
LA-UR-16-21095 (Accepted Manuscript)

Making Technological Timelines: Anticipatory Repair and Testing in
High Performance Scientific Computing

Sims, Benjamin Hayden

Provided by the author(s) and the Los Alamos National Laboratory (2017-05-23).

To be published in: Continent

DOI to publisher's version: 

Permalink to record: http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-16-21095

Disclaimer:
Approved for public release. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos
National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the
Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.



Making

Technological

Timelines:

Anticipatory Repair

and Testing in High

Performance

Scientific Computing
Benjamin Sims

Think of some examples of repair in everyday life.
Maybe you had a car accident and took your car to
the body shop. Maybe the head came off your
child’s doll and you had to glue it back on. Maybe
the handle of your shovel cracked and you
wrapped the cracked area with duct tape to hold it
together. These are examples of what could be
called reactive repair, where an unexpected
accident initiates a sequence of action and decision-
making that ends in repair. In these cases, most of
the thinking and planning surrounding repair takes
place after a breakdown has been identified. This
type of repair is often taken to be distinct from
deliberate design, as it occurs within the context of
technology that is already in operation, often has
an improvisational character, and may be
performed by end users or technicians rather than
credentialed experts. But does repair always have
to be reactive? And if not, what does this tell us
about the distinction between design and repair,
and their respective roles in shaping technological
change? The short answer is that repair, like
design, can play a dynamic and forward-looking
role in shaping technological trajectories – not only
stabilizing existing systems, but anticipating change
and generating new technological futures.

Repair practices in large technological systems and
infrastructures reveal different levels of planning for
breakdown and repair. At the most basic level, a
general need for ongoing maintenance and repair
of a system can be foreseen and provided for –
what is often called routine maintenance.[1] One
step further along the planning spectrum
is preventive maintenance, which involves
predicting specific kinds of breakdowns in advance
and trying to prevent them from happening. 

A final level of planning, which I call anticipatory
repair, deploys a much more diverse and
technically sophisticated array of resources to
predict breakdowns and develop approaches for
preventing or responding to them. This is a
distinctly modern regime of repair, premised on
science and engineering methods for forecasting
failure. This type of repair aligns with a broader
contemporary trend toward anticipation in the
governance of science and technology, one that
emphasizes the virtues of optimization and
preparedness.[2] The instruments of anticipatory
repair include modeling and simulation, user
studies, trials, testing, and other methods that aim
to instigate breakdowns in a controlled setting
before a technology is deployed for general use,
thus affording an opportunity to fix problems
before they affect end users.

continentcontinent.cc / ISSN: 21599920| This work is licensed under a Creative Commons Attribution 3.0 License.

Issue 6.1 / 2017: 81



Anticipatory repair is an important part of the work
of scientific High Performance Computing (HPC)
code developers, who design software to carry out
complex computing tasks, such as large physics
simulations. (HPC is now the preferred term for
what has also been called supercomputing.)
Specifically, developers of long-lived codes
anticipate the architectural features of future HPC
machines, and start adapting codes to run on them
before they are built.

Although HPC systems are now made from off-the-
shelf components, they are nonetheless far from a
standardized commodity. Pushing to the next level
of computing performance almost always involves
introducing innovative or unusual architectural
features. Since HPC codes are highly optimized to
the hardware they run on, getting a code to run
effectively on new hardware can be challenging
and require significant investment of resources,
which can impact scientific productivity. This is an
ongoing problem because new hardware is
typically deployed every 5-7 years, while complex
scientific codes can be actively developed and used
for decades. 

 

Figure 1. Typical modern HPC system design.
Source: ”Cielo Computational Environment Usage
Model With Mappings to ACE Requirements for
the General Availability User Environment
Capabilities,” Los Alamos National Laboratory
Report number LA-UR-12-24015.

 

An example of how HPC code developers
prospectively adapt codes to new hardware is the

work that went into deciding what type of new
machine to develop for basic science research at
Los Alamos National Laboratory. The choice was
between two options:

1. A machine with specialized many-core Intel
Xeon Phi processors (similar to the Trinity
system shown in Figure 2), which would be
more powerful but might require significant
modifications to many existing codes.

