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Abstract — The existing fleet of nuclear power plants is in the process of extending its lifetime and
increasing the power generated from these plants via power uprates. In order to evaluate the
impact of these two factors on the safety of the plant, the RISMC Pathway aims to develop
simulation-based tools and methods to assess risks for existing nuclear power plants in order to
optimize safety. This pathway, by developing new methods, is extending the state-of-the-practice
methods that have been traditionally based on logic structures such as Event-Trees and Fault-
Trees. These static types of models mimic system response in an inductive and deductive way
respectively, yet are restrictive in the ways they can represent spatial and temporal constructs.
RISMC analyses are performed by using a combination of thermal-hydraulic codes and a
stochastic analysis tool currently under development at the Idaho National Laboratory, i.e.
RAVEN. This paper presents a case study in order to show the capabilities of the RISMC
methodology to assess impact of power uprate of a boiling water reactor system during a station
blackout accident scenario. We employ the system simulator code, RELAPS5-3D, coupled with
RAVEN which perform the stochastic analysis. Our analysis is in fact performed by: 1) sampling
values of a set of parameters from the uncertainty space of interest, 2) simulating the system
behavior for that specific set of parameter values and 3) analyzing the set of simulation runs.
Results obtained give a detailed investigation of the issues associated with a plant power uprate
including the effects of station blackout accident scenarios. We are able to quantify how the timing
of specific events was impacted by a higher nominal reactor core power. Such safety insights can
provide useful information to the decision makers to perform risk informed margins management.
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I. INTRODUCTION

In the RISMC [1,2] approach, under the Light Water
Reactor Sustainability Program (LWRS) LWRS campaign
[3], what we want to understand is not just the frequency of
an event like core damage, but how close we are (or not) to
key safety-related events and how might we increase our
safety margin through proper application of Risk Informed
Margin Management. In general terms, a “margin” is
usually characterized in one of two ways:

e A deterministic margin, typically defined by the
ratio (or, alternatively, the difference) of a capacity
(i.e., strength) over the load.

e A probabilistic margin, defined by the probability
that the load exceeds the capacity.

A probabilistic safety margin is a numerical value
quantifying the probability that a safety metric (e.g., for an

important process observable such as clad temperature) is
exceeded under accident conditions.

The RISMC Pathway uses the probabilistic margin
approach to quantify impacts to reliability and safety. As
part of the quantification, we use both probabilistic (via
risk simulation) and mechanistic (via physics models)
approaches. Probabilistic analysis is represented by the
stochastic risk analysis while mechanistic analysis is
represented by the plant physics calculations. Safety
margin and uncertainty quantification rely on plant physics
(e.g., thermal-hydraulics and reactor kinetics) coupled with
probabilistic risk simulation (see Fig. 1). The coupling,
which we call Computational PRA (CPRA), also know as
Dynamic PRA [4], takes place through the interchange of
physical parameters (e.g., pressures and temperatures) and
operational or accident scenarios (e.g., the series of
successes and/or failures representing a sequence of
events).



This paper presents a case study in order to show the
capabilities of the RISMC methodology [5] to assess
limitations and performances of a Boiling Water Reactor
(BWR) system during a Station Black Out (SBO) accident
scenario using a simulation-based environment also known
as dynamic PRA [4]. Such assessment cannot be naturally
performed in a classical Event Tree/Fault Tree (ET/FT)
based environment.

We employ a system simulator code, one of the
RELAP series of codes [6], coupled with a CPRA code,
RAVEN [7,8], that monitors and controls the simulation.
The latter code, in particular, introduces both deterministic
(e.g., system control logic, operating procedures) and
stochastic (e.g., component failures, variable uncertainties,
human actions) elements into the simulation.
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Fig. 1. Overview of the RISMC approach [5].

