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ABSTRACT 

 
A detailed phase field model for the effect of pore drag on grain growth kinetics was 

implemented in MARMOT. The model takes into consideration both the curvature-driven grain 

boundary motion and pore migration by surface diffusion. As such, the model accounts for the 

interaction between pore and grain boundary kinetics, which tends to retard the grain growth 

process. Our 2D and 3D simulations demonstrate that the model capture all possible pore-grain 

boundary interactions proposed in theoretical models. For high enough surface mobility, the 

pores move along with the migrating boundary as a quasi-rigid-body, albeit hindering its 

migration rate compared to the pore-free case. For less mobile pores, the migrating boundary can 

separate from the pores. For the pore-controlled grain growth kinetics, the model predicts a 

strong dependence of the growth rate on the number of pores, pore size, and surface diffusivity in 

agreement with theroretical models. An evolution equation for the grain size that includes these 

parameters was derived and showed to agree well with numerical solution. It shows a smooth 

transition from boundary-controlled kinetics to pore-controlled kinetics as the surface diffusivity 

decreases or the number of pores or their size increases. This equation can be utilized in BISON 

to give accurate estimate for the grain size evolution. This will be accomplished in the near 

future. The effect of solute drag and anisotropy of grain boundary on grain growth will be 

investigated in future studies.       
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1. Introduction  

All physical properties of polycrystalline solids such as yield stress, fracture strength, 

electrical breakdown strength, dielectric constant, etc. are strongly dependent on the grain size 

[1, 6]. This is due to the prominent role of grain boundaries in influencing material properties. 

Samples with smaller grain size have higher grain boundary area per unit volume. Furthermore, 

it was found out that the performance of several materials under extreme conditions, such as 

irradiation, high temperature, high stresses, etc., is highly affected by the grain size [1, 7]. For 

instance, theory and experiments showed a significant reduction of fission-gas release and 

dimensional changes in UO2 fuel with increasing grain size [7]. Therefore, investigating the 

kinetics of grain growth in uranium dioxide, UO2, is important for understanding the 

performance of the main nuclear fuel in nuclear reactors. Pore drag, solute drag and anisotropy 

of grain boundary energy may affect the overall grain growth rates in materials [1]. Here we 

focus our attention on the effect of pore drag on the process of grain growth.   

Grain growth in porous polycrystalline materials, such as UO2 is a complex process [1-5]. It 

is well established that the kinetics of grain growth in such materials is strongly influenced by 

the interaction between pores and grain boundaries [1-5, 8-13]. The pores exert a drag force on 

the grain boundary and hence hinder the grain boundary migration to the extent that grain growth 

can completely cease. Nevertheless, when diffusion mechanisms are active, i.e., at high 

temperature, the pores migrate along with the grain boundaries and the process of grain growth 

proceeds. However, the presence of pores, whether mobile or immobile, significantly retards 

grain growth in porous materials relative to the fully dense counterpart [1-5, 8-13].  
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While a few phase field models of grain growth have been implemented in MARMOT, a 

model that accounts for the effect of mobile pores on the grain growth kinetics was lacking. 

Here, we introduce the development of such model and its implementation in MARMOT. The 

model is shown to capture all possible pore-grain boundary interactions. Mobile pores move as a 

quasi-rigid-body with a migrating boundary. The grain boundary may separate from less mobile 

pores. An evolution equation for the grain size that reflects the pore drag effect was derived. It 

predicts a smooth transition from boundary-controlled to pore-controlled kinetics as the pore 

mobility decreases or the pore size increases. The dependence of the grain growth/shrinkage rate 

on the pore size, mobility and shape captured from our simulations agree well with predictions 

from theoretical models. It also demonstrated that a migrating boundary easily separate from 

spherical pores, while hardly separate from cylindrical pores. The evolution equation for the 

grain size derived here will be used in BISON models wherever grain size calculations are 

required. The effect of solute drag and anistropic grain boundary energy on the grain growth will 

be investigated later.  

