PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: June 17, 2016
REVISED: August 23, 2016
ACCEPTED: August 26, 2016
PUBLISHED: September 15, 2016

A magnetically induced quantum critical point in
holography

A. Gnecchi,® U. Gursoy,® O. Papadoulaki® and C. Toldo¢
@ Institute for Theoretical Physics,
KU Leuven, 3001 Leuven, Belgium
b Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,

Utrecht University,
Buys Ballot Building (BBG), Princetonplein 5, 3584 CC Utrecht, The Netherlands

¢Department of Physics, Columbia University,

538 West 120th Street, New York, NY 10027, U.S.A.

E-mail: a.gnecchi@kuleuven.be, u.gursoy@uu.nl, o.papadoulaki@uu.nl,
ct26730columbia.edu

ABSTRACT: We investigate quantum critical points in a 241 dimensional gauge theory
at finite chemical potential y and magnetic field B. The gravity dual is based on 4D
N = 2 Fayet-Iliopoulos gauged supergravity and the solutions we consider — that are
constructed analytically — are extremal, dyonic, asymptotically AdS4 black-branes with a
nontrivial radial profile for the scalar field. We discover a line of second order fixed points
at B = B.(x) between the dyonic black brane and an extremal “thermal gas” solution with
a singularity of good-type, according to the acceptability criteria of Gubser [1]. The dual
field theory is a strongly coupled nonconformal field theory at finite charge and magnetic
field, related to the ABJM theory [2] deformed by a triple trace operator ®3. This line of
fixed points might be useful in studying the various strongly interacting quantum critical
phenomena such as the ones proposed to underlie the cuprate superconductors. We also
find curious similarities between the behaviour of the VeV (®) under B and that of the
quark condensate in 241 dimensional NJL models.
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1 Introduction and summary

Quantum criticality is proposed to play a fundamental role in solution to important open
problems in physics, such as the high 7T, superconductivity [3]. Strongly interacting fixed
points can be obtained by tuning a certain coupling in these systems such as the pressure,
the doping fraction or the magnetic field to a critical value, see e.g. [4] for multiple examples.
The characteristic energy scale AE that governs the spectrum of fluctuations in these
systems vanishes as one approaches this critical point. If the critical point corresponds to
second or higher order then this results in a conformal field theory as an effective theory
governing the dynamics around criticality. Quantum phase transitions essentially happen



in two different ways. It can correspond to a level crossing or a limiting case of an avoided
level crossing. The second case appears to be more common in the condensed matter
systems [4].

On the other hand, the AdS/CFT correspondence [5-7] — over the last two decades —
has proven to be one of the most effective methods in addressing the strongly interacting
critical phenomena. In this paper, we take this route to analyse quantum phase transitions
at strong coupling, from a dual holographic view. As an example of a strongly interacting
field theory one may consider the ABJM model [2], deformed by a bosonic, gauge invariant
triple trace operator ®3, and placed at finite charge ¢ and magnetic field B. The theory
we consider in this paper is related to this model. In fact, we define the precise theory
through the dual gravitational background [8, 9] that are analytic solutions to N' = 2
U(1)-gauged (Fayet-Iliopoulos) supergravity in 4 dimensions [10]. The aforementioned
triple trace deformation corresponds to a scalar field ¢(r) with a particular profile in the
holographic coordinate r, that is determined by an integration constant b, which can be
thought of as the value of the VeV of the corresponding bosonic gauge invariant operator
®. Thus, the solutions we consider in this paper are governed by three parameters: the
VeV b, the charge ¢ (alternatively, the chemical potential y), and the magnetic field B.
Had this solution to N' = 2 U(1)-gauged (Fayet-Iliopoulos) supergravity in 4 dimensions
been completely equivalent to the corresponding M2 brane solution in 11D, would one
confidently identify the field theory with the deformed ABJM model mentioned in the
beginning of this paragraph. However, instabilities may arise for the scalar fields which are
left outside of the truncation to 4D [52-54]. Therefore, in the most general case the field
theories dual to our solutions are strongly coupled, non conformal theories placed at finite
charge ¢ and magnetic field B that can be obtained from the deformed ABJM model by
following the RG flow initiated by scalar VeVs corresponding to such instabilities.

Four dimensional N' = 2 Fayet-Iliopoulos supergravity allows for the existence of black
branes in asymptotically locally AdS, space, preserving 2 real supercharges (1/4-BPS
states) [11]. Their generalization to non-supersymmetric and finite temperature solutions
were first constructed in [12, 13]. There has been a lot of progress, recently, on holography
for BPS solutions in AdSy from gauged Supergravity, leading to the microstate counting of
1/4-BPS black holes entropy [14-17]. In these examples there exist an AdSs factor in the
near horizon region of the supersymmetric solution, corresponding to an IR fixed point to
which the conformal UV theory flows, as a result of the topological twist induced at the
AdS4 boundary by the presence of magnetic fields. Another related line of investigation in
the literature involve a holographic study of the ABJM type models deformed by dynam-
ical flavors [18, 19]. The latter paper [19] also reports similar quantum critical behaviour
in the ABJM model deformed by dynamical flavor degrees of freedom. Finally, dilatonic,
charged and dyonic black-branes have been investigated in the holographic context in a
series of papers by Goldstein et al. [20, 21] and [22].

We focus on two different types of such solutions in this paper: the first one is an
asymptotically AdS, extremal and dyonic' black brane solution with a horizon at a finite

"'We consider a theory in which two abelian electric-magnetic gauge fields are present. Our main subject
of investigation will be systems that are electrically charged with respect to the first gauge field and
magnetically charged with respect to the second. Even though they are not dyonic under the same gauge



locus r = r,. We denote this solution with a subscript “BB” below. The second type
of solution is horizonless dyonic “thermal gas” solution that can be obtained by sending
the horizon rp, to a singularity rs. We denote this solution with a subscript “TG” below.
Generically it is insufficient to treat these latter type of singular solutions in the classical
gravity approximation. However, as shown in [1], if the singularity can always be cloaked
by a horizon, the two-derivative gravity approximation is able to capture interesting IR
physics in the dual CFT at vanishing string coupling g (corresponding to large N in the
dual gauge theory).? We find that this latter requirement results in the following non-trivial
conditions:

_T
qra =0, bra = £2 4\/’ ‘ (1.1)
Having imposed these conditions on the TG solution, we then seek for possible phase
transitions between the BB and the TG branches by considering the difference of free
energies between these branches AF = Fgg — Frg.
We find that this difference indeed vanishes at the critical locus

42
~ 3 X

|B| = Be(x) (1.2)

As one approaches this locus, the difference of free energies vanishes quadratically and the
difference of magnetizations and the VeVs of the scalar operator vanish linearly,

) Ab T (1.3)

_3V3(B-B.,)
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signaling a second order quantum critical point. In particular, as we show below, the two
solutions become the same as B approaches B.. The order parameter of this critical be-
havior can then be identified as either the magnetization or the VeV of the scalar operator.

The magnetization behaves linearly in B in the BB phase and as v/B in the TG phase:

3v3 B

mpB = —— 1> mrag
V2 x|

exhibiting a discontinuity in the derivative with respect to both B and x at the critical

=3271,/|BJsgn(B), (1.4)

point. Similar scaling arise when one considers the VeV (®) in the BB and the TG phases,
as we show in section 3. At this point, one should emphasize that there is no independent
source for the operator ® in the dual theory. Therefore the VeV is completely set by
the intensive variables B and x (chemical potential corresponding to electric charge ¢) at
vanishing 7T'.

It is tempting to relate the phase coalescence we find here to a confinement-
deconfinement type critical behaviour as usually is the case with the Hawking-Page type
transitions between a black brane and a thermal gas geometry. However, we show in sec-
tion 4.3 that this expectation is false. In particular, we calculate the Polyakov loop holo-
graphically, and show that it is finite on both backgrounds. A computation of the quark

field, we use a broader definition of dyonic system and we refer to them as possessing generic electric and
magnetic charges.
2We elaborate on details of the criteria in section 2.2.
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Figure 1. The quantum critical region on a fixed x slice. The boundary of the critical region,
shown by the dashed line, is where the thermal fluctuations are of the same order as the intrinsic
energy scale AFE. The latter vanishes as one approaches the critical point, signaling a quantum
phase transition.

anti-quark potential supports this conclusion. Finally, we determined the holographic en-
tanglement entropy between a region and its complement in the dual field theory and
observed that the thermal gas also corresponds to a “deconfined” state in the correspond-
ing field theory along with the black brane phase. As we argue in section 3.4, the critical
point is more similar to formation of quark condensate in the 3D Nambu-Jona-Lasinio
models with magnetic field, rather than a confinement-deconfinement type transition.