II. THE RISMC APPROACH

In Section I we have shown the main reasons behind
the choice of moving from an ET-FT logic structure and
employing directly system simulator codes to perform PRA
analyses. A simulator code is, per se, a tool that can be
represented as [9,10]:

20(t)
7—.‘]{(0,1),8,15) (1)

where:

e 0 =0(t) represents the status of the system as
function of time t, i.e., O(t) represents a single
simulation

e H is the actual simulator code that describes how @
evolves in time

e p is the set of parameters internal to the simulator
code (e.g., pipe friction coefficients, pump flow rate,
reactor power)

o s =5s(t) represents the status of components and
systems of the simulator (e.g., status of emergency
core cooling system, AC system)

Proceedings of ICAPP 2015
May 03-06, 2015 - Nice (France)
Paper 15332

By using the RISMC approach, the PRA is performed by
following these steps:

1. Associating a probabilistic distribution function
(pdf) to the set of parameters p and s (e.g., timing
of events)

2. Performing sampling of the pdfs defined in Step 1

3. Performing a simulation run given the p and s
sampled in Step 2

4. Repeating Steps 2 and 3 N times and evaluate user
defined stochastic parameters such core damage
(CD) probability (Pp) as the ratio between the
number of simulations that lead to CD divided by N
(the total number of simulations).

Strictly speaking, the sampling associated to the vector
of parameters p is usually defined as uncertainty
quantification while sampling the timing of events § is
usually called PRA. In our applications, we include in the
definition of PRA the sampling of both p and s.

III. RISMC TOOLKIT

In order to perform advanced safety analysis, the RISMC
Pathway has a toolkit that was developed internally at INL
using MOOSE [11] as the underlying numerical solver
framework. This toolkit consists of the following software
tools:

e RELAP (both RELAP5-3D [6] and RELAP-7 [12]):
the code responsible for simulating the thermal-
hydraulic dynamics of the plant.

e RAVEN [7,8]: it has two main functions: 1) act as a
controller of the RELAP-7 simulation and 2)
generate multiple scenarios (i.e., a sampler) by
stochastically changing the order and/or timing of
events.

e PEACOCK: the Graphical User Interface (GUI) that
allows the user to create/modify input files of both
RAVEN and RELAP-7 [13] and to monitor the
simulation in real time while it is running.

e GRIZZLY: the code that simulates the thermal-
mechanical behavior of components in order to
model component aging and degradation. Note that
for the analysis described in this article, aging was
not considered in the accident scenarios.

For the scope of this article, we used RELAP5-3D and
RAVEN to show advanced PRA analyses.

Il A. RAVEN

The RAVEN statistical framework is a recent add-on
of the RAVEN package that allows the user to perform



generic statistical analysis. By statistical analysis we
include:

e Sampling of codes: either stochastic (e.g., Monte-
Carlo [14] and Latin Hypercube Sampling [15]) or
deterministic (e.g., Dynamic Event Tree [16])

e  Generation of Reduced Order Models (ROMs) [17]
also known as surrogate models or emulators

e Post-processing of the sampled data and generation
of statistical parameters (e.g., mean, variance,
covariance matrix)

Figure 2 shows an overview of the elements that comprise
the RAVEN statistical framework:

e Model: it represents the pipeline between the input
and output spaces. It is comprised of both
mechanistic codes (e.g., RELAP-7) and ROMs

e Sampler: it is the driver for any specific sampling
strategy (e.g., Monte-Carlo [18], Latin Hypercube
Sampling [19], dynamic event trees [20])

e Database: the data storing entity
e  Post-processing: module that perform statistical

analyses and visualizes results
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Fig. 2. Structure of RAVEN statistical framework components.
III. BWR SBO TEST CASE

As mentioned in the introduction, the test case chosen
to show the RISMC approach is a SBO accident scenario
for a BWR system. In Section III.A we describe the BWR
model that we implemented while Section III.B shows the
accident progression.

III.A. BWR Model
The system considered in this test case is a generic

BWR power plant with a Mark I containment as shown in
Fig. 3 [5]. The three main structures are the following:
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1) Reactor Pressure Vessel (RPV), it is the pressurized
vessel that contains the reactor core.