2. Theoretical models of particle-grain boundary interactions 

In order to investigate the so-called particle-inhibited grain growth, a few theoretical models 

were proposed in literature [1-5, 8-13].  These models can be classified into two categories 

depending on whether the particles are treated as mobile or immobile.  Second-phase particles 

such as inclusions or precipitates are usually considered immobile, while pores and bubbles are 

often considered mobile [1-5, 8-13].     

2.1 Immobile particles 
The effect of immobile particles on the grain growth process was first studied by Zener [1]. 

He considered the particles to be immobile, spherical, mono-size, insoluble, and randomly 
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distributed in the polycrystalline solid. Zener considered the curvature to be the driving force for 

the boundary motion. The presence of the particles exerts a drag force on the boundary that 

hinders its motion. The velocity of the boundary is then given 

  
vb = Mb(Fb − NpFp ) ,                   (1) 

In the above, the subscript b denotes the boundary;  v  is the grain boundary velocity, M  is its 

mobility, F is its intrinsic (particle-free) driving force, 		Np  is the number of particles per grain 

boundary area, and 		Fp  is the darg force exerted by the particle on the boundary. In the absence of 

the particles, the intrinsic driving force of the boundary due to its curvature is  

  
Fb =

αγ b
R

.                  (2) 

Here, α  is a geometric factor that equals 2 for a spherical grain,  γ b  is the grain boundary 

energy, and 	R  is the grain radius. The particle drag force depends on the particle shape [14]. For 

a spherical particle, it is given by  

  
Fp = 2πrγ b cosθ sinθ ,                 (3) 

where 	r  is the particle radius, and θ  is the drag angle. For a cylindrical particle, the drag force 

per unit length of the boundary is 

		Fp =2γ b sinθ ,                  (4) 

According to Eq. (1), there are two possible scenarios for the interaction between an 

immobile particle and a grain boundary. First, the boundary can break away and leave the 

particle behind if 
   
Fb ≫ NpFp . Second, the particle can completely pin the boundary and stop the 

garin growth if  
  
Fb = NpFp .   
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2.2 Mobile particles 
The effect of mobile particles such as pores on the kinetics of grain growth is more 

complicated. The pores can easily be dragged along by the moving grain boundary [1-5] if one or 

more of the matter transport mechanisms such as evaporation and condensation, surface 

diffusion, and lattice (volume) diffusion is active.  The first models to investigate the effect of 

pores on grain growth were proposed by Nichols [3], Brook [4], and carpay [5]. In these 

simplified models, the microstructure is assumed to be homogeneous. Hence, only one pore-

boundary complex is used to represent the behavior of the whole system. Moreover, these 

models assume the grain and pore to be spherical for the sake of simplicity. Furthermore, these 

models assume the pore moves as a rigid body without changing shape.  

According to these models, there are two different scenarios for the interaction between the 

pore and the boundary. In one case, the migrating boundary could separate from the pore. In the 

other, the migrating boundary could drag the pore along with it. If the boundary separates from 

the pore, the boundary moves with its intrinsic velocity as in the pore-free case.  

Pore breakaway will simply occur whenever the grain boundary velocity, bv  exceeds the 

pore velocity, pv . This condition can be expressed as [1-5],  

  
MpFp < Mb(Fb − NpFp ) .                   (5) 

In the above, the subscript b denotes the boundary and p the pore; pN  is now the number of 

pores per grain boundary area.  The forces have the same expressions as in Eqs. (2-4). 

Rearranging Eq. (5), the pore separation (breakaway) condition is expressed as, 

  
Fb > NpFp +

MpFp

Mb
.                   (6) 
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On the other hand, if the pore moves along with the boundary, the velocity of the pore-

boundary complex ( v ) can be obtained, by rearranging Eq. (5) and noting that p p/F v M= , as [1-

5] 

  v = M eff Fb ,                                      (7a) 

  
M eff =

Mp Mb

Mp + Np Mb
.                          (7b)  

In the above, effM  is the effective mobility of the pore-boundary complex. Two limiting cases 

are immediately obtained from Eq. (7). When
   
Mp ≫ Np Mb , the effective velocity of the pore-

boundary complex reduces to b bv M F= , hence the effect of pores on the boundary velocity is 

negligible, a case which is commonly referred to as boundary-controlled grain growth. The other 

limiting case is when
   
Mp ≪ Np Mb . In this case, the velocity of the pore-boundary complex 

becomes /p b pv M F N= , and hence the boundary velocity is limited by the pore mobility. This 

case is referred to as pore-controlled grain growth. Under several assumptios on the pore and 

boundary shapes and nature of motion, expressions for the pore mobility for different transport 

mechanisms were derived [1-5]. 