We also consider the spectrum of fluctuations around these two type of solutions and
find that the spectrum is gapped in the TG phase determined by a non-vanishing character-
istic energy scale AE and that this energy scale vanishes in the BB phase. These findings
are discussed in section 4 and they are in accord with the expectations from quantum
critical points mentioned above. In particular, the boundary of the quantum critical region
in the phase space should be determined by the condition AT ~ T ~ AE and AFE should
vanish as one approaches the critical point. This is because the TG solution approaches
the BB solution in the vicinity of the critical point and the latter has a zero mode. Just
by dimensional analysis one can determine the boundary of the quantum critical region on
a fixed y slice of the phase diagram as T' & (B — B.)?/ B2 where p is a positive real
number which we do not determine in this paper. The expected phase diagram on fixed
slice is shown in figure 1.

The rest of the paper is organized as follows. In the next section we describe the
gravity setting and introduce the dyonic black brane background. In particular section 2.2
discusses the singular limit of these black branes and outlines construction of the thermal
gas backgrounds with a “good” type singularity. We derive the good singularity condi-
tion (1.1) in this section. In section 3, we study the thermodynamics of the system in the
mixed ensemble defined by finite electric chemical potential xy and magnetic field B at van-
ishing temperature and establish the presence of the quantum critical point. At the end of
this section, in subsection 3.4, we compare our findings with similar phenomena observed



in 241 dimensional Nambu-Jona-Lasinio models. In particular we discuss qualitative sim-
ilarities and dissimilarities in the profile of the condensate between our holographic model
and the NJL models. In section 4 we consider fluctuations around our backgrounds ob-
tained by exciting point-like fields and extended objects such as a Nambu-Goto string and
minimal surfaces. Here we show that the quantum criticality we find is not associated with
a confinement-deconfenement type. Finally in section 5 we discuss the various implications
of our findings in regard to applications in particle physics and condensed matter. We also
give an outlook of the various routes one can extend our investigations. Several appendices
detail our calculations.

2 Gravity set up

Our starting point is the Einstein-Maxwell-scalar theory with two gauge fields and one real
scalar field, (k2 = 87Gy)

1 R 1 3
I=— / V=gd'z( = — Z0,p0tp — V0P FO FOm _ SemV2/3epl plav
K2 2 2 K 5 I

~ V() + San (2.1)

This action is identical to the bosonic action of an N/ = 2 sector of N' = 8 gauged supergrav-
ity, obtained by truncating the SO(8) gauging to the U(1)* Cartan subgroup and further
restricting to the diagonal U(1) [8]. In the language of N' = 2 gauged supergravity it corre-
sponds to a Fayet-Iliopoulos, or R-symmetry gauging where the U(1)r € SU(2) g symmetry
is made local. Moreover, the field content can be seen as a no-axions truncation of the
N = 2 Supergravity special geometry described by the prepotential F' = —2i,/X9(X1)3 [9],
with the identification z = X/ X1 = eV/3/3%¢_ The Gibbons- Hawking term is

Sar = —;/d%\/—h@, (2.2)

where h.,, is the induced metric at the boundary and © is the trace of the extrinsic
curvature of the boundary given by ©,, = —%(V,mu +V,n,); n# is the unit normal vector
at the boundary pointing outwards. The theory is specified by two constants &y, &1, a
coupling ¢, and a scalar potential

3 2 3v3
Vo) = —% cosh (\/;cp(r)> , ﬁds = m, € =1/3%/&1, (2.3)

where fpqs is the AdS length scale. The theory admits a (supersymmetric) AdS; vacuum
at the ¢ = 0 locus. At this extremum the scalar field has mass miﬁids = —2, satisfying
the Breitenlohner-Freedman bound. In particular, the mass of the scalar fits in the window
—% < miﬁQAdS < —9/4 4+ 1 that allows for mixed boundary conditions for the scalar field
at the boundary [23, 24]. From this point on we set & = 1/v/2,& = 3/v/2, g = 1 thus
£ =1, lags = 1. In particular the radial direction r will be considered as dimensionless
below. One can easily recover the dimension of a given object by inserting appropriate
powers of £aq4g if needed.



2.1 Black branes

We consider static, spherically symmetric black brane solutions of (2.1) supported by two
magnetic gauge fields

1
AN = EpA(xdy —ydzx), A=0,1, (2.4)

where = and y are the two spatial directions.

For reasons explained in section 3 we are rather interested in dyonic solutions with one
electric and one magnetic charge, obtained by an electric-magnetic duality transformation
only on the gauge field A°. After the transformation the gauge fields are given as,

~0 q

B

The charges of the dualized configuration are related to the original one (2.4) by
q(po) = —p’=q B (pl) =p'=B. (2.6)

The duality transformation leaves the metric invariant, hence the solution is of the form
as in [12, 13]. We use the parameterization as in [24]. The metric is

ds* = — \/Hof(T + ¢/ Ho(r)H(r <+r (dz® + dy )) (2.7)

with
3b b c c
Hy(r)=1-"", Hi(r)=1+_. [(r)="+ 5+~ H(r)H(), (28
while the metric coefficients are related to the charges as
2 2 2 2
oo =) @)+ 30 2.9)
2b ’ 2 ' '
The scalar field has a radial profile
Ve 2.1
e m——T (2.10)

which, from its asymptotic expansion at the boundary r — oo
o= f o). (2.11)

reveals that it satisfies mixed boundary conditions: ¢4 = %goQ_ . From the holographic
point of view this corresponds to the insertion of a multi trace deformation in the field
theory [23, 25-27], which, in this case, is given by a triple trace deformation® \ ®3, with

30ne has the freedom to interpret this deformation either as having Neuman boundary conditions for
the scalar that correspond to a relevant deformation with a nonzero source at the field theory side or as
mixed boundary conditions for the scalar that correspond to a marginal deformation with zero source at
the field theory side. Depending on the boundary conditions the renomalization prescription changes and
in the two cases we have to add different finite counterterms. These counterterms, in the end change the
field theory interpretation despite the fact that the gravitation solutions look the same e.g. [14, 16]. In
case though that one wants to preserve supersymmetry at the dual field theory, one cannot have mixed
boundary conditions, so supersymmetry resolves the issue of the interpretation [28, 29].



Ap =1, A= %. The dual operator corresponds to & ~ Tr[ZIZl - WTW], obtained after
the identification of the bi-fundamental matter of the boundary theory as Z2 = W' =
W2 =W [28], giving an N/ = 2 truncation of ABJM. Multi traces are products of single
trace operators, normalized canonically [25] s.t. (O) = O(N®) as N — oco. Due to large-N
factorization, there is no mixing at leading order between single and multi trace operators.

It is important to note that the dyonic solution above is a solution of (2.1) with the
modified kinetic terms for the gauge fields?

£hual _ 6—\/6§DF£VF0HV _ 3e‘\/2%‘”Fl}VF1 w (2.12)

We note that, in the holographic dual field theory we interpret ¢ as the charge density and
B as the magnetic field. Reinserting the dimensions, the correct identification is given by

a5t = qLads, e By = B/lags, (2.13)

where e is the electric charge in the dual 241 dimensional field theory. Finally, we provide
an expression for the chemical potential associated with the conserved electric charge g,
see appendix A.l for details. The chemical potential is given by

/ 0 g = ~5 hq_ R (2.14)

which we identify as the electric chemical potential after the aforementioned duality trans-
formation.

2.2 Good singularities and the thermal gas solution

In addition to the black brane solution we described in the previous section, the action (2.1)
supports thermal gas type solutions [30], that are horizonless solutions with vanishing en-
tropy. These solutions can be obtained from the black brane by sending the horizon location
to the singularity, that are located at the zeros of the functions Hy(r) and Hi(r) in (2.8):

rs = 3b for b>0, rs = —b for b<O0. (2.15)

These solutions have curvature singularities that are expected to be resolved in the embed-
ding in the full string theory. These solutions may still be acceptable in the 3+1 dimensional
supergravity reduction that we work with in this paper. In the AdS/CFT context, these
solutions are dual to a well-defined state in the dual field theory if these singularities satisfy
the Gubser’s criteria [1]. Indeed, such singular solutions which satisfy the criteria of [1] are
shown to correspond to the confined phase in the dual QCD-like gauge theories in [30, 31].

