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We present quantum algorithms for solving two problems regarding stochastic processes. The first
algorithm prepares the thermal Gibbs state of a quantum system and runs in time almost linear
in /NB/Z and polynomial in log(1/¢), where N is the Hilbert space dimension, § is the inverse
temperature, Z is the partition function, and € is the desired precision of the output state. Our
quantum algorithm exponentially improves the dependence on 1/e and quadratically improves the
dependence on S of known quantum algorithms for this problem. The second algorithm estimates
the hitting time of a Markov chain. For a sparse stochastic matrix P, it runs in time almost linear
inl/ (5A3/ 2), where € is the absolute precision in the estimation and A is a parameter determined
by P, and whose inverse is an upper bound of the hitting time. Our quantum algorithm quadrat-
ically improves the dependence on 1/e and 1/A of the analog classical algorithm for hitting-time
estimation. Both algorithms use tools recently developed in the context of Hamiltonian simulation,
spectral gap amplification, and solving linear systems of equations.

PACS numbers: 03.67.Ac, 89.70.Eg
I. INTRODUCTION

Two important problems in statistical mechanics and
stochastic processes are sampling from the thermal or
Gibbs distribution of a physical system at a certain tem-
perature and the estimation of hitting times of classical
Markov chains. The first such problem has a wide range
of applications as it allows us to compute quantities like
the partition function, energy, or entropy of the system,
and understand its physical properties in thermal equi-
librium @] This problem has also applications in many
other scientific areas including optimization ﬂ] Hitting
times are also paramount in the study of classical ran-
dom processes and they allow for a characterization of
Markov chains B] Roughly, a hitting time is the time
required by a diffusive random walk to reach a particular
configuration with high probability. Besides their use in
physics, hitting times are also important in solving search
problems where the goal is to find a marked configuration
of the Markov chain [4].

In a classical setting, these two problems are commonly
solved using Monte-Carlo techniques ﬂﬂ] Each step in a
Monte-Carlo simulation corresponds to applying a partic-
ular probability rule that determines a Markov chain and
an associated stochastic matrix. In the case of sampling
from Gibbs distributions, for example, the fixed point of
the Markov chain (i.e., the eigenvector of the stochastic
matrix with eigenvalue 1) corresponds to the desired dis-
tribution. Such a distribution can then be prepared by
repeated applications of the probability rule. To sam-
ple from probability distributions associated with ther-
mal Gibbs states of quantum systems, quantum Monte-
Carlo techniques may be used ﬂa] The running time of
a Monte-Carlo simulation is typically dominated by the

number of times the probability rule is applied to prepare
the desired distribution with some given precision. This
running time depends on properties of the Markov chain
such as the spectral gap of the stochastic matrix B]

In recent years, there has been significant interest in
the development of quantum algorithms for simulating
stochastic processes. Quantum algorithms for thermal
Gibbs state preparation were developed in various works
(c.f., [7112]) and showed to provide polynomial quan-
tum speedups in terms of various parameters, such as the
spectral gap of the stochastic matrix or the dimension of
the Hilbert space. The notion of quantum hitting time
was also introduced in numerous works (c.f., [13-117]). Of-
ten, quantum hitting times of quantum walks on differ-
ent graphs are significantly (e.g., polynomially) smaller
than their classical counterparts. There are also vari-
ous quantum algorithms to accelerate classical Monte-
Carlo methods for estimating different quantities, such
as expected values or partition functions (c.f., [18, [19]).
Our results advance these areas further by providing new
quantum algorithms with various improvements in the
running time with respect to known classical and quan-
tum algorithms for some of these problems.

In more detail, we present two quantum algorithms for
preparing thermal Gibbs states of quantum systems and
for estimating hitting times, respectively. The first algo-
rithm runs in time O(y/NS/Z), where N is the Hilbert
space dimension, [ is the inverse temperature, and Z
is the partition function of the quantum system. The
O notation hides polylogarithmic factors in these quanti-
ties and 1/e€, where € is the desired precision of the output
state. This is a quadratic improvement in § and an ex-
ponential improvement in 1/e with respect to a related
algorithm presented in ﬂg, @] In fact, the main difference
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between our quantum algorithm and that of ﬂg, @] is in
the implementation of the operator e #H#/2 where H is
the Hamiltonian of the system. Rather than using phase
estimation, we use a technique introduced in to
decompose e #H/2 as a linear combination of unitary op-
erations and then apply results of spectral gap amplifi-
cation in ] to implement each such unitary. The same
idea can be used to improve the running time of the algo-
rithm presented in m] The second algorithm provides
an estimate of ¢5, the hitting time of a reversible, irre-
ducible, and aperiodic Markov chain. It runs in time
O(1/(eA3/?)), where € is the absolute precision in the es-
timation and A is a parameter that satisfies 1/A > .
The O notation hides factors that are polynomial in
log(1/(eA)) and log(N), where N is the dimension of
the configuration space. In addition to the techniques
used by the first algorithm, the second algorithm also
uses recent methods for the quantum linear systems al-
gorithm in @] and methods to estimate quantities at the
so-called quantum metrology limit described in ﬂﬁ]

The paper is organized as follows. In Sec. [l we de-
scribe the main techniques introduced in ﬂE, M] that
are also used by our algorithms. Then, the quantum al-
gorithm for the preparation of thermal Gibbs states of
quantum systems is described in Sec. [[IIl and the quan-
tum algorithm for estimating hitting times of classical
Markov chains is described in Sec. [Vl We provide con-
cluding remarks in Sec. [Vl

II. MAIN TECHNIQUES

Our algorithms are based on techniques developed in
the context of spectral gap amplification ], Hamilto-
nian simulation [21, [24], quantum metrology [18], and
solving linear systems of equations [22]. We first consider
an arbitrary finite-dimensional quantum system modeled
by a Hamiltonian H that satisfies

H ;) = Ej [¥j) . (1)

E; are the eigenenergies and [|i;) are the eigenstates,
7=0,1,...N —1, and N is the dimension of the Hilbert
space. We assume that H describes a system of n qubits
and N = 2" m, @] Furthermore, we assume that H
can be decomposed as

H =

NE

hy (2)
=1

where each hi > 0 is a semidefinite positive Hermitian
operator. In some cases, the assumption on hg can be
satisfied after a simple rescaling of H depending on its
specification.