In the classical homogeneous models summarized above, it was assumed that the 

microstructure is homogeneous, and the details of the pore and boundary shapes and nature of 

motion were neglected. In order to alleviate these shortcomings, more advanced models were 

proposed [8-13, 15-18]. The first are of the so-called sharp-interface models [8-13]. In that 

description, the grain boundary moves by mean curvature while the pore migrates via surface 

diffusion. Surface diffusion is expected to be the dominant mechanism of pore migration in 
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solids at temperatures of interest [1].  Moreover, the shrinkage of pores is ignored and hence the 

pores have a prescribed constant volume.  

The mathematical formulation of the sharp-interface dynamics of the co-evolution of pores 

and grain boundary can be summarized as follows. The grain boundary moves under the 

influence of its curvature according to the relation,    

  vb = −γ b Mbκ b .                      (8) 

 
Here, bv  is the velocity of a grain boundary element, 	γ b is the grain boundary energy, bM is the 

grain boundary mobility, and bκ  is the grain boundary local curvature (mean curvature in 3D). 

The curvature is positive for convex surfaces and negative for concave surfaces. On the other 

hand, the pore moves via surface diffusion as 

  
vp =

γ sDsδs Ω
kBT

∇s
2κ s .                    (9) 

In Eq. (9), pv  is the velocity of a surface element of the pores,  γ s is the pore (free) surface 

energy,   Ds  is the surface diffusivity,  δs  is the surface layer width, Ω  is the atomic volume,  kB is 

the Boltzmann’s constant and T  is the absolute temperature, 2
s∇  is the surface Laplacian 

(Laplace operator on the surface), and sκ  is the curvature of the pore (free) surface 

By solving Eq. (8) and Eq. (9) simultaneously, the co-evolution of pores and grain 

boundaries in a porous polycrystalline solid can be tracked. In order to solve these equations, 

boundary conditions at the pore tip must be supplemented. The appropriate boundary conditions 

are the continuity of the chemical potential and surface flux. From Eq. (8) and Eq. (9), this 

translates into the continuity of sκ  and sκ∇  at the pore tip. Moreover, mechanical equilibrium 
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requires that the tension forces to be balanced at the pore tip. This means that the equilibrium 

dihedral angle, Ψ  defined by 1
gb s2cos ( / 2 )γ γ−Ψ =  must be maintained during the evolution.  

Solving such models for general pore and boundary shapes are extremely difficult [8-13]. In 

fact in most cases only 2D solutions for idealized geometries were obtained. This has motivated 

us to introduce a phase field (diffuse-interface) description of the problem. Phase field models 

can easily handle general pore and boundary morphologies since tracking the interface is not 

required in such models.    

3. Phase field model of pore-grain boundary interactions 

3.1 Model description   
The model can be summarized as follows. A combination of conserved and non-conserved 

order parameters (phase fields) is used to fully represent the microstructure of a porous 

polycrystalline solid [15-18]. The conserved field,  c(x,t) , represents the vacancy site fraction, and 

it takes the value of 1 in the pore phase and 0 in the solid phase. In order to distinguish between 

different grains with different orientations in the solid phase, a set of non-conserved order 

parameters, αη , are used, where α = 1,2,....p , with  p being the total number of grains with 

different orientations in the solid. αη =  1  in the α -th grain and 0 otherwise  

The free energy of the heterogeneous system of pores and grains can be constructed as 

follows [18] 

  
F = f (c,η1,...,ηp )+ 1

2
κ c ∇c

2
+ 1

2
κη ∇ηα

2

α=1

p

∑ d3r∫ .                          (10) 

