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ABSTRACT

This paper will show an investigation of off-the-shelf
luminaires with the focus on the LED electronic drivers,
specifically the aluminum electrolytic capacitors (AECs), that
have been aged using high temperature shelf life (HTSL) testing
of 135°C in order to prognosticate the remaining useful life of
the luminaires. Luminaires have the potential of seeing
excessive temperatures when being transported across country
or being stored in non-climate controlled warehouses. They are
also being used in outdoor applications in desert environments
that see little or no humidity but will experience extremely
high temperatures during the day. This makes it important to
increase our understanding of what effects being stored at high
temperatures for a prolonged period of time will have on the
usability and survivability of these devices. The U.S.
Department of Energy has made a long term commitment to
advance the efficiency, understanding and development of
solid-state lighting (SSL) and is making a strong push for the
acceptance and use of SSL products. In this work, the four
AECs of three different types inside each LED electronic driver
were studied. The change in capacitance and the change in
equivalent series resistance (ESR) of the AECs were measured
and considered to be a leading indication of failure of the LED
system. These indicators were used to make remaining useful
life predictions to develop an algorithm to

predict the end of life of the AECs. The luminous flux of a
pristine downlight module was also monitored using each LED
electronic driver that was subjected to HTSL through the
progression of the testing to determine a correlation between
the light output of the lamp and the failing components of the
LED electronic driver. Prognostic and Health Management
(PHM) is a useful tool for assessment of the remaining life of
electrical components and is demonstrated for AECs in this
work.
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MOTIVATION

The U.S. Department of Energy (DOE) has made a long-
term commitment to advance R&D breakthroughs in efficiency
and performance of solid-state lighting (SSL). SSL technology
has the potential to reduce the U.S. lighting energy usage in
half and produce large savings. The DOE has developed a
comprehensive national strategy that encompasses Basic Energy
Sciences, Core Technology Research, Product Development,
Manufacturing Research and Development (R&D) Initiative,
Market Development Support, SSL Partnerships, and Standards
Development. [1]
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INTRODUCTION

Luminaires are beginning to replace today’s incandescent
light bulbs and are becoming more prevalent in everyday
applications. They are potentially being used in outdoor
applications in dry desert environments that see little or no
humidity and have the possibility of being transported across
country and stored in non-climate controlled trucks and
warehouses. Luminaires subjected to a high temperature shelf
life for a prolonged period of time may see premature failure of
the individual components, specifically that of an aluminum
electrolytic capacitor (AEC). AEC degradation may cause the
electrical drivers to fail completely due to a current surge or
produce an undesirable light output of the light emitting diodes
(LEDs). This can potentially erode a manufactures profit
margin due to warrantied replacement of the luminaire. AECs
are considered the “weakest link” out of all the components
that make up the electrical driver studied in this work.

An AEC is a type of capacitor that uses an electrolyte to
achieve a larger capacitance per unit volume compared to
traditional capacitors. They are used in high current and low
frequency electrical circuits, such as an LED electrical driver,
and are needed to help convert AC power to DC power [2]. An
AEC is composed of a cathode aluminum foil, electrolytic paper,
liquid electrolyte and a dielectric [3] [4]. The capacitance can
be calculated by knowing the dielectric constant, surface area
of the dielectric and the thickness of the dielectric [3] [4] [7].
The ESR can be found by summing the electrolytic resistance,
dielectric loss and the electrode resistance using equations
outlined in the literature [3] [5] [6] [7]. In this work, the ESR
and capacitance were measured directly using a handheld LCR
meter.

The predominant failure mechanism of the AEC is the loss

of the liquid electrolyte through dissipation and decomposition.
Liquid electrolyte loss can be attributed to an elevated ambient
temperature, electrochemical reactions at the dielectric layer or
diffusion through the seal [5] [7]. This will lead to a drift of
the electrical parameters of the AEC (i.e. capacitance and ESR).
If an AEC is kept at an elevated ambient temperature for a
prolonged period of time causing liquid electrolyte degradation,
then the capacitance will decrease and the ESR will increase
(3] (4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [15].
Therefore, this makes capacitance and ESR excellent leading
indicators to monitor the health of an AEC. This along with
the luminous flux or light output of the LED gives great insight
on the health of the entire luminaire system.