The Gubser criterion requires the singular solution be obtainable from a black-hole in
the limit that the horizon approaches the singularity r, — rs. To be specific, we consider
b > 0. The criterion can be expressed in different ways depending on which parameters
in the solution one keeps constant, that will eventually correspond to the choice of the
thermodynamic ensemble. As will become clear in the next section, we find appropriate

4The potential and the Einstein-Hilbert term remain invariant.



to work with the mixed ensemble where we keep constant the magnetic charge B and the
electric chemical potential x, defined in (2.14). Thus, the black brane solution is specified
in terms of (b, B, q). Consider the family of black branes with horizon r; = 3b+ ¢, for small
e. For b > 0, the horizon r, satisfies f(r,) = 0 where f is defined in (2.8). This equation,
with r, = 3b + €, can be analytically solved in B. For small epsilon € < 1, one finds

(652 +x2) €
NGT)

This is an analytic expression valid for € > 0, which determines the horizon of the black

|B| = 8v2b% + +0 () . (2.16)

brane. Under the crucial assumption that the magnetization x remains finite (see sec-
tion 3.2), we analytically continue eq. f(ry) = 0 to € = 0 and we take this limit as the
defining relation of the “good singularity”. Namely, we define the thermal gas as the subset
in parameter space (B, brg, x) defined by

bre = 271/|B]. (2.17)

Using (2.14), we find that the charge of the thermal gas solution ¢r¢ vanishes linearly in
the limit € — O:
gre = —2xe — 0. (2.18)

Notice that for the thermal gas the dependence on y drops from the metric:
dstg = —e Vo2 (r® + 6br + 21b°%) dt* + Ve dr? (r® + 6br + 211)2)71 +
e\/é“"(r —3b)? (da® + dy?) ,

3/2
Voo _ [T +b
e (r ) (2.19)

Since B, b are related, a suitable set of parameters for the thermal gas is (B, x,T), where

T is the temperature of the gas. Together with x, they are moduli of the thermal gas
solution. Notice it has the same number of parameters as the black brane non-singular
solution.

Before concluding this section, let us mention the fact that the definition for a good
singularity requires that the gravitational force acting on an uncharged probe particle is
always attractive. More precisely, the radial motion of an uncharged particle with zero
angular momentum and energy E' is determined by the equation (see for example [32])

1 (dr\? 1
5 (d7’> — eﬁ‘('f') = §E2, (220)
where the effective potential is given by

1
Ve (1) = —5 Y- (2.21)
Hence the requirement that the force on a probe particle is never repulsive translates in
—dgy/dr > 0 throughout the spacetime. We illustrate this in figure 2. In figure 3, instead,
we show how a good singularity (red line) can be obtained as a limit of regular black brane
configurations, by tuning the value of the magnetic field B (blue, yellow and green lines

are non extremal black branes with two regular horizons).
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Figure 2. Example of warp factor —g;; for a good singularity (left: B = 8v/2, x =1, r, = 3b = 3)
and a bad one (right: B = 1, ¢ = 5, b = 0.5). The dashed line indicates the location of the
singularity. This coincides with the horizon, 7, = 7ging, in the plot to the left (good singularity);
in this case there is no region where —gj,(r) < 0. In the plot on the right (bad singularity), on the
contrary, there exists a region where —gy,(r) < 0 (for instance r < 2). In both cases of good and
bad singularities, the warp factors g,, and g, go to zero at r = 74ng and the curvature invariants
such as the Kretschmann scalar R, ,o *V*7 diverge at r = rging.
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Figure 3. Example of warp factor —gs; for black branes (blue, orange and green lines) and good
singularity (red line). The curves corresponds to b = 0.33 and xy = 1 and are drawn for the
following values of magnetic charge: B = 7.44,5.14,3.37,1.26. In all cases the singularity is located
at 7 = ry = 1; here the curvature invariants such as the Kretschmann scalar R, ,- R'*"P? diverge.
The plot shows the family of black branes approaching the good singularity solution (thermal gas)
as B approaches the value given by (2.17), at fixed b and x. In the limit, the horizon is pushed to
the singularity rs, = 3b =rp,.

3 Thermodynamic quantities and the quantum critical point

3.1 Thermodynamics of the black brane

Thermodynamic properties of gravity solutions in asymptotic Anti de Sitter space can be
obtained via holographic renormalization of the on-shell action and gravitational stress-
energy tensor. We have derived these quantities in appendix A.1, to which we refer for the
following relations and identities.



The free energy of any black brane solution of section 2.1 is

Fpp = Mpp — TS + qBBX » (3.1)
where Mpp is the mass of the black brane

2 2
B —qpp

M =
BB 4bpp

(3.2)
T ,Spp are its temperature and entropy, gpp is the electric charge carried by the black
brane, y is the chemical potential given in equation (2.14). We are interested in the ther-
modynamics of these solutions in the mixed ensemble, defined by the free energy relation

dFgg = —SppdIl’' + qgpdx + mppdB, (3.3)

therefore the independent thermodynamic variables are T', x and B.

Furthermore, we will restrict to the case of vanishing temperature, 7' = 0. In order to
eliminate rp, ¢ and b in the expressions we will make use of (2.14), the horizon equation
f(rr) = 0 (f is as in (2.8)) and the extremality condition f’(rp) = 0. We obtain two
interesting ways to express the free energy. First, we can solve the aforementioned equations
in terms of B and ¢ and obtain:

1
B = (=5b" — 120%n, — 6b%rj, + 4br) + 3r}) (3.4)
27h1 3r)

Substitution in (3.1) then gives

Fpp = (57“h - 7b) (b + ’I“h)2 . (3.6)

1
i
This form is useful to check the zeros of the free energy. The function in (3.6) clearly has a
quadratic zero at r, = —b, which corresponds to the singularity when b < 0, and this gives
a consistency check. When b > 0, it appears there is another zero at r; = 7b/5, however
this value for 7y is smaller than the actual singularity rs = 3b, so in fact the free energy
has only one zero that is given by rp, = —b. It is also clear from the formula above that
the free energy is positive definite.

It is more appropriate, for thermodynamics studies, to express the free energy in terms
of the correct variables of mixed ensemble, namely (7', B, x). To do so we just need to solve
the equations above, this time in terms of y and B. We obtain the following expressions:

B? +160x*
Y — 9B? + 160y | (37)
64+/6|x?
—9B2% + 32*
= ——— "% sen(y), 3.8
dBB 8\/6)(2 gn(x) ( )
332x* — 3B?
bpp = | = — 3.9
BB 2 64[x[? (39)

~10 -



These solutions are valid only for y # 0. The free energy of the black brane then follows as,
. 27B? + 32*
BB = — (= -
24+/6]x|

This form also makes it obvious that the free energy of the black brane is positive definite.

(3.10)

Now one can check the first law of thermodynamics (3.3). The charge density g should be

obtained as
0FBp

gBB = W (3.11)

B,T
This indeed matches (3.8) perfectly, hence the first law is satisfied. This provides another

non-trivial check on our calculations. Finally, the magnetization of the black brane solution
is obtained as

3 B
_ 3[. (3.12)
OB |, r 2 |x|

We find that the magnetization of the black brane grows linearly with B.

mpB =

3.2 Thermodynamics of the thermal gas

As explained in section 2.2, the thermal gas solution is obtained from the black brane by
sending the horizon 7}, to one of the singularities. In the following, in particular, we take
b > 0.° Consider then the limit of a black brane with horizon r, = 3b+¢, as e — 0. In the
grand canonical ensemble the states have fixed magnetic potential, thus xr¢ = x5 = X,
which remains finite in the limit. As explained in section 2.2, this requirement implies the
following relation between the parameter by of the thermal gas and the magnetic field B

bra = +271+/|B], (3.13)

and it also leads to a vanishing electric charge, grg = 0, see equation (2.18). The temper-
ature of the thermal gas is a moduli parameter, which can be set to any positive value.
To match the black brane solution above, then, we choose Trg = 0. The entropy for the
thermal gas also vanishes in this limit as,

Sre = 167275 |B|1ve — 0. (3.14)

In the appendix we compute the thermal gas free energy by holographic renormalization.
We have verified that the same result is obtained by substituting in equation (3.1) the
expressions (2.18) and (3.14), and imposing the defining relation (3.13). We arrive at
B? T
=9271|B|2. 3.15
=21l (315)

This result is clearly consistent with the first law of thermodynamics: the charge of the

Frg = Mrg =

thermal gas solution obtained by the variation with respect to x trivially vanishes, just
like (2.18). Moreover, the magnetization is given by

0FBp
0B T

mre = =3.271./|B|sgn(B). (3.16)

5Good singularities with b < 0 require B = 0 instead, thus, in this ensemble (in which the magnetic field
is fixed) they do not compete with regular black branes, the latter generically having B # 0.