2) Primary containment includes:

a. Drywell (DW): it contains the RPV and
circulation pumps

b. Pressure Suppression Pool (PSP) also known as
wetwell: a large torus shaped container that
contains a large amount of water; it is used as
ultimate heat sink.

c. Reactor circulation pumps

While the original BWR Mark I includes a large number of
systems, we consider a subset of it:

e RPV level control systems: provide manual and
automatic control of the RPV water level:

1. Reactor Core Isolation Cooling System (RCIC):
Provide high-pressure injection of water from
the CST to the RPV. Water flow is provided by
a turbine driven pump that takes steam from the
main steam line and discharges it to the
suppression pool. Alternatively, the water
source can be shifted from the CST to the PSP.

2. High Pressure Coolant Injection (HPCI):
similar to RCIC, it allows greater water flow
rates

o Safety Relief Valves (SRVs): DC powered valves
that control and limit the RPV pressure.

e Automatic  Depressurization = System  (ADS):
separate set of relief valves that are employed in
order to depressurize the RPV.

e Cooling water inventory:

1. Condensate Storage Tank (CST) that contains
fresh water that can be used to cool the reactor
core.

2. PSP water: PSP contains a large amount of fresh
water that is used to provide ultimate heat sink
when AC power is lost.

3. Firewater system: water contained in the
firewater system can be injected into the RPV
when other water injection systems are disabled
and when RPV is depressurized.

e Power systems (see Fig. 4):

1. Two independent power grids that are
connected to the plant station thorough two
independent switchyards. Loss of power from
both switchyards disables the operability of all
system except: ADS, SRV, RCIC and HPCI
(which require only DC battery).



2. Diesel generators (DGs) which provide
emergency AC power

3. Battery systems: instrumentation and control
systems need DC power.
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Fig. 3. RELAP-5 nodalization scheme for the BWR system.
II1.B. SBO Scenario

The accident scenario under consideration is a loss of
off-site power followed by loss of the DGs, i.e. SBO
initiating event [5]. In more details, at time t = 0 LOOP
condition occurs due to external events (i.e., power grid
related) which triggers the following actions:

e  Operators successfully scram the reactor and put it
in sub-critical conditions by fully inserting the
control rods in the core

e Emergency DGs successfully start, i.e., AC power is
available

e Core decay heat is removed from the RPV through
the RHR system

e DC systems (i.e., batteries) are functional

At a certain time, SBO condition occurs: due to
internal failure, the set of DGs fails, thus removal of decay
heat is impeded. Reactor operators start the SBO
emergency operating procedures and perform:

e RPV level control using RCIC or HPCI
e RPV pressure control using SRVs
e  Containment monitoring (both drywell and PSP)

Plant operators start recovery operations to bring back on-
line the DGs while the recovery of the power grid is
underway by the grid owner emergency staff.

Due to the limited life of the battery system and
depending on the use of DC power, battery power can
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deplete. When this happens, all remaining control systems
are offline causing the reactor core to heat until clad failure
temperature is reached, i.e., core damage (CD).
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Fig. 4. BWR AC/DC power system schematics.

If DC power is still available and one of these
conditions are reached:

e  Failure of both RCIC and HPCI
e  HCTL limits reached
e Low RPV water level

then the reactor operators activate the ADS system in order
to depressurize the RPV .

As an emergency action, when RPV pressure is below
100 psi plant staff can connect the firewater system to the
RPV in order to cool the core and maintain an adequate
water level. Such task is, however, hard to complete since
physical connection between the firewater system and the
RPV inlet has to made manually.

When AC power is recovered, through successful re-
start/repair of DGs or off-site power, RHR can be now
employed to keep the reactor core cool

V. STOCHASTIC ANALYSIS

For this analysis we considered several uncertain
parameters:

e Failure time of DGs: regarding the time at which
the DGs fail to run we chose an exponential
distribution with a value of lambda equal to 1.09 10
’h as indicated by NRC published data [21].

e Recovery time of DGs: Regarding time needed to
recover the DGs, we used as a reference the
NUREG/CR-6890 vol.1 [22]. This document uses a



Weibull distribution® with & = 0.745 and p = 6.14 h
(mean = 7.4 h and median = 3.8 h). Such
distribution represents the pdf of repair of one of the
two DGs (choosing the one easiest to repair).