In the above expression, the first term represents the bulk free energy density. The two gradient 

terms account for the excess free energy due to pore (free) surfaces and grain boundaries, 
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respectively. The bulk free energy density used here is simply a positive-definite multi-well 

potential that represents the equilibrium phases. It has the form [15-18],   

  
f (c,η1,...,ηp ) = Ac2(1− c)2 + B (1− c)2 + 6 c ηα

2

α
∑ − 4(1+ c) ηα

3

α
∑ + 3( ηα

2

α
∑ )2⎡

⎣
⎢

⎤

⎦
⎥ .             (11) 

This particular from has (p+1) minima that correspond to the pore phase and all grains in the 

solid phase. A ,  B , κρ and κη  are material constants related to surface and grain boundary 

eneries. 

The conserved density field evolves according to a Cahn-Hilliard equation [19] in the form, 

  
µ = ∂ f (c,η1,....,ηα ,....,ηp ) / ∂c −κ c∇

2c ,               (12a) 

 
∂c
∂t

= ∇⋅ M ∇µ .               (12b) 

Here, 	M is the mobility and µ  is the chemical potential. We assume that surface diffusion is the 

dominant mechanism for pore migration since it usually the case for most solids. This also 

allows us to directly compare our results with the classical and sharp-interface models discussed 

above. In order to simulate surface diffusion, we use the following form for the mobility  

  M = 630M0c
4(1− c)4 ,              (13) 

which is non-zero only at the free surface.   M0  is a material property directly related to the 

surface diffusivity [18].  

The non-conserved order parameters are governed by Allen-Cahn equations [20] as    

  

∂ηα
∂t

= −L δ F /δηα = −L [∂ f (c,η1,....,ηα ,....,ηp ) / ∂ηα  −κη∇
2ηα ]    ∀α ,α = 1, 2....p .      (14) 
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Here, 	L , the Allen-Cahn mobility, is a material property that is related to the grain boundary 

mobility [17]. Using constant gradient and mobility coefficients is equivalent to the assumption 

of isotropic grain boundary energy and mobility.  

 
The phase field model parameters are directly related to the thermodynamic and kinetic 

parameters that appear in the sharp-interface models (Eqs. 8 and 9). Such relation can be 

established using formal asymptotic analysis as was conducted in [18]. This analysis 

demonstrates that the phase field model recovers the sharp-interface counterpart. From that 

analysis the model parameters are determined as 

   
A =

12γ s − 7γ b
ℓ

,                       (15a) 

   
B =

γ gb

ℓ
,                        (15b) 

  
κη = 3

4
γ b ℓ ,            (15c) 

   
κ c =

3
4
ℓ(2γ s −γ b ) ,           (15d)  

  
Lκη = γ b Mb ,            (15e) 

  
M0(κ c +κη ) =

γ sDsδs Ω
kBT

.           (15f) 

In the above,  ℓ  is the diffuse interface width. These relations fix all the model parameters in 

terms of physical material properties, which facilitates obtaining quantitative results that can be 

compared theory and experiments.     
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3.2 Model implementation in MARMOT  

A fully-coupled, fully-implicit finite-element scheme was used to solve the phase field 

kinetic equations. This scheme was implemented in MARMOT [21]. First, the varitional (weak) 

form of the partial differential equations (PDEs) (see Eqs (12) and (14)) was obtained in a 

regular manner. Specifically, the residual equations in the weak form are 

   (µ,φ)− (∂ f / ∂c,φ)− (κ c∇c,∇φ)+ <κ c∇c ⋅n,φ > = 0 ,             (16a) 

   (∂c / ∂t,φ)+ ( M ∇µ,∇φ)− < M ∇µ ⋅n,φ >= 0 ,             (16b) 

   
(∂ηα / ∂t,φ)+ L(∂ f / ∂ηα ,φ)+ L(κη∇ηα ,∇φ)− L <κη∇ηα ⋅n,φ > = 0   ∀α ,α = 1, 2....p .    (16c) 

In the above φ  is a test function, ( , )⋅ ⋅ stands for interior integration, and ,< ⋅ ⋅ >  for boundary 

integration.  Linear Lagrange discretization of Eqs (16a-16c) employing four-node quadrilateral 

elements in 2D and eight-node hexahedral elements in 3D was performed. The time integration 

was carried out via a second-order Backward Differentiation Formula (BDF2). The nonlinear 

system was solved using the Jacobian-Free Newton Krylov (JFNK) method [22]. In all 

simulations, the interface was resolved by at leat six elements. Adaptive mesh size and time step 

were utilized to reduce the computational time. On averge, 2D simulatios took from few hours to 

few days on 24 cores, while 3D simulations took between few days to few weeks on 216 cores.  