The results in [23] use the Hamiltonian

K
H="Y he® (k)] +0)(k,,) , 3)
k=1

where a; refers to an ancillary qubit register of dimension
O(log(K)). The important property is

(H)?]¢) ® |0),, = (H[9)) @0}, , (4)

for any |¢). Roughly, H can be thought of as the square
root of H. Our algorithms will require evolving with H
for arbitrary time:

Definition 1. Let W (t) := exp(—iHt) be the evolution
operator offl for timet, and e > 0 a precision parameter.
We define W as a quantum circuit that satisfies |W (t) —
W|| < e. The number of two-qubit gates to implement W
(i.e., the gate complezity) is Cw (t,€).

When H is a physical Hamiltonian described by lo-
cal operators, H may be efficiently obtained with some
classical preprocessing. To obtain Cyy (¢, €) in some in-
stances, we note that the results in m, | provide an ef-
ficient method for simulating Hamiltonians of complexity
polylogarithmic in 1/e. In more detail, we could assume
that we have a presentation of the Hamiltonian as

K
H = Z aka s (5)
k=1
or
| X
=3 kz::l Uy (6)

where the coefficients satisfy ay > 0. The operators 11y,
are projectors (i.e., (Ilx)? = IIj) and Uy are unitaries of
eigenvalues 1 in this case. Many qubit Hamiltonians
can be represented in this way, where the Uy correspond,
for example, to Pauli operators. We note that Eq. (@) can
be reduced to Eq. (Bl) by a simple rescaling in which IT, =
(Ur + 15)/2 and disregarding the factor proportional to
the N x N identity operator 1. In either case, we assume
that there is a mechanism available to simulate II; or Uy;
that is, we assume access to a unitary

K
Q==Y ™ @k)(kl,
k=1
K
=Y Ur®k){Kl,, (7)
k=1

where ag is also an ancillary register of O(log(K)) qubits.
The gate complexity of each Uy is Cy, which depends on
the problem, and the gate complexity of the conditional
Uy, operation is O(Cy log(K)).

Once the Hamiltonian H has been reduced to the form
of Eq. (), we obtain

Mx

Vordle @ ([k)(0l,, +10)(kl,,) - (8)

k=1



To be able to use the results in M] for simulating H in
this case, we note that

%’ [e—z‘<w/z><\k><0|al+\o><k|a1>_

_ei<w/2><\k><0|al+\o><k|al>}, )

[E)Ol,, +10){kl,, =

This provides a decomposition of H as a linear combina-
tion of K = O(K) unitary operations Uy; that is,

~ K ~
= ayUy, (10)
k=1

and & > 0. The unitaries in the right hand side of
Eq. @) can be implemented with O(log(K)) two-qubit
gates using standard techniques. The algorithm in ﬂﬂ]
assumes the ability to implement the unitary

M»»

L@ k) (K| (11)
k=1

Since the unitaries Uy, are directly related to the Uy, Q
can be simulated with O(1) uses of @ and additional
two-qubit gates that do not contribute significantly to
the final gate complexity.

The query complexity of the method in ﬂﬂ] is deter-
mined by the number of uses of Q to implement an ap-
proximation of W (t). The gate complexity stated in [24]
is the number of additional two-qubit gates required.
Then, the results in M] provide a Hamiltonian simula-
tion method W to approximate W (t) for this case, within
precision €, of query complexity

O (7log(7/e)/loglog(T/€)) . (12)

Here, 7 = |t| >°, & and thus 7 = O(|t| >, /ar). The
additional gate complexity of W obtained in [24] for this
case is

O (Ktlog(t/e)/loglog(t/e)) . (13)

These results also imply that the overall gate complexity
of W is

log(7/€)

We refer to [24] for more details.

In general, our quantum algorithm to sample from
Gibbs distributions provides an exponential improve-
ment in terms of 1/e, with respect to other known al-
gorithms [§, (9, [11], Whenever Cw (t, €) is polylogarithmic
in 1/e. As discussed, this is the case for a large class of
Hamiltonians such as those when the Uy are presented
as Pauli operators, so that Cyy = O(n).

For the quantum algorithm that computes an estimate
of the hitting time of a Markov chain, we will assume that
we have query access to the Hamiltonian H, and that H

can be presented as in Eq. ([B). This assumes the exis-
tence of a procedure that outputs the matrix elements
of H. Constructing a quantum circuit W that approx-
imates the evolution with H in this case is technically
involved and we leave that analysis for Appx. [Al As in
the previous case, we use the methods in 21, ] to show
that Cyw (¢, €) is almost linear in |¢| and sublogarithmic
in |t|/e.

Another useful technique for our quantum algorithms,
also used in @, , , ], regards the implementation of
linear combinations of unitary operations. More specifi-
cally, assume that X = Zz wV}, where v; > 0 and V}
are unitary operations, and that there is a mechanism to
implement V;. That is, we have access to the unitary

R=Y Viell, . (15)

where az is an ancillary register of O(log(L)) qubits.
Lemma 6 of ﬂﬂ] implies that we can prepare a normal-
ized version of the state X |¢) with O(v/|| X |#) ||) uses of
R in addition to O(Ly/|| X |¢) ||) two-qubit gates, where
v = ZZL:_Ol ~. When V; = V!, for some unitary V, and
the gate complexity of V' is Cy, the gate complexity of
R is O(LCy). In this case, the overall gate complex-
ity of the algorithm is O(LCy~/|| X |¢)]|). This result
follows from Lemma 8 of [22]. The implication is that
the overall gate complexity is dominated by the largest
gate complexity of the unitaries in R times the number
of amplitude amplification steps.