2. A less powerful system with more
conventional processors that would require
minimal code changes. 

 

Figure 2. Trinity computer construction at Los
Alamos National Laboratory. Source: http://www.la
nl.gov/newsroom/picture-of-the-week/pic-
week-14.php.

 

To help make this decision, managers called on the
expertise of the Scientific Computing Support
Team (SCST), a group of expert code developers
who provide advice to scientists on programming
challenges. They asked the team to select a few
representative computing projects, analyze their
codes, and work with the code developers to see
how difficult it would be to make the codes run
efficiently on Xeon Phi processors. I spent a year
working with this team during this process, and
conducted interviews with team members and
code developers about their efforts. 

The SCST’s job was, first, to test how the
unmodified codes ran on Xeon Phi processors, and,
second, to try various approaches to optimizing the

continentcontinent.cc/index.php/continent/article/view/286

Benjamin SimsIssue 6.1 / 2017: 82



codes to run efficiently on those processors. A
number of works in science and technology studies
have focused on the role of tests, trials, and
demonstrations in the development and
deployment of technological systems.[3] Trevor
Pinch notes that testing often involves projection
from a test situation (say in a laboratory) to some
kind of “real world” use scenario.[4] This projection
is usually justified by asserting that the test
situation is similar enough to the use scenario to
justify inference between the two, even though
they may differ in scale, timing of events, presence
of measuring devices, etc. Projection usually has a
temporal aspect, in that it may connect the test to
events that occur before, concurrent with, or after
it.

There were some obvious challenges to projection
between the SCST’s testing and the actual
performance of codes on a full-scale HPC system
based on Xeon Phi processors. In particular, the
team only had access to a few of the current
version of the Xeon Phi processor on a local cluster,
while an actual system would likely have hundreds
of processors, and would use a version of the
processor that hadn’t been released yet. 

The SCST’s strategy for establishing the relevance
of their small-scale testing was to work closely with
code developers to come up with test problems
that would be small enough to run in a reasonable
length of time on a few processors, yet still be
representative of code performance on a full-size
HPC machine. This typically involved developing a
smaller or simpler version of the physical system
the code would normally simulate, but which had
similar computational properties. For example, for
a molecular dynamics code:

“With [the code developer’s] help, and a lot of
back and forth, we came up with a 128-atom
molecular simulation. It took maybe a dozen back-
and-forths before we came to a problem that was
large enough to fit in the memory footprint yet
give some scalability.”

To support projection from performance on the
current version of the processor to performance on
the unreleased version, SCST members focused on
relevant similarities in the hardware and
programming work involved: 

“The problems we face in getting code to perform

on [the current version] will be the same problems
we face with [the unreleased version]. Even though
the hardware is different, the fact that we have so
many cores is the same challenge.” 

Having established a reasonable test problem, the
next step was to set the code up to run on the
Xeon Phi processor. This was a complex and often
frustrating challenge, and the initial result was
almost always that the code ran drastically slower
on the Xeon Phi processor. The extent of this
degradation was the first indicator of how the code
would perform on the processor, and established a
worst-case scenario for the type of breakdown that
could be anticipated when the codes were run on a
new machine.

This is where testing starts to converge with
breakdown and repair: the first stage of testing was
explicitly oriented toward provoking a
technological breakdown and measuring its impact.
By simulating a potential future breakdown in the
present, the team created a displacement in time
that gave decision-makers an opportunity to
include that breakdown in their assessment of
potential future systems.

The next step was to test possibilities for repair. To
do this, the SCST experimented with different ways
of configuring the code to see which resulted in
optimal performance. Most of this performance
tuning was done by experimenting with different
settings for compilers and parallelization tools,
which affect how computations are distributed
across cores and processors. The end result, in
most cases, turned out to be that the code could
be made to run as fast or faster on the Xeon Phi
processor as on a more conventional processor,
without having to make major changes to the code
itself. This result could then be projected forward in
time to suggest that any potential breakdowns that
resulted from running current codes on a new Xeon
Phi system could be repaired without too much
trouble.