4. Results and discussion  

The main goal of the investigation presented here is to quantify the effect of pore drag on the 

grain growth kinetics. A specific set of parametrs representing a particular material cannot be 

used to account for all possible pore-grain boundary interactions. Therefore, without loss of 

generality, we use the following normalized model parameters:   A = 4.25 ,   B = 0.25 ,  
κη = 3.0 , 
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  κ c = 9.0 ,   L = 1.0 . These parameters give a normalized grain boundary energy, e.g.,  γ b = 1.0 , a 

normalized surface energy,  γ s = 2.0 , and a normalized interface width,   ℓ = 4.0 . The pore radius 

and surface diffusivity (and hence   M0 ) were varied to study the different scenarios of por-grain 

boundary interactions. Moreover, to facilitate comparison with theory, we choose a few idealized 

2D and 3D pore and grain boundaries shapes.  

4.1 Shrinkage of an isolated circular grain with boundary pores 
Our first case study is the shrinkage of an isolated circular grain emedded in a large matrix 

grain. The domain size was  912× 912  and the initial circular grain radius was 300. Periodic 

boundary conditions were applied in both directions. The pore radius and surface mobility were 

varied to investigate all possible pore-boundary interactions.  

For the case of pore-free grain shrinkage, the boundary velocity is inversely proportional to 

its radius as given by Eq. (8). This gives rise to the well-known parabolic law, which has the 

form [1]:  

  R
2(t)− R2(0) = −k t ,              (17a) 

  
k = 2γ b Mb = 2Lκη .               (17b) 

Here,   R(t)  is the grain radius at time 	t ,   R(0)  is the initial grain radius, and k  is the rate 

constant. On the other hand, in the presence of pores, the boundary velocity is given by Eq. (7) as 

discussed before. For the current 2D (cylindrical) pore and boundary shapes,   Fb = −γ b / R , 

  
Np = np / 2πR Lcyl , where   

np  is the number of pores on the boundary and   
Lcyl  is the length of the 

cylindrical grain. Moreover, if one ignores coarsening and densification and assume the pore 

moves along with the boundary as a rigid body, the pore radius  r  remains constant and the pore 

mobility can be derived as [1-5, 8-13]  
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Mp =

Dsδs Ω

πkBTr3Lcyl

.               (18) 

Hence, if one assumes   v = dR / dt , Eq. (7) can be directly integrated and the final form is  

  

np Mb

2πLcyl
[R(t)− R(0)]+

Mp

2
[R2(t)− R2(0)] = −γ b Mb Mp t ,          (19) 

Clearly, two limiting cases may arise. For the boundary-controlled shrinkage 

   
( Mp ≫ np Mb / πLcyl ) , the shrinkage kinetics follows Eq. (17) as in the pore-free case. On the 

other hand, for the pore-controlled kinetics 
   
( Mp ≪ np Mb / πLcyl ) , the shrinkage kinetics follows 

  R(t)− R(0) = −k t ,             (20a)  

  
k = 2π γ b MpLcyl / np =

2M0(γ b / γ s )(κη +κ c )

np r3
.          (20b) 

In the second equation, we used Eq. (18) and (15f) to arrive at the second equality that expresses 

the rate constant in terms of the phase field model parameters.  

All the scenarios discussed above were investigated in our simulations. For the pore-free 

case, the kinetics followed Eq. (17). The rate constant was calculated to be 5.9, which is very 

close to the exact value of 6.0 expected from Eq. (17.b). 

In order to account for the effect of pore drag on the kinetics, 8 pores were evenly 

distributed on the boundar as shown in Fig. 1. The quasi-static rigid-body motion of the pores 

with the boundary, which is usually assumed in the theoretical models, is evident from the figure. 