For completeness, the quantum algorithm to imple-
ment X is built upon O(y/|| X |¢)||) amplitude ampli-
fication steps [27]. The operation for state preparation
starts by preparing the ancillary state

B|O :72ﬁ| ag ! (16)

where B is unitary. Applying B requires O(L) two-qubit
gates and, in those cases where we can exploit the struc-
ture of the coeflicients ~;, it can be done more efficiently.
The state preparation step then applies R followed by
Bf. One can show that the final state of this step is

X .
<7|@>®mggwe>, a7)

where |©%) is supported in the subspace orthogonal to
|0),,- Amplitude amplification allows us to amplify the
probablhty of observing the state |0> to a constant.
This state corresponds to the desired outcome. The num-
ber of amplitude amplification steps is linear in the in-
verse of [|(X/7) @) |-

The third useful technique regards amplitude estima-
tion [18]. Let 7 be a unitary that implements

T|¢)10) = (Al¢) [0) + [@4) 1) (18)



where A is an operator that satisfies ||A| < 1 and
I ’®L> | < 1. Our goal is to obtain an estimate of
(o] A|p) = (4] (0| T|¢) |0). The results in [1§] imply that
there exists a quantum algorithm that outputs an esti-
mate of the expectation value of T within precision €. For
constant confidence level (¢ ~ 0.81), the quantum algo-
rithm uses T" and other two-qubit gates O(1/¢) times. It
also uses the unitary that prepares the initial state |¢),
O(1/e) times. Increasing the confidence level can be done
with an additional overhead that is logarithmic in |1 —¢|.

IIT. PREPARATION OF GIBBS STATES

The thermal Gibbs state of a quantum system H at
inverse temperature 8 > 0 is the density matrix

1
p = EeiﬁH ) (19)

where Z = Tr[e #H] = PP e~PFi is the partition func-
tion. Then, the probability of encountering the sys-
tem in the quantum state |1);), after measurement, is
pj=e"F/Z.

Given a precision parameter € > 0, a quantum algo-
rithm to sample from the Gibbs distribution p; can be
obtained from a unitary V that satisfies

T, [V (0){0] @ [0)(0],) VT] = 5 (20)

and

1, .
§||P —plli <e. (21)

We use the label a for an ancillary qubit system that will
be discarded at the end of the computation. The dimen-
sion of a depends on the algorithm. The requirement on
the trace distance in Eq. (2I)) implies that no measure-
ment can distinguish between p and p with probability
greater than e ﬂé]

The main result of this section is:

Theorem 1. There exists a quantum algorithm that pre-
pares an approzimation of the Gibbs state. The quantum
algorithm implements a unitary V' of gate complexity

O (\/g (Cw(t,e)+n+ log(J))> , (22)

O(ey/Z/N), and J =

with t = O(y/Blog(1/€)), € =

O(VIH||Blog(1/€))

When H is presented as in Eq. ([Bl), we can replace
Cw(t,€') by Eq. ([d) if we use the best-known Hamil-
tonian simulation algorithm. In cases of interest, such
as qubit systems given by Hamiltonians that are linear
combinations of Pauli operators, we have a = O(1),

Cy = O(n) = O(log(N)), and K = O(n)
In this case, the overall gate complexity is

(B 2))-

The important result is that the complexity of our algo-
rithm is polylogarithmic in 1/e and also improves upon
the complexity in 8 with respect to the methods in B @

— O(log(N)).

Our quantum algorithm to sample from Gibbs distri-
butions uses the two techniques discussed in Sec. [l In
this case, we will be interested in implementing an oper-
ator proportional to e=#H/2. To find a decomposition as
a linear combination of unitaries, we invoke the so-called
Hubbard-Stratonovich transformation [29]:

e BH/2 — v/ ZL/OO dy e~V /2¢=yVBH (24)
T J—co

In our case, we do not have a method to simulate the
evolution with v H. Nevertheless, we assume that we
can evolve with H, which satisfies Eq. ). Then,

(e 712 |g)) @ |0),, = (25)

(f/ dy eV /2 WH) 16)[0),,

for any state |¢). Note that the ancilla a; remains in
the state [0), and will be discarded at the end of the
computation. Equation (23 implies that the operator
e PH/2 can be approximated by a linear combination of
evolutions under H. Because y € (—o00,00), we will need
to find an approximation by a finite, discrete sum of op-
erators e~ iVPH  We obtain:

Lemma 1. Let

‘/ Z Sy e i /2 Zy]fH (26)

]——J

where y; = joy, for some J = O(\/||H||Slog(1l/€")) and
5y = ©(1/y/THIFIog(L/@)). Then, if [|H||5 > 4 and
log(1/€) > 4,

I(e=PH72 1)) @ |0),,
for all states |@).

—X'9)10),, I <€'/2, (27)

Proof. Consider the real function

- 2
— Z oy e Vil2e Wi VBT (28)
V2 i

where Z € R and assume |Z| < a < co. The Poisson sum-
mation formula and the Fourier transform of the Gaus-
sian imply

f(@) =

o0

f@) = > ewi/2, (29)

k=—o0



where wy = —/BZ + k/dy. Then, there exists

(30)

oor{ )
av/B + /log(1/€)

such that |f(Z) — e~“0/2| < € /4. Note that if ay/3 > 2

and \/log(1/€’) > 2, we can choose

1
v-o(omam) @

Also,
b S —y2/2 —iy;v/BE| o Y S —y2/2
m;éye e < \/Ej:Je
5_3/ i e~ YIY;/2
Vor &
oy e~vi/2

<
T V2l —ewity/2

It follows that there exists a value for J, which implies
yg = O(y/log(1/€)), such that

J
1 . .
— E Sy e Vil2e~WiVBE < /g (32)
Q0 j—_
Using the triangle inequality we obtain