- 11 -



We note the qualitative difference between the black brane (3.12) and the thermal gas (3.16)
magnetization: the former is linear in B whereas the latter grows like the square root of B.

3.3 Difference of free energies and the quantum critical point

In the work presented so far, we have introduced all relevant physical quantities needed to
study the thermodynamics phase space. We will proceed now to investigate possible phase
transitions between black brane and thermal gas solutions.

In order to determine whether a phase transition occurs, we consider the difference of
free energies (3.10) and (3.15):

27B2 + 32y*
S5O 5-dip)s. (3.17)
24+/6||

We note that it is even under B — —B and x — —)x independently. This means, as it

AF = Fpp — Frg =

should be, that the free energy is C-even and P-even. We can consider analogous checks
for the difference of magnetizations

_OAF

OAF| _3V6 B
OB

=2 2 3971/|B|sgn(B), (3.18)
x, T 8 ’ ’

which is C-even and P-odd, and the difference of electric charges

OAF

—9B? + 32x4

= = —— " sen , 3.19
dBB 8\/6)(2 gn(x) ( )

B,T

yielding that the total charge is P-even and C-odd.
Finally, we find that the free energies of the TG and the BB phases become equal at
42
| Be| = TX27 (3.20)
corresponding to the zero of (3.17). Therefore, for every value of x (except x = 0) we
find a non-analytic behaviour in the free energy at a finite magnetic field given by (3.20).

Quite interestingly, this non-analytic behaviour is of second order. In fact, by expanding
the difference of free energy (3.17) near the critical point, we obtain

o 2
AF = 3\/§(B|Xfc) +0O(B - B.)>. (3.21)

In order to exhibit the discontinuity in the free energy we can directly compare the free
energies and their derivatives at the critical point. We find that, even though the free
energies and their first derivatives are continuous between the two phases, the second
derivative jumps by an excess amount 31/3/2/|x| from the TG phase to the BB phase at
B = B.. Our example corresponds to the limiting case of an avoided level crossing, in the
sense that the TG phase always wins over the BB phase everywhere in the phase space
except the critical point B = B, where their free energies become equal. This is still called
a “quantum phase transition” according to the definition utilised in [4]. However we avoid
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using the term “transition” in this paper, as it sounds more appropriate for an actual level
crossing.
The excess magnetization (3.18) can be expanded near the critical point as,
3(B—-B.) 9

Am=3y/-—+ O(B—- B, 3.22
showing that the difference of magnetization between the two phases vanishes linearly at
the critical point. We note that the excess charge also vanishes, although quadratically,
precisely at the critical point:

N 2
Aq = —3\/§(BXQBC) sgn(x) + O(B — B,)?. (3.23)

These results are another non-trivial check of our previous calculations. It is indeed ex-
pected that, at a second order critical point, two competing solutions become the same (as
opposed to a first order point where two different, competing states coexist). The solutions
we consider are completely specified by S, m and ¢q. The entropies Sgp and Spg vanish
at the critical point (to check that Spp vanish one has to impose on the black brane pa-
rameters (3.7)—(3.9) the criticality condition (3.20)), hence they are the same. As we have
seen in (3.22) the magnetizations also become the same. For consistency of a second order
critical point then the charges should also become the same. Since the charge of thermal
gas vanishes, the critical behaviour then should happen when the charge of the black brane
also vanishes, as nicely confirmed above.

The difference between the vacuum expectation values of the condensates in the ther-
mal gas phase, brg in (3.13) and the black brane phase, bpp in (3.9) also vanishes linearly as

3\/§ (B _ BC)

Ab=bpa—bgg = ——"—" "% 4+ O(B- B,)?. 3.24
TG BB 16 N +O( ) ( )

3.4 Similarities with the Nambu-Jona-Lasinio model

Our results may find interesting applications in particle physics, regarding dynamical mass
generation and spontaneous flavor symmetry breaking in 2+1 dimensional gauge theories
under external magnetic fields (see [33] and the references therein). It is well known that
magnetic field acts as a catalyst of chiral condensate in 3+1 dimensional gauge theories
with massless fermions [34, 35]. As shown in [36, 37], it also acts as a catalyst for the flavor
symmetry breaking U(2) — U(1) x U(1) in similar 241 dimensional gauge theories, with
fermions in a 4-component reducible Dirac representation. These theories are generalized
and extensively studied in vector like, large-N; Nambu-Jona-Lasinio (NJL) models, as
reviewed in [33]. There, the spontaneous symmetry breaking pattern becomes U(2Ny) —
U(Ny) x U(INy). We observe that our results for the scaling of the condensate in the two
phases “BB” and “TG”, given by equations (3.9) and (3.13), are in striking similarity with
the results obtained in these effective models [33].
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Figure 4. Plot of the free energies of the black brane and the solitonic solution for y = 1, as
functions of B, the blue line is the black brane and the yellow line is the thermal gas. The thermal

gas is thermodynamically favoured everywhere in the (B, x) region. At the critical line, defined as

B= ‘Lsﬁxg, black brane and thermal gas coincide.
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Figure 5. Plot of the difference of the the two free energies for y = 1, as function of B.

In the absence of magnetic fields, the flavor condensate in NJL models vanish when
the quartic fermion coupling ¢ is smaller than a critical value g.. For g > g. a fermion
mass term is dynamically generated and the condensate becomes nonzero [33]. Its strength
o is proportional to the difference g — g.. This breaks the flavor symmetry as described
above. Now we would like to compare this with our values for the condensate in the two
phases (3.9) and (3.13) at B = 0. First of all, we see that the condensate vanishes in the
TG phase, therefore the phase with g > g. of the NJL model could only be identified with
the black brane phase:

3 x|

oo =bpp| =1/=&l. (3.25)
o 2 2
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It is therefore tempting to identify the chemical potential x with the difference of the 4-
fermion coupling and the critical coupling, i.e. g — g., for g > g.. As explained in [33], two
qualitatively different phases arise when B is turned on. In the phase analogous to our
black brane phase, the condensate scales as

B2

~ 14+ —— 3.26
ONJL,1 00< + 1203> ) ( )

for B < 03, which qualitatively agrees with the scaling we have found in (3.9):

B2
o0 (1 5101 ) (3.27)
B0 3840

which is valid for any value B. The second phase is obtained in the region ¢ — g. which
corresponds to x/ VB < 1 limit. In this limit the TG phase definitely wins over the BB
phase, as can be seen from (3.17), which is the only phase where scaling of the condensate

opB = bpp

becomes independent of x, (2.17)
orq = brg = 0.297VB, (3.28)

whereas the NJL model result is
ongL2 = 0.446V B, (3.29)

again, in qualitative agreement. We note that this qualitative agreement is non-trivial, for
it cannot be deduced only by dimensional analysis, as the condensate in our case could
have scaled with an arbitrary power of the ratio B/x2.

4 Fluctuations

Another support to our findings, namely presence of quantum criticality at the locus
B = B.(x), comes from the study of the theory’s spectrum.

Let’s consider then the spectrum of fluctuations obtained by acting with a bosonic
operator Oa on the vacuum. This can be determined holographically, by studying the
fluctuations of the dual bosonic bulk field with mass m? = A(3 — A), on the gravity
background corresponding to the field theory vacuum.