The effect of the surface diffusivity on the kinetics is captured in Fig. 2. The shrinkage kinetics 

changes from boundary-controlled to pore-controlled as the surface mobility (diffusivity) 

decreases. For very high surface mobility (see Fig. 2(a)), the kinetics is boundary-controlled and 

follows the parabolic law of Eq. (17). On the other hand, for low surface mobilities, the kinetics 
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is pore-controlled and follows the linear law in Eq. (20) as shown in Fig. 2(b). The rate constant 

for   M0 = 4.0  and   r = 20 was found to be   k = 5×10−4  which is relatively close to the exact value 

  k = 7.5×10−4  calculated from Eq. (20b).  k  also increases linearly with   M0  , in agreement with 

Eq. (20b), as captured in Fig 2(b). The effect of the pore radius on the pore-controlled kinetics 

was also studied. Fig. 3 shows the strong dependence of the rate constant on the pore radius. The 

dependence agrees wells with Eq. (20b) as captured in Fig. 3. 

  
Fig. 1. Snapshots of the shrinkage of an isolated circular grain with boundary pores. The pores take on 
their equilibrium lenticular shape. For high surface mobility, the pores move along with the boundary as a 
rigid-body.  
 

 

 

  



 

 
 

14 

  
                (a) Boundary-controlled kinetics          (b) Pore-controlled kinetics      

Fig. 2. The dependence of the shrinkage kinetics on the surface mobility. (a) The boundary-controlled 
kinetics follows the parabolic law given by Eq. (17), (b) the pore-controlled kinetics follows the linear 
law in Eq. (20).  For the pore-controlled kinetics, the rate constant increases linearly with the surface 
mobility in agreement with Eq. (20.b).  

  
Fig. 3. The dependence of the pore-controlled shrinkage kinetics on the pore radius. The evolution of the 
grain radius as function of the pore radius is shown in the left figure. The dependence of the rate constant 
on the pore radius agrees well with Eq. (20.b) as captured in the figure on the right.  
 
4.2 Shrinkage of a four-sided grain with edge and corner pores 

According to the well-known topological analysis of grain growth put forward by Neumann 

and Mullins [1, 23], a grain with more than six sides will grow, while a grain with less than six 
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sides will shrink. A grain with six sides is static. The growth/shrinkage rate of a grain with n 

sides is given by  

  
dA(n)

dt
= π

3
γ b Mb(n− 6) ,                                                                          (21) 

where,  A(n) is the area of a grain with n sides. Klinger et. al. have recently generalized the 

analysis to the case where pores are present on the grain boundary [13]. They have derived an 

equation for the grain size that has the form 

  

dR
dt

=
3π Mbγ b Mp(n− 6)

6( 3π MpR + nMb )
.                  (22) 

This form indicates that also a grain with more than six sides grows, while one with less than six 

sides shrinks as in the pore-free case. However, the growth/shrinkage kinetics is now dependent 

on the pore size and mobility. Again, if one assumes the pore size rmains constant during grain 

growth/shrinkage, Eq. (22) can be directly integrated to give a formula equivalent to Eq. (19), 

e.g.,  

  
6nMb[R(t)− R(0)]+ 3 3π Mp[R2(t)− R2(0)] = 3π Mbγ b Mp(n− 6)t .              (23) 

In the same manner as before, two limititng cases can be identified. For the boundary-controlled 

shrinkage 
   
( Mp ≫ 2nMb / 3π ) , the shrinkage kinetics follows the Neumann and Mullins relation 

(e.g., Eq. (21)) as in the pore-free case. On the other hand, for the pore-controlled kinetics 

   
( Mp ≪ 2nMb / 3π ) , the shrinkage kinetics follows 

  R(t)− R(0) = −k t ,             (24a)  

  
k = (n− 6)π γ b Mp / 2 3n =

(n− 6)M0(γ b / γ s )(κη +κ c )

2 3nr3
.         (24b) 
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In Eq. (24b), Eq. (18) and (15f) were used to relate the rate constant to the phase field model 

parameters. 