e Offsite AC power recovery: For the time needed to
recover the off-site power grid, we used as reference
NUREG/CR-6890 vol.2 [22] (data collection was
performed between 1986 and 2004). Given the four
possible LOOP categories (plant centered,
switchyard centered, grid related or weather
related), severe/extreme events (such as earthquake)
are assumed to be similar to these events found in
the weather category (these are typically long-term
types of recoveries). This category is represented
with a lognormal distribution (from NUREG/CR-
6890 [22]) with u = 0.793 and 0 = 1.982.

e Battery life: For the amount of DC power available,
when AC power is not obtainable, we chose to limit
battery life between 4 and 6 hours using a triangular
distribution (see NUREG/CR-6890 vol.2 [22]).

e Battery failure time: As basic event in the PRA
model, the probability value associated with battery
failure is equal to 1.4 107 for an expected life of 4
hours. We have assumed an exponential distribution
for the battery failure time distribution. The value of
A for this distribution has been calculated by
imposing that the CDF of this distribution (1 —
e *) at 4 hours (i.c., the probability that battery
fails within 4 hours is 1.4 107):

4
f AeMdt=[1- e'“]z =1410"°
0

This leads to a value of 1 = 3.5 10~ %/hr.

e SRVs fails open time: the SPAR model indicates a
probability value of 8.56 10™.

e Clad Fail temperature: Uncertainty in failure
temperature for the clad is characterized by a
triangular distribution [23] having:

o Lower limit = 1800 F (982 C): PRA success
criterion

o Upper limit = 2600 F (1427 C): Urbanic-
Heidrick transition temperature

o Mode = 2200 F (1204 C): 10 CFR regulatory
limit

e RCIC fails to run: Regarding the distribution of

RCIC to fail to run we assumed an exponential

! Weibull distribution pdf(x) is here defined as: pdf(x) =

x\%
%xa—le_(ﬁ)
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distribution with 2 = 4.431073h~! as indicated in
the SPAR model.

e HPCI fails to run: Identical distribution for RCIC
fails to run distribution (see above)

o Firewater flow rate: The value of firewater flow
rate is between 150 and 300 gpm [5]. For the scope
of this article we also considered the possibility of
very low firewater flow rates. Thus we assumed a
triangular distribution defined in the interval
[0,300] gpm with mode at 200 gpm.

Regarding the pdfs related to human related actions we
looked into the SPAR-H [24] model contained in
SAPHIRE. SPAR-H characterizes each operator action
through eight parameters — for this study we focused on the
two important factors:

e  Stress/stressors level
e  Task complexity

These two parameters are used to compute the
probability that such action will happen or not; these
probability values are then inserted into the ETs that
contain these events. However, from a simulation point of
view we are not seeking if an action is performed but
rather when such action is performed. Thus, we need a
probability distribution function that defines the probability
that such action will occur as function of time.

Table 1. Correspondence table between task complexity and
stress/stressor level and time values

Complexity | u (min) Stress/stressors | o (min)
High 45 Extreme 30
Moderate 15 High 15
Nominal 5 Nominal 5

Since modeling of human actions is often performed
using lognormal distributions [5], we chose such a
distribution where its characters parameters (i.e., u and o)
that are dependent on the two factors listed above
(Stress/stressors level and Task complexity). We used Table
1 [5] to convert the three possible values of the two factors
into numerical values for ¢ and o.

For our specific case we modeled two human related
actions as indicated below:

e Battery repair time: DC battery system restoration
is performed by recovering batteries from nearby
vehicles and connecting them to the plant DC
system. We assumed that this task has high
complexity with extreme stress/stressors level. This
leads to 4 = 45 min and ¢ = 15 min

e Firewater availability time: The operations to align
the firewater system to the RPV are considered a
very complex operation. This time is measured after



the ADS has been activated, i.e., after the RPV has
been depressurized. Also for this case we assumed
that this task has a high complexity with extreme
stress/stressors level. This leads to 4 = 45 min and
o=30.