Below we consider the special case of fluctuations with m? = 0, both on the thermal
gas (TG) and the black brane (BB) backgrounds. The spectrum is given by solutions
corresponding to energy eigenvalues w, which are normalizable both in the ultra-violet
(r — oo) and in the infra-red regime (namely r — 75 on the TG solution, and r — rj on
the BB solution). For simplicity we set k =0 in the following. The fluctuation equation
can be obtained from the action

Stine = / /g9 8,40, = / drd® /=g {g7 0,60 (r)? + w2gtlEu(P) . (A1)

—iwt

where we set ¢(r,z) = &,(r)e ™" The first term above can be removed by integration

by parts and renormalizing away the boundary term [38], the second term is required to
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be finite for finite energy fluctuations. Thus, the spectrum is obtained by solving the
fluctuation equation

d Tr
L) + 5 log(V=gg™) €,(r) — w?g"grnu(r) = 0, (42)
and requiring
TIR
lim w2/ drv/—gg® &, (r)|? < oo, (4.3)
TUV —00 ruv

on the solution. Here ryyv denotes a UV cut-off and 7R is either of rg or 7, depending on
the background. Potential divergences in the integral above arise both in the UV and in
the IR. For backgrounds with no horizon, requirement of square integrability in these two
limits typically results in a discrete spectrum w = wy,, see for example [30]. This conclusion
does not necessarily hold for backgrounds with regular horizon and such cases should be
studied separately.

4.1 Spectrum in the thermal gas phase

We are going to address the question whether there exists normalizable solutions (according
to the normalizability requirement above) with energy w arbitrarily close to 0. If such
solutions can be found, then there is a continuum of states starting just above the vacuum
w = 0. For w < 1 the solution can be obtained perturbatively as &,(r) = &+w?d&,+O(w?).
Since the expression in (4.3) is already quadratic in w we can safely drop the second term
and consider solutions to (4.2) with w = 0. The solution can be obtained analytically in
this limit as

Todr! T dr!
50(7“):01—1-02 wW201+02/007W, (4.4)
where C o are integration constants and we used the ansatz (2.7). The solution with
C1 # 0 is not normalizable near the UV because the limit in (4.3) diverges linearly in ryy.
Therefore we set C1 = 0. This solution with Cs # 0 is clearly normalizable in the UV as
the result of the integration in (4.3) is proportional to rgy;.

Now let us look at what happens near the IR. For b > 0 the singularity is given by
rs = 3b. The TG solution with a good type of singularity at that point is given by setting
the parameters as (1.1) in (2.7). One then shows that

r?f(r) = (r — 3b) ((r +b)® — B2/(2b)) = 48b%¢*> + O(¢€*) , (4.5)

where we set 7 = 3b 4 ¢ and expanded near ¢ = 0 in the second equation. To obtain
this double zero it is crucial to use the second condition in (1.1), namely b = 2=7/4,/|B.
Otherwise one obtains a single zero: f — O(¢). Therefore the solution behaves as &y ~ ¢!
near the singularity and the integral in (4.3) diverges as e~2. We conclude that there are
no normalizable excitations with arbitrarily small w in the TG phase.

It is instructive to consider what would happen had we released the condition b =
277/ 4\/® on the TG solution. If we keep b arbitrary then the blackening factor has a
single zero as mentioned above. Then the solution would behave as £ ~ loge and the

integral in (4.3) would have a finite limit as elog®(e) plus a constant. Thus, one would
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have obtained a normalizable excitation with an arbitrarily small energy. This should not
happen for consistency of the entire picture and we learn that the condition (1.1) is essential
for this.

It is also instructive to carry out the analysis above by releasing our assumption w < 1.
In this case it is simpler to first consider normalizability in the IR. The solution to the
fluctuation equation (4.2) near r = ry can be obtained analytically in terms of Bessel
functions as

E(r) = Ci(r—ry) 2.0y (%) +Co(r —1)7Y) <\/:)_Lr> 7 (4.6)

where we defined the combination
7 1
wp = 2%/(335) : (4.7)

Requiring normalizability® in the IR then sets Cy = iCy. This solution should generically
go over to a solution near the UV that is given by the sum of the two independent solutions
& ~cpand € ~ cor® where ¢y and ¢; are related since we already fixed one of the integration
constants by setting C; = 0. Therefore this solution is non-normalizable in general, it would
be normalizable only at certain discrete values of w,, that are non-vanishing. We reach the
same conclusion that there exist no normalizable excitations with arbitrarily small w in the
TG phase.

In passing, we note that the fluctuation equation (4.2) can be put in a Schrédinger form

_d¥(z)

72 + Vi(2)¥(2) = w?V(2), (4.8)

by transforming to the tortoise coordinate z and making the field redefinition,

_ * dr _ 00 rr /— *%
2= / L e= ) (4.9)

where g, is the metric of the thermal gas solution given by (2.19). Luckily one obtains an
analytic expression for the Schrodinger potential in the r-variable as

(3b — 1) (216 + 6br + %) (279b* — 54b3r + b?r? — 4br® — 21%)

Vi(r) = T . (4.10)

Vs(2)

We plot this potential for a choice of b = 1 in figure 6. Note that the potential vanishes
as r approaches the singularity located at » = 3b. This does not mean however that there
exists massless states: as we have shown above states with w = 0 does not have square-
normalizable wave-functions. We also note that the Schrodinger potential enjoys the same
qualitative features with the —g;; factor plotted in the left figure in 2.

5Normalizability condition is determined by passing to the Euclidean solution with the Euclidean fre-
quency related to the Lorenztian one as wg = —iw.
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Figure 6. We plot the Schrodinger potential for fluctuations around the thermal gas solution for
the choice of b = 1. The potential vanishes as r approaches the singularity located at 3b. Therefore
the potential has the same qualitative features as the —gy; factor plotted in the right figure in 2.

4.2 Spectrum in the black brane phase

In contrast to the thermal gas phase above, one can show that there exist normalizable
fluctuations with arbitrarily small frequency w in the black brane phase. The easiest
argument is as follows. The analog of the normalizable modes in the black brane with
Lorentzian signature are the quasi-normal modes (QNM). They are fluctuations on the
black brane background with infalling boundary conditions on the horizon and vanishing
Dirichlet boundary condition on the boundary. At finite 7', the QNM spectrum is typically
given by separated poles on the lower complex frequency plane, the lowest QNM having
|w| ~ T, therefore one can think of these fluctuations as gapped, see for example the review
paper [39]. If we view the extremal brane as the 7' — 0 limit of a finite 7' black brane
background, then we indeed find modes with arbitrarily small energy in the spectrum [40,
41]. This argument is robust as long as one keeps an arbitrarily small but finite 7' = € as
an IR cut-off. Then the lowest QNM indeed has an arbitrarily small energy |w| o € and the
separation between the QNMs are also of the same order, |Aw| ~ €. In the strict 7" — 0
limit however, multiple QNMs accumulate at the origin of the w complex plane producing
a branch-cut [40, 41]. This is in accordance with the holographic correspondence as one
expects branch-cuts in the retarded Green’s function in a strongly interacting conformal
field theory at vanishing temperature.

4.3 Extended probes

We have also studied the solutions of string-like extended objects in our backgrounds.
We summarize here our findings; the details are presented in appendix B. It is impor-
tant to study extended objects on our backgrounds because the corresponding field theory
quantities such as the Polyakov loop, the Wilson loop and the entanglement entropy may
potentially be considered as order parameters of the critical behavior we found in section 3.

In section B.1 we calculate the action of a Nambu-Goto string wrapped on the Eu-
clidean time direction and extending in the holographic direction from the boundary to
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the origin in our geometries. We studied this on both of the backgrounds where the origin
corresponds to the horizon in the case of the Euclidean black brane, and to the singularity
rs in the case of the thermal gas. The exponential of this string action corresponds to the
Polyakov loop in the corresponding field theory [42]. We find that, with a proper renor-
malization at the boundary, the area swiped by the string is finite on both backgrounds,
whereas it should be infinite on the thermal gas and finite on the black brane, had these two
geometries corresponded to confined (deconfined) phases of the corresponding field theory.

Secondly, in section B.2 we studied the string that is attached on the boundary at
two points —[/2 and +[/2 on the x-axis, and hanging down towards the origin. Action
of this string corresponds to the potential V,; between a quark-antiquark pair located at
x = —1/2 and +1/2 [43, 44]. Thus, this potential should grow with [/ in a confining phase.
We find however that on the thermal gas phase the V,; remains finite and it approaches to
a constant as [ is increased. Therefore this phase does not exhibit a confining behaviour.

