let us now write this matrix in
the bases E, in (5.38) and eg in (D.7). In this basis, F; is a 7-3 x2-4 = 21 x 8
matrix. To fully express this matrix, we have to study the action of oy and o1 on the basis
polynomials in (D.7) and present the result in terms of the basis polynomials in (5.38). It
is straightforward to show that

opel = (Go)alEa =F+FEy+ F3, ope2 = (Uo)QQEa =FE,+ Es+ Eg,
g1e1 = (Ul)alEa = E4, gpes = (UO)QQEQ = E7 . (D.12)

This leads to the following matrices for (09)% and (o1)%:

10 00
10 00
10 00

(@)% =|o1], (e)u=|10]. (D.13)
01 00
01 00
00 01

Inserting (D.13) into (D.11), gives the full matrix F7.
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Performing the quotient action in (D.1) is now equivalent to finding the cokernel of the
matrix F7 in (D.11), (D.13). This is, in turn, equivalent to finding the kernel of the matrix
(F1)T which acts on the parameters of the polynomials f1, fo, f3; that is, on the column
vector (ai,...,ar,b1,...,b7,c1,...,c7)T. Finding the kernel of (F1)7 means solving the
linear system of equations

(Fl)T(al,...,a7,b1,...,b7,cl,...,07)T: ((al,...,a7,b1,...,b7,cl,...,07)F1)T:0,
(D.14)
which is equivalent to

(al,...,a7,b1,...,b7,cl,...,07)F1:O. (D15)

Using the matrix form of F} in egs. (D.11) and (D.13), it is easy to see that the system of
linear equations (D.15) in components becomes (5.40).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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