We study here the shrinkage of a four-sided grain.  The initial grain size of the four-sided 

grain was 200. In this example, natural boundary conditions for all the variables were applied. 

For the pore-free case, the area decreased linearly with time, in agrrement with Eq. (21), as 

shown in Fig. 5(b). The rate constant was found tobe 5.9, which is slightly lower than the exact 

vakue of 6.28. We then investigate the effect of pores on the shrinkage kinetics. Two different 

pore configurations were studied, e.eg., edge (two-grain junction) pores and corner (triple 

junction) pores. Snapshots of the shrinkage of a four-sided grain with edge/corner pores are 

presented in Fig. 4. Similar to the circular grain case, the pores migrate with the boundary as a 

qusi-rigid-body. The equilibrium shapes of edge and corner pores are kept during the evolution 

as evident from the figure. For the case of edge pores with   M0 = 4.0  and   r = 20 , the rate constant 

take on the value   k = 3.3×10−4 , which is relatively close to the exact value   k = 4.3×10−4  

calculated from Eq. (24b). For corner pores, the rate constant was   k = 2.8×10−4 . Therefore, edge 

pores are more mobile and retard the grain boundary less than corner pores. This prediction is in 

agreement with the analysis presented in [12].  

 

 



 

 
 

17 

   

   
Fig. 4. Snapshots of the shrinkage of a four-sided grain with edge (two-grain junction) pores (upper row) 
and corner (triple junction) pores (lower row). Similar to Fig. 1, the quasi-static rigid-body motion of the 
pores with the boundary is evident. Note that the equilibrium shapes of the edge and corner pores are 
different as expected.  
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          (a) Pore-free shrinkage                             (b) Pore-controlled shrinkage 

Fig. 5. Shrinkage kinetics of a four-sided grain, (a) particle-free case, (b) particle-controlled case with 
edge/corner particles located on the boundary. The kinetics in (a) and (b) follows closely Eq. (21) and Eq. 
(24), respectively (see text). Corner pores retards the shrinkage/growth kinetics more than edge pores.   

 

4.3 3D simulations of the shrinkage of a cylindrical grain with 
spherical boundary pores 

Our last case study is devoted for inestigating the shrinkage of a cylindrical grain embedded 

in a large matrix grain with spherical pores located on its boundary. The nature of drag and 

motion of 3D spherical particles is completely different from the 2D cylindrical particles 

discussed above [1-5, 14]. For instance, it is well-known that it is easier for a migrating boundary 

to break away from a 3D spherical particle than from a 2D (cylindrical) particle. Also the 

expression for the pore mobility of a spherical particle differs from the one for a cylindrical 

particle.  

Following the same procedure conducted for the shrinking circular grain in section 4.1, one 

can show that the evolution equation for the cylindrical grain radius is the same as Eq. (19). 

However, the pore mobility of the 3D spherical pore is now given by (to be compared with Eq. 

(18)) [1-5]     
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Mp =

Dsδs Ω

πkBTr4 .                               (25) 

Again as in the 2D case, for the case of pore-free or boundary controlled kinetics, the shrinkage 

proceeds according to the parabolic law of Eq. (17).  For the case of pore-controlled shrinkage, 

the grain radius decrease linealy with as in Eq. (20.a), but the rate constant has now the form 

(compare it with Eq. (20.b)) 

  
k = 2π γ b MpLcyl / np =

2Lcyl M0(γ b / γ s )(κη +κ c )

np r4
           (26)  

In our 3D simulations, the domain size was  500×500×160 . The initial cylindrical grain 

radius was 150 and its height was 160. Periodic boundary conditions were applied in all 

directions. The pore radius and surface mobility were varied to study their effects on the kinetics. 

For the pore-free case, the kinetics indeed followed Eq. (17) (see Fig 7(a)). For the pore-

controlled case, 16 pores were uniformly distributed on the boundary as shown in Fig. 6. As 

clear from the figure, the pores move along with the boundary as a rigid-body similar to the 2D 

case. The kinetics followed Eq. (20.a) with the rate constant now given by Eq. (26). The linear 

dependence of the rate constant on the surface mobility (see Eq. (26)) is captured in Fig. 7(b). 