J
—wZ/2 1 —Y;j /2 —iy;v/BE
e %o oy e Yi i <e/2, (33)
=3
and we can represent

—wgrp L = —y*/2 ,—iyV/BE
eTwlt = — dy e e . (34)
V 2 [oo

To prove the Lemma, it suffices to act with X’ on the
eigenstates of H. We can then use the previous bounds if
we assume that T denotes the corresponding eigenvalue
of H. In particular, a = ||H||. Then, if |H|[v/8 > 2 and

log(1/€") > 2, it suffices to choose

1
dy=0|— (35)
<|H|I\/ﬁlog(1/6’)>
and
Y5 INTE=
J=5 =0 (tog(1/) 1 11V/B) - (36)
The result follows from noticing that | H|| = O(\/]H])
and that X’ then approximates e —B(H)’/2 " Since we

act on initial states of the form |¢) |0}, , the action of

G_B(H)2/2 is the same as that of e ##/2 on these states.
O

In general, we cannot implement the unitaries

e~ VBH exactly but we can do so up to an approxi-
mation error. We obtain:

Corollary 1. Let log(1/¢') > 4, |H||8 > 4, and W; be
a unitary that satisfies

W — e VPH | < ¢ /4 (37)
forallj=—-J—-J+1,...,

X = \/> Z oy e~ yJ/QW (38)

j=—J

J. Let

Then,

1™ 72 16)) @ [0),, = X [9)[0),, [ <. (39)

Proof. The coefficients in the decomposition of X’ in
Lemma [ satisfy

‘\/7 Z Sy e ¥i/2 1 <é/2<1/4, (40)

and thus

\/> Z Sy e vil? <5/4. (41)

j=—J

This follows from Eq. (1) for the case of H = H = 0.
The triangle inequality and Eq. [31) imply

X — X' < (5/16)€", (42)

and together with Eq. ([27) we obtain the desired result.
O

In Sec. [l we described a technique to implement X =
St iVie In this case, [ = j +J and L = 2J + 1. The
coefficients and unitaries are e~%/2 and W;, respectively.
The quantum algorithm for preparing Gibbs states will
aim at preparing a normalized version of X |¢g), for a
suitable initial state |¢g), using the technique of Sec. [[Il

A. Algorithm
We set ¢ = O(ey/Z/N). Our quantum circuit V is

defined in two basic steps. The first step regards the
preparation of a maximally entangled state

|¢0 \/— Z |’(/J] ® |’(/J > ® |0 al,ag,a3 (43)

where we used an additional ancillary system a4 of n
qubits. ai, as, ag, and a4 build the ancillary register a



of Eq. (20). Note that |¢g) coincides with the maximally
entangled state

| M-l
|po) = Ve Uz:;) 10)10) 0, @10)a, .05 - (44)

where |o) is a n-qubit state in the computational basis,
ie,|o)=10...0),]0...1),....

The second step regards the preparation of a normal-
ized version of X |¢g). This step uses the algorithm for
implementing linear combinations of unitary operations
described in Sec. [l which also uses amplitude amplifica-
tion. The operator X is defined in Eq. (B8) and requires
a Hamiltonian simulation method for implementing Wj.

B. Validity and complexity

As described, our quantum algorithm prepares the nor-
malized state

X |0} II 7

with constant probability. We also note that

le=PH/2 |g0) | = /Z/N (46)
and Eq. (39) implies

1X160) Il = VZ/N| = O(eV/Z/N)  (47)

for our choice of €. Then, the prepared state satisfies

X |¢o) e PH/2 | gp) H -
- 2. 48
’ Xloo) T~ TP laoy )| <<% 19
‘We note that
e PHIZ | pg) =

N—1
1 aB .
= 7% Z e PE2 |y & \wj>a4 ®10),, ayay - (49)
=0

If we disregard the ancillary system a, this is the Gibbs
state: The probability of obtaining |¢;), after measure-
ment, is proportional to e #Fi. Then, the property of
the trace norm being non-increasing under quantum op-
erations and Eq. {8) imply

1
Sl sll<c. (50)
where
. X|¢o><¢0|XT}
=y, |2 1%0G0l A 51
s [ 1X 160} I 5D

see Eq. (20). That is, p is the state prepared by our
algorithm after tracing out the ancillary register a.

The number of amplitude amplification steps is
O(1/||X |¢o) ||) and Eq. {@8) implies that this number
is also O(y/N/Z). The gate complexity of each step
is the gate complexity of preparing |@g) in addition to
the gate complexity of implementing X. The former is
O(n) as |¢o) takes the simple form of Eq. (#4)) and can
be prepared with O(n) controlled operations. X is im-
plemented in three stages as described in Sec. [Il The
first stage requires the unitary B used in Eq. (I0). In

this case, the coefficients ~; are proportional to e Yi/2,
Then, the gate complexity of B is O(log(.J)) in this case
if we use one of the methods developed in [30, 31]. The
second stage regards the implementation of R. In this ex-
ample, R is the unitary that implements W; conditional
on the state |j), . Since W; corresponds to a Hamilto-
nian simulation algorithm that approximates evolutions
with H, the gate complexity of R is dominated by the
largest gate complexity of W;. In particular, W; ap-
proximates e~** within precision ¢ and for maximum
t = O(y/Blog(1/€')). Then the gate complexity of R is
order Cyy (t,€).
The overall gate complexity is then

O < g (Cw(t,e)+n+ log(J))> , (52)

with ¢ = O(y/Blog(1/¢)) and ¢ = O(e/Z/N). This
proves Thm. 1

IV. ESTIMATION OF HITTING TIMES

We consider a stochastic process that models a Markov
chain. The number of different configurations is N and
P is the N x N stochastic matrix. We label each con-
figuration as ¢ = 0,1,..., N — 1 and the entries of P
are transition or conditional probabilities Pr(o’|c). We
will assume that P is reversible and irreducible, satis-
fies the so-called detailed balance condition ﬂa], and has
nonnegative eigenvalues. The unique fixed point of P is
the N-dimensional probability vector 7. It is useful to
use the bra-ket notation, where |v) represents a vector
v € CN and (v| = (o). Then, P|x) = |r),

o

M= mlo)=| : (53)

TN-1

and 7, is the probability of finding configuration o when
sampling from the fixed point of P.

The hitting time of a stochastic process is roughly de-
fined as the first time at which the process is encountered
in a particular subset of configurations. To define the hit-
ting time in detail, we assume that there is a subset M of
N configurations that are “marked” and the remaining
Ny configurations constitute the “unmarked” subset U.