A summary of the uncertain parameters and their
associated distribution is listed in Table 2.

Table 2. Summary of the uncertain parameters considered and
their associated distribution

Stochastic variable* Distribution | Distribution parameters

DGs Failure time (h) Exponential | 1 = 1.09 1073

DGs Recovery time (h) | Weibull a =0.745,8 = 6.14
Battery life (h) Triangular 4,5,6)

SRV1 failure Bernoulli p= 856107*

PG recovery (h) Lognormal | p=0.793,0 = 1.982
Clad Fail temp. (F) Triangular | (1800, 2200, 2600)
HPCI fails to run (h) Exponential | 1 = 4.431073

RCIC fails to run (h) Exponential | 1 = 4.43 1073

Battery failure time (h) | Exponential | 1 = 3.5107°
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Table 3. Core damage probability for two different power levels
(100% and 120%).

Outcome 100% 120%
OK 0.9902 0.9804
CD 9.82 E-3 1.95 E-2
‘ IEQ l SRVE [DGEecoveryl’zi PGE¥ecoven FWEecovery‘ Outl |d@ Prob.@
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Fig. 5. Simplified ET logic structure for a BWR SBO.

Table 4. Branch probabilities associated to the ET shown in Fig. 5
for both cases (100% and 120% power level).

Batt. rec. time (min) Lognormal | u=45,0 =15

FW avail. time (min) Lognormal | u=45,0 =30

FW flow rate (gpm) Uniform (0, 200, 300)
VI. RESULTS

In [25] we presented several analyses which included
limit surface [26] evaluations and uncertainty
quantifications using advanced data analysis and data
visualization techniques. In this article we focused more on
the probabilistic side of the analysis.

We performed two series of Latin Hypercube
Sampling analysis for the two levels of reactor power
(100% and 120%) using 10,000 samples for each case. The
scope of this analysis is to evaluate how core damage (CD)
probability changes when reactor power is increased by
20%. We also performed this comparison by identifying
importance of specific events by performing the following
for each case:

1. Building an ET based logic structure that queries the
following events: SRV status, DG, PG and FW
recovery (see Fig. 5)

2. Associate each of the 10,000 simulations to a
specific branch of the ET by querying the status of
the SRV, PG, DG and FW components in the
simulation run

3. Evaluate the probability and the outcome associated
to each branch

A summary of the core damage probability for the
cases is shown in Table 3: the probability value almost
doubled for a 20% power increase. The summary of the
branch probabilities represented in Fig. 5 is shown in Table
4. As expected, all branches that lead to CD have a
probability increase while the ones leading to OK decrease.

100% 120% AP
B || O Count Prob. Count Prob. (%)
1 OK 3146 0.375 3238 0.353 -6
2 OK 4549 0.618 4440 0.606 -2
3 OK 847 0.00931 985 0.00926 | -0.6
4 CD 557 0.00982 691 0.0196 | +99
5 OK 333 7.32E-6 223 6.29E-6 | -14
6 OK 254 1.53E-5 189 3.96E-6 | -74
7 OK 251 5.92E-6 175 2.39E-6 | -60
8 CD 63 2.12E-6 59 2.54E-6 | +20

Regarding the FW flow rate, we were able to
determine that a minimum value of 50 gpm is enough to
assure an OK outcome. Note that branches 4 and 8 (in Fig.
5) include also the simulations characterized by FW align
before core damage condition is met but with FW flow rate
insufficient to keep the core cooled.

IV.A. Impact of auxiliary AC power systems (FLEX system)