The dependence of the rate constant on the pore size is also cositent with Eq. (26) as obvious 

from from Fig. 8.   

As mentioned above, boundary can separate from 3D spherical particles easier than from 2D 

cylindrical ones. Therefore, we investigate here the possibility of boundary breakaway. The 

separation condition is given by Eq. (6). Note that for pore-controlled case, the second term on 

the right hand side of Eq. (6) can be neglected and the separation condtioin reduces to the same 

condition for the immobile particle case, e.eg., 
  
Fb > NpFp . For the 3D configuration considered 
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here and assuming the particle exerts the maximum drag force, e.g., 
  
Fp = πrγ b  (see Eq. (3)), the 

breakaway condition simply reduces to 
  
2Lcyl > npr . We ran multiple 3D simulations with

  
Lcyl = 160 ,

  
np = 16 ,   M0 ≤ 2.0  and different pore radius for each simulation. Grain boundary 

separation occurred only when   r <18 , which is consistent with the separation condition. 

Snapshots of the separation of the grain boundary from the pores are presented in Fig. 9.  

 

          
Fig. 6. Snapshots of the shrinkage of a cylindrical circular grain with boundary pores. For high surface 

mobility, the pores move along with the boundary as a rigid-body. 

 

 

 
                (a) Pore-free kinetics                (b) Pore-controlled kinetics      

Fig. 7. The shrinkage kinetics of a cylindrical grain with spherical pores on it boundary (see Fig. 6). (a) 
The pore-free kinetics follows the parabolic law given by Eq. (17), (b) the pore-controlled kinetics 
follows the linear law in Eq. (20) with the rate constant given by Eq. (26).  For the pore-controlled 
kinetics, the rate constant increases linearly with the surface mobility (  M0 ) in agreement with Eq. (26). 
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Fig. 8. The dependence of the pore-controlled shrinkage kinetics on the pore radius for the 3D 
configuration shown in Fig. 6. The evolution of the grain radius as function of the pore radius is shown in 
the left figure. The dependence of the rate constant on the pore radius agrees well with Eq. (26) as 
captured in the figure on the right.  
 

   
Fig. 9. Snapshots of the sepration of the boundary from the pores.  Boundary breakaway took place only 

when the pore radius was smaller than 18 in agrrement with the separation condition developed in the 

text.  

5. Summary 

A quantitative phase field model for the effect of pore drag on the kinetics of grain growth 

was implemented in MARMOT. The model is able to capture all possible pore-grain boundary 

interactions. For high surface mobility, the pores can move along with the migrating boundary as 

a rigid-body. For low surface mobility, the boundary can break away from the pore. An evolution 
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equation (Eq. (19)) was derived that shows the transition from boundary-controlled kinetics to 

pore-controlled as the pore mobility decreases or the pore size increases. For the pore-controlled 

shrinkage/growth, the dependence of the growth/shrinkage rate on the pore mobility and size 

agrees well with the predicitions from theoretical models. Moreover, it was demonstrated that the 

pore morphology/configuration also affect the kinetics. Pores on triple junctions retards the grain 

growth/shrinkage more than pores on two-grain junctions. Furthermore, it was shown that a 

migrating boundary could easily separate from a 3D spherical particle, while it can hardly break 

away from a 2D cylindrical particle.  While most theoretical models assume idealized pore and 

grain boundary shapes (e.g., cylindrical and spherical), the phase field model can be applied to 

general configurations where theoreticl models cannot produce predictive results.    

While the investigation conducted here used normalized parameters to study all possible 

pore-grain boundary interactions, a similar study for uranium dioxide can easily be carried out. 

This is due to the fact that all the model parameters are directly related to the thermodynamic and 

kinetic properties.  The evolution equations for the grain size that account for pore drag derived 

here will be used in BISON. This should improve the material and fuel models in BISON that 

use the grain size as an internal variable. The effects of solute drag and anisotropy of the grain 

boundary on the kinetics will be considered in future work. Also, while surface diffusion is 

considered here to be the dominant mechanism of pore migration, evaporation and condensation 

mechanism may be important for uranium dioxide and will be considered in an upcoming study.  
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