The entanglement entropy of a region A with its complement on the boundary theory is
obtained in the holographic dual by studying the area of a space-like minimal surface that
ends on the boundary of region A [45]. This quantity may also act as an order parameter
in confinement-deconfinement type transitions [46]. We investigate this possibility in ap-
pendix B.3 where we study the space-like minimal surfaces on the thermal gas background.
We find that the connected surfaces always have an area smaller than the corresponding
disconnected surfaces with the same boundary conditions. This means that the thermal
gas, as the black brane, always correspond to a deconfined state in the corresponding
field theory.

We found that none of these quantities provide an order parameter for the phase
transition, as they exhibit the same qualitative behaviour both on the black brane and the
thermal gas phases. On the other hand, this negative statement provides a valuable insight
on the nature of the critical point, namely that it does not correspond to a confinement-
deconfinement type transition.

5 Discussion and outlook

Our main result is a second order phase critical behaviour in the free energy at vanishing
temperature, between an electrically and magnetically charged black brane and a mag-
netically charged, horizonless thermal gas solution, in the Einstein-Maxwell-scalar theory
defined by the action (2.1). Both geometries asymptote to AdS, near the boundary, and
we work in a mixed ensemble where the magnetic charge B and the electrostatic potential
x are held fixed, and the temperature 7T is set to zero. Quite conveniently, both the back-
grounds and the physical quantities such as the thermodynamic potentials can be obtained
analytically in our study. Moreover, the action can be embedded in M-theory [9]. The
critical point we find is somewhat trivial from the gravity point of view, as we define the
thermal gas solution by a limiting procedure where the horizon is sent to the singularity.
It is then obvious that these two solutions become the same in this limit. However, it is
quite non-trivial from the boundary field theory point of view, as when expressed in terms
of the physical variables, y and B the critical behavior takes place at a finite value of B
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and y and T = 0. Hence, it corresponds to a line of quantum critical points in the phase
space, that can be parametrized by x or B, as in equation (3.20).

Our dual field theory is a 241 dimensional, strongly coupled gauge theory related to
the deformed ABJM model [2] as explained in section 1. From a bottom-up perspective we
have a nonconformal, strongly coupled gauge theory in 241D at finite chemical potential
x and magnetic field B, holographically defined by the gravity solution. The gauge group
U(1)? in the gravitational theory corresponds to part of the global R-symmetry of the
boundary field theory, and this group is weakly gauged to produce background magnetic
and electric fields. The theory is also deformed by a bosonic triple trace operator” — that
corresponds to the bulk scalar ¢ — whereby breaking the conformality of the theory and
initiating an RG flow. The theory is non-conformal even at vanishing B and x. This is
clear from the running of the scalar ¢ when b # 0. Therefore we are dealing with a non-
conformal strongly coupled gauge theory that contains both fermionic and bosonic fields
in the adjoint representation of the gauge group. It is important to note however, that the
deformation of the field theory by the operator ®3 is not relevant, in fact it is classically
marginal, since the engineering dimension of this operator is 3 by dimensional analysis. It
is also important to note that the source corresponding to the the operator ® is set to zero
in the field theory, see the discussion on page 12 of [23]. Therefore the only dimensionful
scales in the theory, at vanishing temperature, are the electrostatic potential x and the
magnetic field B.

Below we discuss the implications of our findings in the holographic dual field theory
and in supergravity.

Nature of the quantum critical point: first of all, as we showed in section 4.3 by
studying the Polyakov loop, the quark potential and the entanglement entropy that the
quantum critical point we find here does not correspond to a confinement-deconfiement type
transition. However, it may correspond to spontaneous breaking of a flavor symmetry in the
dual field theory. We already noted similarities between our findings and the earlier studies
in 241 dimensional Nambu-Jona-Lasinio models in section 3.4. In particular we observed
that the dependence of the VeV of the scalar operator follow a similar pattern observed
in these studies: there is agreement between the square-root scaling in the TG phase and
the near critical region of the NJL model, as well as between the scaling in the BB phase
and the g > g, region of the NJL model. There is one important difference in the latter
case however. Comparison of equations (3.26) and (3.27) shows that while the magnetic
field tends to increase the value of the condensate in the NJL model, it tends to destroy
the condensate in our holographic model. The former phenomenon is called the magnetic
catalysis [34, 35], a phenomenon well-established by perturbative and effective field theory
calculations (see [33] for a recent review, see also a study of the phenomenon in the ABJM
type models in [18]). Decrease of the condensate with B in confining 34+1D gauge theories
above the deconfinement temperature has also been observed both on the lattice [47], in

"As discussed in footnote 3, we interpret the scalar field as having mixed boundary conditions. Other
choices are possible for the bulk solution under consideration, leading to different holographic interpretations
that are not of interest in this work.
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the Sakai-Sugimoto model [48, 49] and in the hard-wall model [50], and it was termed the
iverse magnetic catalysis. The same phenomenon also occurs in 2+1D, as studies on the
lattice, the NJL model and the NJL with Polyakov loop shows [51]. What we find here is
the inverse magnetic catalysis at vanishing temperature in a holographic dual of a strongly
interacting gauge theory. One should understand this phenomenon from a microscopic
point of view. We suspect that both strong interactions and non-conformality of our
theory is essential in this respect. Firstly, as one can show in perturbative studies quite
generally, there is no inverse magnetic catalysis when the interactions are weak [34, 35].
Secondly, even the strongest interactions cannot allow for a condensate, hence a fermion
mass term, when the underlying theory is conformally invariant.

Implications for the ABJM-type models: regardless of the discussion above, it would
be interesting to investigate possible patterns of flavor symmetry breaking in the ABJM
model under magnetic field directly from the microscopic point of view. As discussed
in [2] the superpotential enjoys a full SU(4) flavor symmetry obtained by combining the
SU(2) x SU(2) symmetry that rotates the A and B type superfield doublets separately, and
the SU(2)g R-symmetry. The breaking SU(4) — SU(2) x SU(2) —that is very similar to
the pattern in the NJL model above — would take place through formation of a condensate
in a non-conformal cousin of ABJM. This can happen either spontaneously through strong
interactions, or explicitly with aid of an external magnetic field. All of these questions
should first be studied in the perturbative ABJM model.

When the N = 2 Supergravity theory considered in this paper is embedded in N' = 8
Supergravity (as required if one is interested in ABJM as the dual theory), the stability of
the gravity configuration needs to be discussed taking into account the full AV = 8 theory.
In particular, it was shown in [52] that the AdSy x R? vacua are unstable in the N' = 8
theory for generic values of the parameters. These instabilities arise because charged scalars
of the N/ = 8 theory do not satisfy the AdS> BF bound. Notice that, in our analysis, also
the supersymmetric configuration is thermodynamically disfavoured with respect to the
thermal gas, at 7' = 0. This can be interpreted in the dual theory as the supersymmetric
vacuum being disfavoured with respect to a scalar field condensate. In order to understand
the BPS magnetic solution in the context of ABJM one should analyze the instability of
such specific background along the lines of [52-54]. This will be left for future work.

Applications to condensed matter theory: despite its exotic nature, the ABJM the-
ory at finite charge density comes very close to various realistic applications in 2 (spatial)
dimensional condensed matter systems such as the cuprate superconductors and the var-
ious strongly coupled semimetals, see [55-58] for reviews. The field theory we consider
in this paper is a non-conformal, strongly coupled field theory related to ABJM in the
manner explained in section 1. When put under external magnetic fields, this theory is
quite interesting in view of condensed matter applications. It is long argued that resolu-
tion to the various puzzles concerning high 7T, superconductivity may be associated with
presence of a quantum critical point under the superconducting dome [3]. Connections
between superconductivity [33] and spontaneous symmetry breaking in the NJL type effec-
tive theories are also well-known, and our observations above may be interesting from this
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point of view. All in all, it remains to be seen whether the quantum criticality we found
may serve as a proxy for a strongly interacting quantum critical point that may underlie
high T, superconductivity. To explore this issue it is crucial to study our system at finite
T. It is also crucial to study correlators of e.g. composite fermionic operators and explore
their behaviour near the quantum critical point. We plan to return these questions in the
near future.