Here, Naoq + Ny = N. With no loss of generality, the
stochastic matrix P takes the form

Puy  Pum
P = 54
<PMu PMM> ’ (54)

where Py and Paaq are matrices (blocks) of dimension
Ny x Ny and Naq x Npy, respectively, and Py and
Pyam are rectangular blocks. The entries of the block
Ps:s determine the probability of a configuration being
in the subset &’ given that the previous configuration was
in the subset S. Our assumptions imply U, M # {0} and
Pyam; Pvy # 0. The hitting time is the expected time
to find a marked configuration if the initial probability
vector is |m). That is, as in [17], we define the hitting
time of P via the following classical algorithm:

1.Sett=0

2. Sample o from |)

3. If o € M, stop

4. Otherwise, assign t <— t + 1, apply P, and go to 3.

The hitting time ¢5 is the expected value of the random
variable ¢.

We let |my) and |7 aq) represent the probability vectors
obtained by conditioning |7) on U and M, respectively.
These are

2ocu™(9) o) _ 2oem™(9)]0)
) |7TM> -
i ™M

|T0) = . (55)

with my = > oy m(o) and mpm = > cpq (o). Tt is

useful to define the modified Markov chain

P’_<PW 0 ) : (56)

Py 1wy,

which refers to an “absorbing wall” for the subset M.

Here, 1y, is the Naq x Ny identity matrix. As defined,

P’ does not allow for transitions from the subset M to

the subset 4. We will observe below that P’, and thus

Py, play an important role in the determination of ¢j,.
Our definition of hitting time implies

th = it Pr(t) , (57)
t=0

where Pr(t) is the probability of ¢ if we use the previous
classical algorithm. In particular, Pr(t = 0) = mp. We
rewrite

th = i Pr(t > t') (58)

so that we take into account the factor ¢ in Eq. (), i.e.,
Pr(t >t')=Pr(t’ + 1)+ Pr(¢ +2) +.... Note that
Pr(t > t') = my (1y]| (P! |my)
= mu (lul (Puet)" Ims) (59)

where [1y) = > ;o). This is because, conditional on
t > 0, which occurs with probability 7, the initial prob-
ability vector is proportional to (Pyy)" |my). Then, the
probability of having ¢t > ¢ is measured by the proba-
bility of remaining in U after Py was applied t' times.

Equations (B8) and (G9) imply
th = mu (lul (g, — Pow) ™" ) (60)

where we used (1 —2)~! = Y57 a''. We note that
1 — Py is invertible under our assumptions, since the
eigenvalues of Py are strictly smaller than 1 (see below).

The complexity of a method that estimates ¢, using the
previous classical algorithm also depends on the variance
of the random variable ¢. This is

o = *Pr(t) — (tn)? (61)
t=0

and after simple calculations, we can rewrite it as

0% = 2my (Ll > (Pad)" Imu) +tn — (tn)* . (62)

t'=0

For constant confidence level and precision € in the es-
timation of t;,, Chebyshev’s inequality implies that the
previous classical algorithm must be executed M =
O((c/€)?) times to obtain ti,...,t) and estimate t;, as
the average of the ¢;. The expected number of applica-
tions of P is then Mty = O(ty(c/€)?).

To bound the classical complexity, we consider the
worst case scenario in which |my) is an eigenvector of
Py corresponding to its largest eigenvalue 1 — A < 1.
In that case, t, = my/A and 02 = O(my/A?). When
A < 1, the expected number of applications of P is then
O(1/(A3€%)) in this case. This determines the average
complexity of the classical algorithm that estimates ¢j,.

The entries of the symmetric discriminant matrix S of
P are

Saa’ =

(Po P (63)

oo’

where o is the Hadamard product. The detailed balance
condition implies

7(o")Pr(colo’) = Pr(o’|o) (o) (64)

and thus

\/Pr(o|o")Pr(o’|o) = Pr(olo’) 7;_((:)) . (65)

Then,
S=D"'PD, (66)

where D is a diagonal matrix of dimension N with entries
given by y/m(c). The symmetric matrix or Hamiltonian
H = 1y —S is known to be “frustration free” [32] and can



be represented as in Eq. (@) using a number of techniques.
For example, if P has at most d nonzero entries per row
or column (i.e., P is d-sparse), the number of terms K in
the representation of H can be made linear or quadratic
in d; see Appx. Al or [33] for more details.

We now let 1I;; be the projector into the subset &/ and
define

H =TI, HI, . (67)
Note that
H =1y, — D;;' PuuDuy (68)

where Dy, is the diagonal matrix obtained by project-
ing D of Eq. ([@0) into the subspace Y. That is, Dy =
Iy, DIy, and Eq. (68) implies H > 0. Then, Eqgs. (G6)
and (60) imply

th =y (Vrul (1/H)|Vmu) | (69)
where we defined |\/my) = >,y /7(0) o) //Tu so

that |\/my) is normalized according to the Euclidean
norm. A similar expression for ¢;, was obtained in ﬂﬂ]

In Appx. [A] we describe how H can be specified as
H = Zszl aIly, where ap > 0 and Il are projectors.
Then H is of the form of Eq. () and we write H for the
associated Hamiltonian according to Eq. @l). Cw(¢,¢)
is the complexity of approximating W (t) = exp(—iHt),
and we roughly describe a method for simulating W (t)
below.

A quantum algorithm to obtain ¢, can be constructed
from the relation in Eq. ([G9). That is, t; coincides with
my times the expected value of the operator 1/H in the
pure state ‘\/ﬁ> For our quantum algorithm, we also
assume that there is a unitary procedure (oracle) Qy, that
allows us to implement the transformation

Qulo)=—|o) ifceld (70)

and Qu o) = |o) otherwise. We also assume access to a
unitary @) = such that

Qx10) = |V7) . (71)

We write Cy and C /7 for the respective gate complexi-
ties. The main result of this section is:

Theorem 2. There exists a quantum algorithm to esti-

mate ty, within precision € and constant confidence level
that implements a unitary V' of gate complexity

@) <§ (C’W(t,e’)—l—Cz,{—l—C’ﬁ—i-C’B)) . (72)

where Cp = O(log(1/(Ae)), ¢ =
andt =0 (log(l/(eA))/\/Z).