This was reassuring from a decision-making
standpoint, but equally importantly, the testing
actually enacted the steps that would need to go
into any future repair, establishing relevant skills
and relationships. This testing and repair effort,
then, served to knit together present and future
states of the HPC ecosystem – not just assessing
the outcome of a potential technological trajectory,

continentcontinent.cc/index.php/continent/article/view/286

Benjamin SimsIssue 6.1 / 2017: 83



but actually contributing to its realization. 

Conclusion

A number of contributions to this volume draw
attention to the role of repair and maintenance in
shaping what Ribes and Finholt have called the
“long now” of infrastructures,[5] using examples as
diverse as the lifecycle of mobile phones (Houston),
the temporal frames of long-term space missions
(Cohn), and the “technological residues” left
behind by a failed software project (Fiore-
Gartland). Anticipatory repair describes a particular
future-oriented mode of repair that deploys diverse
predictive resources to align present interests with
imagined technological futures. In so doing, it also
contributes to the realization of those futures. In
this mode of repair, the “broken world thinking”
described by Jackson[6] is leveraged in service of a
planned and controlled approach to technological
innovation and progress. 

Anticipatory repair is an example of the kind of
anticipatory practice Adams, Murphy, and Clarke
identify as central to the current scientific and
political moment. Anticipation work is temporally
dynamic, enabling a “tacking back and forth
between futures, pasts, and presents, framing
templates for producing the future.”[7] The HPC
example presented here suggests that this “tacking
back and forth” in time may play an essential role
in enabling stabilization and control over complex
infrastructural systems over long time periods. In
this context, testing and anticipatory repair emerge
alongside design as powerful tools for establishing
technological trajectories and managing
uncertainty about technological futures. Reactive
repair complements anticipatory repair by cleaning
up after the breakdowns and catastrophes it
inevitably fails to prevent. Both forms of repair can
contribute to the stabilization of technological
systems in time and the generation of new
technological possibilities. Repair is about more
than restoring lost order – it can also be a powerful
tool for anticipating, projecting, and shaping future
worlds. 

REFERENCES

[1] For example, the work performed by technicians
in Christopher Henke’s “The Mechanics of
Workplace Order: Toward a Sociology of
Repair,” Berkeley Journal of Sociology 44 (2000):

55–81.

[2] Vincanne Adams, Michelle Murphy, and Adele E.
Clarke, “Anticipation: Technoscience, Life, Affect,
Temporality,” Subjectivity 28 (2009): 246–65;
Guston, David H., “Understanding ‘Anticipatory
Governance.’” Social Studies of Science 44,
218–242 (2014).

[3] E.g. Donald MacKenzie, “From Kwajalein to
Armageddon? Testing and the Social Construction
of Missile Accuracy,” In The Uses of Experiment:
Studies in the Natural Sciences, ed. David
Gooding, Trevor Pinch, and Simon Schaffer
(Cambridge, UK: Cambridge University Press,
1989), 409–435; Benjamin Sims, “Concrete
Practices: Testing in an Earthquake-Engineering
Laboratory,” Social Studies of Science 29, no. 4
(1999): 483–518; Christopher R. Henke, “Making a
Place for Science: The Field Trial,” Social Studies of
Science 30, no. 4 (2000): 483–511.

[4] Trevor J. Pinch, “‘Testing - One, Two, Three ...
Testing!’: Toward a Sociology of Testing,” Science,
Technology, and Human Values 18, no. 1 (1993):
25–41.

[5] David Ribes and Thomas A. Finholt. “The Long
Now of Technology Infrastructure: Articulating
Tensions in Development,” Journal of the
Association for Information Systems 10 (May 2009):
375–98.

[6] Steven J. Jackson, “Rethinking Repair,”
in Media Technologies: Essays on Communication,
Materiality, and Society, ed. Tarleton Gillespie,
Pablo Boczkowski, and Kirsten Foot (Cambridge,
MA: MIT Press, 2014), 221-239.

[7] Adams, Murphy, and Clarke, “Anticipation:
Technoscience, Life, Affect, Temporality,” 246.

Powered by TCPDF (www.tcpdf.org)

continentcontinent.cc/index.php/continent/article/view/286

Benjamin SimsIssue 6.1 / 2017: 84

http://www.tcpdf.org