Quite interestingly, there also seems to be an inherent connection between the spon-
taneous breaking in the NJL models above and the studies of graphene at strong Coulomb
interactions [59]. In the theory of graphene, the flavor symmetry we describe in section 3.4
may be viewed as a chiral symmetry of a 4-component Dirac fermion constructed out
of fermionic excitations around two conical points and two sublattices in the bipartite
hexagonal lattice of a 2D graphene sheet. Spontaneous symmetry breaking and dynamical
generation of a fermion mass has the effect of a semimetal-insulator transition at vanishing
temperature [59], which has been observed in highly oriented pyrolitic graphite in the pres-
ence of magnetic field perpendicular to the layers [60]. Can we view the critical behavior
we find here as a similar semimetal-insulator type transition? It would be interesting to
answer these questions by calculating thermal and electric conductivities in our holographic
model, and this is in fact an issue we plan to investigate in the near future.

Finally, it is very interesting to explore the fate of the phase that we found in this
paper in the regime of finite temperature. In particular we would like to know if there
exists a phase separation line in the (7, B) plane, at fixed y, of second or higher order
phase transitions that ends on the quantum critical point in the vanishing 7" limit. It is
also conceivable that the critical behavior we find extends into a true second order phase
transition at finite 7' domain. We plan to address these questions in a future work. Also,
the precise shape of the crossover lines that separate the critical and non-critical regions
shown in figure 1 is a question to be addressed in future work.

Open questions in the Supergravity context: last but not least, our study raises
interesting questions directly in the context of supergravity. First of all, our ensemble
includes BPS solutions [11]. One may wonder how the BPS brane decays into the thermal
gas solution, despite being stable with respect to small fluctuation in charge.® In general,
supersymmetric solutions saturates a BPS bound of the form M > |Q|. For zero tempera-
ture solutions, the mass coincides with the system’s free energy in the canonical ensemble.
Thus, one explains the stability of the supersymemtric solution in the thermodynamic
phase space. We considered however a mized canonical-grand canonical ensemble, where
the free energy is given by (3.1), thus saturation of the BPS bound is no more equivalent
to non-perturbative thermodynamic stability. With the choice of this ensemble, we indeed

8This can be done, for instance by computing the permittivity of the solution, defined as

0
= (52).
0 )
For the BPS configuration this quantity is positive, denoting stability with respect to charge fluctuations:
the chemical potential of the black brane increases as a result of placing more charge on it.
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find that in most of the parameter space except the locus of critical point, the thermal gas
is thermodynamically dominant at vanishing temperature.

It is interesting to ask if the thermal gas itself preserves any supersymmetry, and if
so if it preserves more supersymmetries than the black brane. In this case, the thermody-
namically favoured solution would be the most supersymmetric one. In order to address
this question, one has to embed the theory we considered in N/ = 2 U(1)-gauged Super-
gravity (a truncation of N/ = 8 SO(8) gauged theory where only the diagonal U(1) in the
Cartan of SO(8) is gauged). Here, however, an electric-magnetic duality transformation
affects not only the Maxwell fields, but also the gauging parameters. Such a transforma-
tion has been performed in [61] in the black hole case; the analogue, black brane 1/4-BPS
constraint obtained with this transformation is 3B — ¢ = 0. One can then see that the
thermal gas, having ¢ = 0, cannot preserve supersymmetry for B # 0 (we find that the
thermal gas cannot be supersymmetric for either choice of Killing spinors studied in the
literature [8, 61, 62]). We cannot exclude less conventional duality transformations on the
gauging that acts differently than in [61], but, since the origin of magnetic gauging param-
eters in M-theory is less understood [63], the analysis of these scenarios goes beyond the
scope of the present analysis.

Finally, a pressing question relates to possible resolution of the thermal gas singularities
in the full string theory. It will be very interesting to see if the singularities at » = 3b and
r = —b can be excised through an enhancon mechanism found in the study of D1-D5 and
D2-D6 systems, see [64].
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A On-shell action via holographic renormalization and background
subtraction
A.1 On-shell action via holographic renormalization

In this section we compute the on-shell action for our configurations. In doing so, we plug
in the action (2.1) the solutions of the equations of motion and perform the integration
over all space. Since the quantity Son_shen obtained this way is per se divergent, we need
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to resort to the techniques of holographic renormalization (see for instance [65-68]). We
therefore add to the action (2.1) appropriate counterterms that we denote by

Sonfshell,ren = Oon—shell + Sct . (Al)

The counterterms we need to add are functions of boundary curvature invariants, hence
they do not alter the bulk equations of motion. The prescription for such terms is spelled
out for example in [23] (see also [69] for a related computation). They are constructed from
the boundary Ricci scalar R3 and a function W(y) of the scalar fields, called superpotential:

1 : Cads
St =-—= | davh| 2R —W : A2
=i | Vi (AR ) (A2
In this expression, h is the determinant of the induced metric at the boundary OM, hgp,
and R34 is its Ricci curvature. For the black brane the curvature of the boundary is zero,
hence the first addendum vanishes identically. The superpotential W appearing in (A.2)
satisfies the following relation:

3 3
Vo) = 5 (—w e grawow) (A.3)

The crucial point in the computation of counterterms for mixed boundary condition is the
fact that the superpotential relation (A.3) fixes the function W(¢) up to finite terms, that
would in principle affect the renormalized physical quantities. Indeed, to completely fix
this finite term one needs an additional requirement, namely that the holographic renor-
malization be derived via a well-defined variational principle. As explained in [23], only
one specific choice of finite term (thus of W), satisfying (A.3)) satisfies this requirement.”
Following the prescription of [23] and the work [24] we find that the correct superpotential
counterterm one has to use for our solutions (both branes and thermal gas) is

W(p) =

e 1
= <1++<,03+O(<,04)> : (A.4)
lads

2 6V6
the finite part being given by the ¢? term.

The action obtained here requires specific boundary conditions on the vector fields:
these are exactly imposing fixed electric chemical potential and fixed magnetic charge. Let
us mention the fact that imposing fixed electric charge would amount in adding the finite
Hawking-Ross boundary term [70]

1
SHR = —— BevVhngF® Ay, (A.5)
A7 G OM
where n, is an outward pointing vector normal to the boundary. Since we have decided
to work in the mixed ensemble (with fixed electric chemical potential and fixed magnetic

charge) we do not need to make such an addition.

Tt has been noticed in [24] that, when the boundary conditions enforce a marginal deformation, the
finite part of the counterterm W can be equivalently determined by taking the superpotential W = Wyou
that drives the flow of the scalar fields, ¢’ = 9,Wyiow of the solution. See [24] for more details.
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We are now ready to perform the computation of the on-shell action. We first start
by noticing that, making use of the Einstein’s equations of motion, the action (2.1) can be
rewritten in terms of the Ricci tensor components plus the integrals over the kinetic terms
of the gauge fields:

Y 0o
Son—shell = 475 / dry/—g [(RZ + Ri) /2 + IAZFI?VFE’W] + ScH . (AG)
Th

We first impose a radial cutoff rg that should be sent to infinity after integration. The
extrema of integration are r, and ro. The total on shell action takes the form

5 3eib 3c1b— 3
Son—shell = LB <— (261 _ 8b3) 90 + c2 cl o

37 \ 4 Ty =30 Ay p) TAYTh 6o - 2T3> ’

(A.7)

where 8 comes from the integration in the time direction. For the solution at hand, the
computation of the counterterm using (A.4) gives

By (1 3 2 3

Sct = E Z (201 — 8b ) —3b ro + To . (A8)
Plugging in (A.7) and (A.8) in (A.1) we see that the divergencies cancel, giving a finite
result for the on-shell action. Using the horizon equation f(rg) = 0, we can recast (A.1) in
the following form:

1
Sos.ren = m—wﬁv (3(3b— 1) (b +14)* — 2¢y) . (A.9)

At this point we can directly rewrite the on-shell action in terms of the thermodynamic
potentials. The mass of the system can be computed from the renormalized stress energy

tensor 72

b 2 6Sren
TV = — :
Vh 6hap

The following expression gives the conserved charge associated with the boundary Killing

(A.10)

vector K (aab is the induced metric on the spacelike section ¥ of the boundary and wu, is
the unit normal vector to X):

Qk = / dar/ou, T K, . (A.11)
X
The mass of the system is then obtained for K = J, and one finds
M=Qy = -+ (A.12)
T Tam 2 ‘