Prognostic health management (PHM) is a useful tool to
assess the remaining useful life of an electrical component such
as an AEC using leading indicators of failure. PHM research has
been published on AECs and LED packages using a variety of
techniques to determine the remaining useful life (RUL) for an
assortment of test conditions. One publication studied the
effects of electrical overstress accelerated aging on AECs. The
ESR and capacitance values were estimated from the capacitor
impedance frequency response and a lump

parameter model, respectively, and used in conjunction with a
Kalman filter to determine the RUL of the AECs [15].
Euclidean and Mahalanobis distance measuring techniques
have been used to assess the RUL of a LED package subjected
to accelerated voltage conditions based off the degradation in
the luminous flux [16]. Three components of a Switching Mode
Power Supply: MOSFETs, diodes and AECs have been studied
using the theory of Physics of Failure. The values of each
component were estimated with the equations outlined in the
literature and were used with a linear regression model to make
RUL predictions [17]. The ESR and capacitance of AECs in an
uninterruptible power supply has been studied. The values were
estimated using current and voltage measurements of the power
supply and used in conjunction with a Least Squares algorithm
to extrapolate RUL of the AECs [18].

In this work, the ESR and capacitance has been measured
directly for AECs subjected to a HTSL test of 135 °C. The
ability to assess damage accrual in AECs before failure and
prognosticate remaining useful life is essential to
understanding the life time of the luminaire itself. A Kalman
Filter was used as a recursive algorithm to estimate the true
state of the AECs based off the collected data [19] [20] [21].
The luminous flux was also recorded to investigate possible
leading indications of failure in the driver.

TEST VEHICLE

The test vehicle for this work was a Philips Fortimo LED
DLM system which included a Philips Fortimo downlight lamp,
a Philips Xitanium electrical driver and a cable to connect the
lamp to the electrical driver. The power cords to connect the
electrical driver to the main power supply were constructed
in-house. The pristine assembly shown in Figure 1 was used to
calculate the luminous flux of the downlight.
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Figure 1: The Philips Fortimo LED DLM System.



Each sample set of AECs were taken from a single Philips
Xitanium electrical driver. These AECs were removed to
directly measure the capacitance and ESR. Figure 2 depicts the
circuit board of a single Xitanium driver with the four AECs
removed.
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Figure 2: AECs Removed from the Philips Xitanium Driver.

Each Xitanium electrical driver consisted of four AECs of
three various types. The AEC characteristics are given in Table

Table 1: AEC Characteristics.

AEC | Endurance | Temperature Rated | Capacitance
# @ 105 °C Range [°C] Voltage [WF]
[Hrs.] [Vdc]

1 8k — 10k -40 — 105 35 220
2& 10k — 12k -40 — 105 350 33
3

4 4k — 5k -40 — 105 50 22
TEST ENVIRONMENT

The removed AECs and the remaining portion of the
Philips Xitanium driver were kept in a Thermotron thermal
chamber at 135 °C for the duration of the test. The components
were removed from the chamber and allowed to cool to room
temperature for approximately one hour before measurements
were taken. The ESR and capacitance of each AEC was
measured directly using an Agilent U1733C handheld LCR
meter.

Luminous flux calculations were also carried out for each
sample set on the same pristine Philips Fortimo LED downlight
following the IES LM-79-08 standard [22]. The AECs were
connected to its Philips Xitanium driver through a

bread board. The light output leads of the electrical driver were
connected to another portion of the bread board which allowed
easy switching between drivers to record the radiant flux
values needed to calculate the luminous flux. An USB4000

Spectrometer from Ocean Optics, SpectraSuite software and a
one meter integrating sphere were used to precisely obtain the
radiant flux data of the downlight for each driver. Figure 3
illustrates the luminous flux setup.

Figure 3: Luminous Flux Measurement Setup.

IES LM-79-08

The total spectral radiant flux, ¢wst(A), of a SSL product
under test is obtained by comparison to the total spectral radiant
flux of a reference standard [22]. It can be found using the
following equation:

@,,0)=0, )@ (1)

The measured spectral radiant flux, ¢m(L), of the test lamp
is computed using the SpectraSuite software. The self-
absorption factor, accr, can be found using an auxiliary lamp
in conjunction with the test lamp and a reference lamp. It is
determined using the spectrometer measurements of the
auxiliary lamp with the test lamp and then with the reference
lamp. The ratio of the measurements of the auxiliary lamp
with the reference lamp divided by the auxiliary lamp with the
test lamp will produce the self-absorption factor.