O(eA/log(1/(eA)),

In Appx. [Al we describe a method to simulate the evo-
lution with H. To this end, we also assume that there
exists a procedure p that computes the locations and
magnitude of the nonzero entries of the matrix P. More
specifically, Q p performs the map

Qplo) —|o) oy, ...,00) ® (73)
@ [Pr(a|d), Pr(di|o), ..., Pr(aloy), Pr(a)lo)) |

where d is the sparsity of P. The configurations o] are
such that Pr(o|o}),Pr(o}|o) # 0. We write Cp for the
complexity of implementing Qp. In Appx. [Al we de-
scribe a decomposition of H = Zszl Ui/2 in terms of
K = O(d?) unitaries, so that we can use the results of [24]
to simulate W (t) = exp(—iHt). Each Uy can be imple-
mented with O(1) uses of Qy and Qp, and O(dlog(N))
additional gates. Using the results of [24] and Sec. [
the complexity for simulating W (t) within precision €,
obtained in Eq. (A24), is

Cw(t,é) = O (<d10g<N> o CM)M) |

loglog(t/€¢")
(74)

where 7 = [t|d?. Note that Cy(t,¢') is almost linear in
[t| and polynomial in d, and the dependence on d may
be improved by using the results in ﬂ@] Then, assuming
access to () p, we obtain:

Corollary 2. There exists a quantum algorithm to esti-
mate t, within precision € and constant confidence level
that implements a unitary V' of gate complexity

0 (i (j—;(dlog(N) +Cp + Cy) + Oﬁ>) . (75)

The O notation hides factors that are polylogarithmic in

d/(eA).

The dominant scaling of the complexity in terms of
A and € is then O(1/(eA%/?)), which is a quadratic im-
provement over the classical complexity obtained above.

Our quantum algorithm uses the three techniques de-
scribed in Sec. [Tl and uses some other results in @] In
fact, since H > 0, we can improve some results in ﬂﬂ]
that regard the decomposition of the inverse of a ma-
trix as a linear combination of unitaries. That is, for a
positive matrix H, we can use the identity

1 1 o0
— dB e PH/2
i 2/0 Be ; (76)

and use the Hubbard-Stratonovich transformation of
Eq. @3) to simulate e~ ##/2. Roughly, 1/H can be sim-
ulated by a linear combination of unitaries, each corre-
sponding to an evolution with H for time y+/B. Since
B € [0,00) and y € (—o00,00), we will need to find
an approximation by a finite, discrete sum of operators
e~ wiVBH We obtain:



Lemma 2. Let

252 Z oy e~ vi/2e “’J\/aH (77)

k=0 j=—J

where y; = joy, zr = kdz, and ||H|| > A > 0.
Then, there exists J = ©(\/1/Alog®?(1/(Ae))), K =

O((1/A)log(1/(Ae))/e), by = O(VA/log(1/(Ae))), and
dz = O(e) such that

H (% '¢>) ®10),, — X' [¢)[0),,|| <€/2  (78)

for all states |@).

Proof. We first consider the approximation of 1/x by a

finite sum of e~#+H:
K-1
1 o 1w
5—525 e r 25_521—6*5“ (79)
k=0
1 _
= ‘50(5233—1—6 FET) (80)

Assuming that 1 > x > 1/k so that 1/x < k, we can
upper bound the above quantity by e/4 if we choose

e *Kk/% = O(e/k) and 6z = O(€). These imply
zx = O(klog(r/€)) (81)
and
K = 25 /62 = O(rlog(r/€)/e) . (82)

In the next step, we invoke the proof of Lemma [Tl and
approximate each e™**% as

gk(I) Z 5y e y]/2 —1Yj\/ZKT , (83)

\/2 =

and we need to choose J and dy so that the approxima-
tion error is bounded by €/(4zk). Then,

K—-1 ¢
52 D (e — gu(w))| < (5K) 3
k=0
<e/d. (84)

Lemma [T] then implies

1
y=0 | ——m———
Y ( ZK log(zK/e)>

©

1
( V/klog(k/€)log(k 10g(f<a/e)/e)>
1
- (Tmarrm) )

and

J =0 (Vzx log(zk /¢))
= 0 (VRlog*’(x/9)) - (86)

Thus far, we presented an approximation of 1/, for
1 > o« > 1/k, as a doubly weighted sum of terms
exp(—iy;/zrx). To obtain the desired result, it suffices
to act with X’ on any eigenstate of H and replace /z
by the corresponding eigenvalue, as we did in Lemma [
Since H > A, we need to replace by 1/A in the bounds
obtained for 0z, oy, K, J, zx, and y;. O

In general, we cannot implement the unitaries
e~ Wiv22H exactly but we can do so up to an approx-

imation error. We obtain:

Corollary 3. Let € > 0 and Wy be a unitary that sat-
isfies

Wy = e~ < 1)
Let
K J ,
\/—_ D0z by e VP Wi (83)
k=0  j=—J
Then,
1
[(519) @10, - x 1010, (%9)

Proof. If we replace each e~iVZ? by a term that is an
€/(2zx) approximation in the definition of g (), it yields
an approximation of 1/x within precision €¢/2 plus

f/zgjijéye v/ 2(e/(42K)) Z Syei/2 .
(90)
Our choice of parameters in Lemma [2] implies
I 3 Sye ¥i/%| < e/4 91
\/ﬂj;] ye Vil%| < e/ (91)

so that the additional error is bounded by €¢/2. The proof
follows by replacing \/x by the corresponding eigenvalue
of H and g(x) by the linear combination of the W}, with

weights 6ye*y12'/2. O

So far we showed that 1/H can be approximated within
precision € by a linear combination of unitaries that
correspond to evolutions under H for maximum time
yivZrE = O((1/vVA)log(1/(Ae))). Each such evolu-
tion must be implemented by a method for Hamilto-
nian simulation that approximates it within precision