This expression coincides with the mass computed via the AMD procedure [71, 72]. The
temperature T’ is

_ Ldf(n) L
dmodr |, Hy(nH(r)

—12b2%r), — 4r3
_ TR —cC1 47}, ’ (A.13)

o amf(en = 36) ()
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and the entropy density reads

S — Area _ T]%\/Ho(?”h)H:f(Th) . (A.14)

4k2 4K2

The magnetostatic potential mp and the electrostatic one x respectively read

mpg = —/ G1 pdr, X = —/ Fy irdr . (A.15)
Th

Th

The field G is the dual of the field strength F' = dA and it is defined in this way:

1 ac 5

Gtr,A = ZﬁtrzyaTxAy = et'rxyIAEFwy7 (A16)
with Levi Civita tensor

EMVPU = eZef,eZegeabcd, €0123 — 1. (A17)

. A by
With €4y = h?(r) and Fﬁl = B one gets Gyn = I"ﬁg , hence

q 3B

X:m7 mBzm. (A.18)

Having all the conserved quantities and the potential defined, one can check that the first
law of thermodynamics is satisfied:

dM = TdS — ydg + mdB, (A.19)

and the (renormalized) on-shell action Son_shellren coincides with the free energy for the
mixed ensemble g I
Zonzshellren _ 2 — A — TS + xq. (A.20)
B B
A.2 Background subtraction method

We will now illustrate the background subtraction method for the free energy computation.
The appropriate background should have the same boundary asymptotics of the solution
taken into consideration and, in addition to it, it has zero AMD mass.

Obviously, we should subtract the same background from the two solutions that we
want to compare. Using different backgrounds would result in a finite piece that comes
from the difference between the two backgrounds.

For our specific example, such a background turns out to be the domain wall solution
with metric

452 = =12\ [Ho(r Hi(r) de* + — HO‘ZT?H?,( < I AR, (a)
T 1 T

r

and area element

do? = da? + dy?. (A.22)
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Furthermore, the background has zero magnetic and electric charges F},, = (0,0,0,0) and
the same asymptotic expansion for the scalar field at infinity.

To compute the finite on-shell action we subtract the on-shell action of the background
from the on-shell action of the black brane. We can use the same rewriting (A.6) used in
the previous section. Since for the background configuration the electric and the magnetic
charges are zero, the on-shell action can be written as a whole as an integral of the Ricci
tensor component R:. One can then expand the difference around 79 — oo. The result is
given in terms of a finite part and subleading terms that go to zero as rg — oco.

_5v<mﬁ+1%%ﬁ+3wz—mq—3@

I=" 1 )+O@05 (A.23)

This quantity coincides with the renormalized on shell action (A.9), and the free energy
F' is the finite part divided by g, which is exactly FF = M — T'S + ¢x. Hence in this case
the background subtraction gives the same result as the holographic renormalization.

A.3 On-shell action for the thermal gas solution

As we show in a previous section the way we acquire the acceptable thermal gas solution

is to take the limit r, — r,. Likewise to compute the on-shell action we will perform the

same procedure as in the black brane case but the limits of integration will be rs+¢€, € — 0

and r — oco. After the subtraction of the background one finds
C1

—5

All the rest thermodynamic quantities are computed as in the black brane but taking the

Fso1 = MADM,SOI = (A24)

limit rp — 7.

As one can notice, we have found the thermodynamic quantities and the free energy as
functions of 7y, ¢1, b, using the 7' = 0 condition we can express them in terms of the actual
thermodynamical variables T'= 0, x, B.

B Extended objects

B.1 Polyakov loop

Action of a Euclidean string propagating on the background is given by
1

ViV ge%

Ing = \/det(aaXuaﬁXVgW)dadT, (B.1)

where g,,,, is the Euclidean metric of the target space. This area diverges in an asymptoti-
cally AdS space-time and the renormalization procedure is standard [43]. After renormal-
ization, the area on the Fuclidean black brane background is obviously finite because the
near horizon geometry is flat corresponding to the origin in the Euclidean signature. The
area on the thermal gas background can be obtained by choosing a gauge 0 = r, 7 = tg
where tg is the imaginary time. Then one obtains det(0n X*0sX" guv) = gitgrr = 1 where
we used (2.7) with ¢ = itg. Thus, after renormalization of the UV divergence, we again
find a finite area for the Nambu-Goto string on the thermal gas, even though there is a
singularity at r = 7.
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B.2 The quark potential

We consider a string embedded in the thermal gas background that is attached on the
boundary at two points separated by a distance [. A typical geometry minimizing the (B.1)
with this boundary condition is a curve that ends on the boundary r» = oo at the points
(x,y) = (£1/2,0) and hangs down in the interior of the geometry making a turning point
at r = ro, see for example [73]. The on-shell action is proportional to the quark-antiquark
potential on the boundary and the latter can be put in a form [73]

Vag = H(ro)l — 2d(ro) (B.2)

where
)

d(m):2/:o r i <\/H2 ~H2(rg) — H(s))—2/3 drG(r), (B.3)

b

with H? = g4¢se and G? = gugrr. On our backgrounds these quantities simplify as
G?(r) = 1 and H?(r) = f(r)r? where f is defined in (2.8). On a confining background,
as | increases, the turning point of the string, 79 approaches to a final value r = ry
located deeper in the interior of the geometry where d(r¢) and c(ry) attain finite values.
Therefore, one obtains linear confinement in (B.2). On our thermal gas geometry this point
corresponds to the singularity ry = 3b. In order to explore behaviour of the function H
near this point we set rg = 3b + € and expand for small e. The blackening factor f on the
thermal gas can be put in the form

o) = Hulr) (21200 - 31 (B.4)

where Hy and H; are defined in (2.8). Using this expression and the good singularity
condition (1.1) we obtain

H(rg) = r2f(ro) — 4v/3be, (B.5)

in the limit ¢ — 0. Therefore, we find that d(rg) in (B.2) remains finite as rg — 3b
as [ increases, whereas H(rp) vanishes linearly in this limit. This means that the only
way confinement may arise from (B.2) is by [ diverging faster than 1/e. The latter is
given by [73]

- 2/°° er(r) H(rg \/ ’r'o e dr (B.6)

i v e 2 e i o

Changing integration variable r = 3b+e¢, 1o = 3b+ €g, to focus near the singularity, we find

o de
:/60 46 Je—eo+ - (B.7)

that always remain finite. We conclude that the string is not confining on the thermal gas
solution.
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B.3 Entanglement entropy

Entanglement entropy can be employed to check if the thermal gas is a confining back-
ground. For a confining background there are two possible minimal surfaces with the same
end points on the boundary. When confinement occurs the favoured minimal surface is the
two disconnected straight lines extending from the endpoints of the line segment inside the
bulk. In the deconfined phase the minimal surface is the curved line that connects the two
endpoints. In the following we identify: h(r)? = r2\/Ho(r)H;(r). We divide the boundary
region into two parts A and B (A’s complement), where A is defined as: 1/2 < x < 1/2 and
0 < y < co. By parametrizing this 2-dim surface with (x,y) we can write down the action
that should be minimized as

. 12 2 (Ozr () ?
A L/_l/2 doh (r (z)) \/1+ T (B.8)

One notices that the Lagrangian does not depend explicitly on x, hence the quantity

H=— , (B.9)
1+ 8351”)2
U(r)2h(r)?
is conserved. If r* is the minimal value of r with respect to z, 97|« = 0, then
H=—h(r")?, (B.10)
but H is a constant and always equals —h (7). Thus we can solve B.9 for 9,7,
h(r)4
Oyr = U(r)h(r) )t 1. (B.11)

We can now compute the length [ that minimizes the area B.8 as a function of r*,

oo}

L / dr ! , (B.12)

© U 1

where r*> is the UV cut-off. Eliminating / from the B.8, we find for the connected surface

L [ h(r)3 1
A" = . B.1
2GN4 /r* drh(?"*)2U('r‘> h(r)4 1 ( 3)
h(r*)4

The area for the disconnected case is simply,

oo

; L " h(r)
Adls — d B.14
2GNa / "Ur) (B.14)

where rg is infinitesimally close to the singularity.
Plotting the difference between B.13 and B.14 A®" — A4S a5 a function of [ for all
values of B and x we find that the connected minimal surface is always favoured, leading

to the conclusion that thermal gas always corresponds to a deconfined phase.
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