The total luminous flux, ¢ws, in lumens [Im] of the SSL
product under test can now be found using the total spectral
radiant flux found from equation (1) with equation (2) [22].

o, =K, @7_? o Hevhed
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The spectral luminous efficiency function for photopic
vision, V(A), is well documented in literature and K, is the
maximum spectral luminous efficiency [23].

KALMAN FILTERING
The discrete Kalman filter estimates the instantaneous
state of a linear dynamic system that is perturbed by noise [19]



[20] [21]. A Kalman filter was used to prognosticate the



remaining useful life (RUL) of aluminum electrolytic
capacitors using two different leading indicators or feature
vectors: the change in capacitance (AC) and the change in
ESR (AESR). The RUL found from both feature vectors was
compared to determine which leading indicator is best for
investigating the health management of the system. The
system state has been described in state space form using the
measurement of the feature vector, the estimated velocity of the
feature vector and the estimated acceleration of the feature
vector. The system state at each future time has been computed
based on the state space at the preceding time step, system
dynamics matrix, control vector, control matrix, measurement
matrix, measured vector, process noise and measurement
noise. Figure 4 represents the data-flow through the system,
where uis the control vector or input for the system, w is
process noise, x is the state space vector, H is the measurement
matrix, v is the measurement noise, z is the measured state, T
is a time delay, and F is the system dynamics matrix.

Figure 4: State Space Representation of a System.

In order to apply the Kalman filter, the signal response
must be described by a set of differential equations [20].
Therefore, the equivalent Kalman Filter equation for state
space representation with the presence of process noise and
measurement noise is shown in equation (3) with the final
version of the Kalman Filter equation illustrated in equation

(4).
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The variable Xy is the Kalman Filter system state estimate
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The variable M is the covariance of errors in state
estimates before update, ¢x is the fundamental matrix which
represents the system dynamics, Qx is the discrete process
noise matrix, Ky is the Kalman gain, H is the measurement
matrix, and Py is the covariance matrix representing errors in
the state estimate after an update. Ry is the discrete
measurement noise matrix and has been used as a device for
telling the filter that we know that the filter’s model of the real
world is not precise. The diagonal elements of Px represent
variance of the true state minus the estimated state. My is
sometimes referred to as the a priori covariance matrix and Py
may be referred to as the posterior covariance matrix.

Since the feature vectors used for prognostication of the
system health are usually not constant nor a straight line, the
zeroth and first order systems were ruled out and a second
order system was used for the representation of the system state
evolution with progression of underlying damage. The choice
of the second order filter was also influenced by the general
observation that feature vectors evolve non-linearly and
generally accelerate towards the end of life. The rate of
evolution of a second order system can be represented as
follows:

>r‘1| >,x] 0 1 0hx)
¥ ' (i e Ix ©)

e It |
1o o of ry

The fundamental matrix has been computed from the
Taylor series expansion of the system dynamics matrix, F, as
follows:
W(t)=e ~ =l+H Dt +> P .
- - (10)
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The Kalman gains are computed while the filter is operating
from a set of recursive matrix equations called the Riccati
equations [20]. The Riccati equations are represented as:
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A model based on the accrued damage of the system has
not been used because the inputs to the system are not always
known or measurable and cannot be assumed to always be
constant or known in advance. Therefore, the feature vectors
based on AC and AESR have been used as system inputs to
estimate the system state. The first and second derivatives of
each feature vector from the direct measurement of each AEC
have been computed to estimate the state of each feature vector
at future time-steps. The system state vector is represented

as Xy =[X X X]T, where x is AC or AESR, X is the ramp

rate of each feature vector and X is the second derivative with
respect to time of each feature vector. The state vector
evolution is represented as follows:
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The uncertainty of each prediction was quantified using
the posterior error covariance. The extrapolation of the
estimated state into the future to determine the RUL was
accomplished by using the state evolution equation to
iteratively solve the intersection of the underlying physics
models. The parameters are estimated from the Kalman filter.
Two simple models were used to describe the collected data: a
linear model for Ac and an exponential model for AESR. This
is shown in equations (14) and (15), respectively.

f({t)=a+b®t,

S () =a @exp(b @1,
(15)

The variable x is the state variable in the state space, ts is
the estimate of the failure time at the time-step n and xr is the
failure threshold for the state variable. The estimate of the
failure time is updated during the evolution of the state-space
vector with the underlying damage. The Kalman filter outlined
above was used to prognosticate the remaining useful life of
the AECs using both feature vectors.