¢ = O(e/zk) = O(eA/(log(1/(€A))))-



In Sec. [l we described a technique to implement X =
ZZL:_Ol v Vi. In this case, the coefficients and unitaries are

52’5y67y72'/2/\/2ﬂ' and Wy, respectively. From Lemma [2]
and Eq. (@), it is simple to show

K J
1 2
zrg — | < 0z |1 — — Sye Yi/?
= j=—J
< zge/4 (92)

and thus v ~ zx or v = O((1/A)log(1/(A€))).
Last, we define the unitary T = (T2)"Ty such that

T, (0)]0), = m% VA [0), +104),  (93)

and |©1) is supported in the subspace orthogonal to |0), .
The ancillary register a includes the ancillary registers
aj,ag,az as needed for evolving with H and implement-
ing X'. That is, [0), = [0),, ., .,- 71 can be implemented
as follows. It first uses () 5 to prepare the quantum

state |\/7). It then uses Qy to prepare /My |/ ) [0), +
VM }\/m > |1).,, where the ancilla qubit a’ is part of
the register a. Then, conditional on [0),,, it implements
X'/~ as discussed in Sec. [l T3 is the unitary that pre-
pares /7y |vAu) [0), + T |v/Tar) [05)a, where |[04),
is orthogonal to [0),. Then, if T = (12)'T}, we obtain

(01 (01, 710y [0), = ”7“ (ad X ) . (94)

A. Algorithm

We set € = O(eA/log(1/(eA))). The quantum algo-
rithm for estimating the hitting time consists of two basic
steps. The first step uses the amplitude estimation algo-
rithm of [1§] to provide an estimate of (0| (0l,, T'|0) |0},
within precision ¢’ and constant confidence level (¢ =
0.81). Call that estimate f;,. The output of the algo-
rithm is ¢, = zxty.

B. Validity and complexity

As described, our quantum algorithm provides a
O(€'zk) estimate of 2k (0[(0],,7"(0)10),, . Using
Egs. [69) and ([@4]), the output is an estimate of (zx /7)tn
within precision O((zx /7v)e+ zx€’). Our choice of € im-
plies that this is O((zx/7v)e). Also, using Eq. [@2), we
obtain

‘1 - ZTK = 0(e). (95)

Then, our quantum algorithm outputs ¢y, an estimate of
tp, within absolute precision O(e).

Our quantum algorithm uses T, O(1/€¢') times. Each
T uses Qu and Q7 two times, in addition to the
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unitaries needed to implement X’. Each such uni-
tary requires evolving with H for maximum time ¢ =
O((1/v/A)log(1/(Ae))). In addition, each such unitary
requires preparing a quantum state proportional to

1 Z (5y5ze‘y?/2>l/2 15, k) (96)
— —— J, k)
el V2

The gate complexity for preparing this state using the
results in [30, 31] is Cp = O(log(J) 4 log(K)) and then
Cp = O(log(1/(A€))). The overall gate complexity is

O(é (Cw(t,el)—I—Cu—i—C\/;-l-CB)) .97

This proves Thm. 21 Using Eq. (A24)) and replacing for
¢ and t, and disregarding terms that are polylogarithmic
in d/(eA), the gate complexity is

o (i (j—;(dlog(N) L Cp+Cu) + cﬁ» 98)

V. CONCLUSIONS

We provided quantum algorithms for solving two prob-
lems of stochastic processes, namely the preparation of
a thermal Gibbs state of a quantum system and the es-
timation of the hitting time of a Markov chain. Our
algorithms combine many techniques, including Hamilto-
nian simulation, spectral gap amplification, and methods
for the quantum linear systems algorithm. They provide
significant speedups with respect to known classical and
quantum algorithms for these problems and are expected
to be relevant to research areas in statistical physics and
computer science, including optimization and the design
of search algorithms.

We first showed that, starting from a completely en-
tangled state, we can prepare a state that is e-close (in
trace distance) to a thermal Gibbs state using resources
that scale polylogarithmic in 1/e. This is an exponential
improvement over previously known algorithms that rely
on phase estimation and have complexity that depends
polynomially in 1/e B, ] Our algorithm circumvents
the limitations of phase estimation by approximating the
exponential operator as a finite linear combination of uni-
tary operations and using techniques developed in M] to
implement it. We also used techniques developed in the
context of spectral gap amplification ﬂﬁ] to improve the
complexity dependence on the inverse temperature, from
almost linear in B to almost linear in /5.

Next, we presented a quantum algorithm to estimate
the hitting time of a Markov chain, initialized in its sta-
tionary distribution, with almost quadratically less re-
sources in all parameters than a classical algorithm (in a
worst-case scenario). This is done by first expressing the
hitting time as the expectation value of the inverse of an
operator H, which is obtained by a simple transformation



of the Markov chain stochastic matrix. We then used re-
sults from @] to apply 1/H; in this particular case, H is
positive and we showed that the implementation of 1/H
can be done more efficiently than the algorithm in Nﬁ],
in terms of the condition number of H. Such an expected
value can be computed using methods for amplitude esti-
mation. For constant confidence level (¢ = 0.81), the use
of amplitude estimation limits us to a complexity depen-
dence that is O(1/e€), where € is the absolute precision
of our estimate. It is possible to increase the confidence
level towards ¢ with an increase in complexity that is

11

O(log(|1 = ¢l))-
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Appendix A: Simulation of H

We provide a method to simulate H in time polylog-
arithmic in 1/e, as required by the algorithm for esti-
mating hitting times of Sec. [Vl We assume that there
exists a procedure Qp that computes the locations and
magnitude of the nonzero entries of the matrix P. More
precisely, @ p performs the map