In addition to the analysis reported above we evaluated
the impact of auxiliary AC system generators as additional
sources of AC power. The U.S. nuclear industry, as a
measure after the Fukushima accident [28], developed a
FLEX system to counterattack the risks associated with
external events (e.g., earthquakes or flooding). Such a
system employs portable AC and DC emergency
generators located not only within the plant perimeter but
also at strategic locations within the US borders in order to
quickly supply affected NPPs with both AC and DC power.
For our case, we assumed a new distribution associated
with the AC recovery time within the plant instead of the
DG recovery time distribution. Since FLEX operations can
be considered as human-related events, we followed the



same approach described in Section V for human related
events. In fact, we assumed that the AC recovery can be
considered to be of moderate complexity and high levels of
stress/stressors. Note that this model may not be indicative
of any actual NPP FLEX strategies — for an actual FLEX
evaluation, plant specific information would need to be
considered. The new AC recovery distribution that
replaces the DG recovery distribution is then a lognormal
having a mean and a standard deviation values as follows:

e mean = 15.0
e standard deviation= 15.0

We then performed a new Latin Hypercube Sampling
analysis in order to estimate the new core damage
probability value (see Table 5) and the branch probabilities
associated with the ET structure shown in Fig. 5 as shown
in Table 6. Note that from Table 6 it is possible to evaluate
the impact of the FLEX system using a familiar ET
structure. In particular, it is possible to note that Brach 1 in
largely impact by the FLEX system (via a new AC
recovery strategy).

Table 5. Core damage probability for two different test cases
(120% with and without FLEX system)

Outcome | 120% w/o FLEX  120% w/ FLEX
OK 0.981 0.995
CD 1.95 E-2 4.59 E-3

Table 6. Branch probabilities associated to the ET shown in Fig. 5
for two different test cases (120% with and without FLEX
system)

Probability (120%) o
Branch | Outcome WoFLEX | w/ FLEX AP (%)

1 OK 0.353 0.505 43
2 OK 0.606 0.490 21
3 OK 0.00926 3.49E-05 -100
4 CD 0.0196 0.00459 =17
5 OK 6.29E-06 2.87E-06 -54
6 OK 3.96E-06 1.79E-09 -100
7 OK 2.39E-06 6.77E-10 -100
8 CD 2.54E-06 1.09E-09 -100

As second step in the analysis, we focused on the
concept of limit surfaces [26]: the boundaries in the space
of the sample parameters that separate failure from
success. The advantage of limit surfaces is that they allow
us to physically visualize how system performances are
reduced due to, for example, a power uprate. By system
performance, we mainly refer to both reduction in recovery
timings (e.g., AC power recovery) and time reduction to
perform steps in reactor operating procedures (e.g., time to
reach HCTL).

For the scope of this article, we focused on a safety
relevant case: DG failure time vs. DG recovery time as
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shown in Fig. 6. These limit surfaces are obtained using
Support Vector Machines (SVM) [27] based.

As expected the failure region (red area) is expanding
when reactor power is increased by 20%. This power
increase on average reduces AC recovery time by about
one hour.
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Fig. 6. Limit surface obtained in a two dimensional space (DG
failure time vs. AC recovery time) for two different power level:
100% (left) and 120% (right).

VII. CONCLUSIONS

In this article we have shown the RISMC approach in
order to evaluate the impact of power uprate on a BWR
SBO accident scenario. We have employed RELAP5-3D as
system simulator code and the RAVEN code to perform the
accident sequence generation and statistical analysis. The
BWR system, the system control logic and the accident
scenario have been directly implemented in the RELAPS-
3D input file. We evaluate the increase of CD probability
of such power uprate and its decrease due to the
implementation of FLEX system to provide emergency
power to the plant. In particular, we have shown how the
RISMC approach to perform PRA analyses can overcome
limitations of classical ET-FT based methodologies and



provide the user to a much larger amount of information
such as time reduction for plant recovery strategies.

NOMENCLATURE
AC Alternating Current
ADS Automatic Depressurization System
BWR  Boiling Water Reactor
CDF Cumulative Distribution Function
DC Direct Current
DG Diesel generator
DW Drywell
EOP Emergency Operating Procedures
ET Event-Tree
FT Fault-Tree
FW Firewater
HPCI  High Pressure Core Injection
IE Initiating Event
LOOP  Loss Of Offsite Power
NPP Nuclear Power Plant
PDF Probability Distribution Function
PG Power Grid
PRA Probabilistic Risk Assessment
PSP Pressure Suppression Pool
RCIC  Reactor Core Isolation Cooling
RPV Reactor Pressure Vessel
SRV Safety Relief Valve
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