Qplo) = |0>|017"'7U¢/i>® (A1)
® |Pr(o|oy), Pr(oy|o), ..., Pr(aldl), Pr(a)|o)) ,

where d is the sparsity of P, i.e., the largest number
of nonzero matrix elements per row or column. The
transition probabilities are assumed to be exactly rep-
resented by a constant number of bits and we disregard
any rounding-off errors. We also assume access to the


http://pages.uoregon.edu/dlevin/MARKOV/markovmixing.pdf

oracle QQy; such that
Qu o) = —
and Qy |o) = |o) otherwise.
The Hamiltonians H and H can be constructed as

follows. For each pair (o,0’), such that ¢ # ¢’ and
Pr(o|o’) # 0, we define an unnormalized state

75(\/Pf(0|0’)|0 —+/Pr(d’|o)|o)) . (A3)

Then, if oy # 09,

lo) if o €U (A2)

lto,00)

oAme (o7 70) = —/Pr(olo0)Pr(ooloy) |

(A4)
and if o¢ = 0y,
UO|Z|NUU (Hoor| 00) = ZPr /|‘7
o,0’ o'#o
=1—Pr(o]o) . (A5)

These are the same matrix entries of H and the implica-

tion is that
1= Z lHo,or) (Hoo|
o0’

This is the desired representation of the H as a sum of
positive operators. In particular, we can normalize the
states and define

(A6)

Ho,or) = % : (A7)
Vi = o) | = o ZHATLEPHI)

Then,
(A9)

H = Z 6‘0’,0/ |ﬁcr,a"> <,ELU,O’/| .
o,0’

We let IIy; be the projector into the subspace U. The
Hamiltonian is H = Il HIly, and using Eq. (A6), we
obtain

H= Z 000" |Ho,or ) (flaor | +

o,0’cU
+y <ZPr(a|a’)> EAICAR (A10)
o’eUd \oceM

which is the desired decomposition as a linear combina-
tion of rank-1 projectors.

To build H, we need to take square roots of the pro-
jectors. In principle, the dimension Ny is large and we
want to avoid a presentation of H as a sum of polyno-
mially many terms in Ny. We are also interested in a
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decomposition of H in terms of simple unitary opera-
tions so that we can use the results of ﬂﬂ] to devise a

method to simulate exp(—iHt). We begin with the sec-
ond term in the right hand side of Eq. (AIQ). Its square

root is
> > Pr(alo’) | o) (o] -
o'eld oceM

This term can be simply obtained as a sum of two diag-
onal unitary operations:

(A11)

%(UD LU (A12)
Up applies a phase to the state |o’) as
Up |o') = e |o') (A13)
with
(A14)

cos(0 Z Pr(olo’)
oceM

if o/ € U. Otherwise, Up |0’y = i|o’). Up can then be
implemented by first using Qy to detect if ¢’ is in U or
not. It next applies @ p and computes 6, in an additional
register. Conditional on the value of 6,/, it applies the
corresponding phase to |o’). It then applies the inverse of
Qp to undo the computation. That is, Up requires O(1)
uses of @y and @Qp, and the additional gate complexity
is O(d) due to the computation of 6, .

The first term in the right hand side of Eq. (AIQ) can
be written as a sum of K’ = O(d?) terms as follows.
Using Qp we can implement a coloring of the graph G
with vertex set V(G) = {0 : 0 € U} and edge set E(G) =
{(0,0") : 0,0’ € U,Pr(c|o’) # 0}. We can use the same
coloring as that described in [21], which uses a bipartite
graph coloring and was used for Hamiltonian simulation.
Each of the K’ terms corresponds to one color and is then
a sum of commuting rank-1 projectors. That is, the first

term in the right hand side of Eq. (A10Q) is Eszll hj and

hk - Z o_écr.,a" |,aa',cr/> <,aa',cr/| )

o,0'€cy

(A15)

where ¢y, are those elements of E(G) associated with the
k-th color. By the definition of coloring, each rank-1
projector in Eq. (AT3) is orthogonal and commutes with
each other, and then

V hk = Z vV 640',(7’ |ﬂa,a’> <ﬂa’,a’| (A16)
0,0’ €cy
We can write
—iz Al
S = ARt (A17)

2



where Zj, is the unitary

Zr =exp |1 Z bo,0' |flo,or) (Hloo| (A18)
o,0'€cy
The coefficients are chosen so that
Sin(ég)g/) =\/Qs, , (Alg)
and 0 < Qg o0 < 1.
We can simulate each Z;, as follows. Note that
Z, |0> =&5,00 |0> + &Iy,a’ |U/> (A20)

where ¢’ is such that (0,0’) € ¢;. The complex coef-
ficients &,,, and 5(’770, can be simply obtained from the
9507, and depend only on Pr(c|o’) and Pr(o’|o). Then,
on input |o), we first use Qy to decide whether |o) € U
or not. We then apply Qp once and look for ¢’ such
that (0,0’) € ¢, We use an additional register to write
a classical description of a quantum circuit that imple-
ments the transformation in Eq. (A20). We apply the in-
verse of Qp and @y and only keep the last register. This
is sufficient information to apply the map in Eq. (A20]).
We can then erase all the additional registers by applying
the inverse of the operation that computed the quantum
circuit. This works because the quantum circuit is invari-
ant under the permutation of o and ¢’. To implement Z
we need to use Qy and Qp, O(1) times. The additional
gate complexity is O(dlog(N)) for searching for ¢’ and
describing the quantum circuit.
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In summary, we found a decomposition of H as

- 1f< -
H:i;m (A21)

where Uk are unitaries. The number of terms is~f{ =
O(d?). Using Eq. [@) and the results above, each U}, can
be implemented with O(1) uses of Qy and @Qp, and at
most O(dlog(N)) additional gates.

Using the results of [24] (see Sec. M), the complexity
for simulating exp(—iHt) within precision e for this case
is as follows. The number of uses of @y and @ p is

O (tlog(t/e)/loglog(t/€)) , (A22)
where 7 = |t|d?. The additional gate complexity is
O (dlog(N)7log(7/€)/loglog(r/¢€)) . (A23)

If we write Cy; and Cp for the gate complexities of Qy
and @ p, respectively, the overall gate complexity to sim-
ulate the evolution under H is

Cw(t,e) =0 ((dlog(N) + Cy + CP)T%) :

(A24)