PHM

The average of each capacitor’s ESR and capacitance at
each time step has been used for the reliability analysis. The
leading indicators of failure are trending in the correct

direction. An ample amount of data has been collected and
used to train the model to accurately make predictions of the

feature vectors. The graphs of the AESR and AC of each
capacitor are shown in Figure 5, Figure 6, Figure 7 and Figure
8, respectively. The noise threshold has already been eliminated
for each data set with the first datum point given a

value of one for 100%.
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Figure 5: The Average AESR and AC for AEC One.
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Figure 6: The Average AESR and AC for AEC Two.
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Figure 7: The Average AESR and AC for AEC Three.
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Figure 8: The Average AESR and AC for AEC Four.

The failure threshold for the luminaire has been taken as
70% of the luminous flux or the L70 value [22]. The pristine
luminous flux value of the luminaire under test is 2000 Im +
10%. As of now, the L70 value of the luminaire has not been
reached and the luminaire is still producing a pristine reading.
The average luminous flux value for each measurement time is
shown in Figure 9.
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Figure 9: Average Luminous Flux of the Luminaire.

Based off of Figure 9, the calculated luminous flux of the
luminaire is almost identical to that of the rated luminous flux
value. Therefore, no correlation between AESR and AC can be
made with the luminous flux calculations because the luminaire
hasn’t deviated outside of the pristine range. Since the
luminaire is still “pristine”, the AECs have not “failed” in the
traditional sense even though there is some measured
degradation occurring with the AECs.

Figure 6 and Figure 7 shows no discernible change in the
AESR and AC measurements of AECs #2 and #3. Both of these

AECs are reading at approximately 100% at each collected AC
value with only a slight change in AESR. Looking at Figure 5
and Figure 8, it is observed that AECs #1 and #4 are trending
almost identically. After careful study of the electrical driver’s
circuit diagram, it has been determined that AEC #1 will have
the greatest effect on the luminous flux output compared to
AEC #4. By treating AEC #1 as the weakest link out of all four
AECs, the overall health of the luminaire can be monitored
and end of life can be predicted at any desired failure
threshold. The AESR and AC of AEC #1 has been used to train
a Kalman filter algorithm to show how robust the algorithm
will work for this luminaire’s components. The collected data
was also used to make end of life predictions for this
luminaire. Since the final time till failure of AEC #1 is
unknown, the extrapolations forward in time were carried out
for ten times the final collected time value of 3057.6 hours.
Figure 10 shows the collected AESR data, the filtered data and
the forecasted predictions at each data point.
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Figure 10: Kalman Filter Plot of AESR for Capacitor One.

The Kalman filter produced an output that mimics the
collected AESR data reasonably well. The model forecasted the
AESR towards the end of life at each collected data point. The
extrapolations began to converge towards a common point at
the last three data points. This shows that the model has been
reasonably trained and has started to make what seem to be
accurate predictions. The same graph has been produced for
AC. Figure 11 shows the collected AC data, the filtered data
and the forecasted predictions at each data point.
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Figure 11: Kalman Filter Plot of AC for Capacitor One.



The Kalman filter produced an output that is closer to the
collected AC data when compared to that of the AESR filtered
data in Figure 10. However, the model’s forecasted AC does
not converge at any point in the extrapolations. This shows
that more data is needed to train the model better to accurately

predict the AC.

PROGNOSTICS METRIC
The experimental value of time to failure is typically known

after the completion of accelerated testing. A comparison of
the actual life of the component versus the predicted life can then
be made to validate the model and show the robustness of the
PHM algorithm. Since the collection for this test is ongoing,
the actual end of life of the system is not known. Therefore, in
order to validate this model, the collected data was used to show
how well the algorithm has worked thus far with the last datum
point used as a pseudo end of life.

The wvalidation process follows one of the algorithm
assessment metrics proposed in literature [24] [25] [26] [27].
The alpha-lambda performance metric was used for both the
AESR and AC to show how well the Kalman filter algorithm
has predicted the RUL. The RUL of AEC #1 for both the AESR
and AC data has been determined using the pseudo end of life.
This compares the actual RUL against the predicted RUL.
Figure 12 and Figure 13 illustrate the alpha-lambda performance
metrics for AESR and AC, respectively.
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Figure 12: Alpha-Lambda Performance Metric for AESR.
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The gray shaded area in the alpha-lambda graphs is called
the alpha bounds. It provides a region to describe the accuracy
of the algorithm and is taken at + 20 % of the actual RUL. If
the predicted RUL falls within the alpha bounds, then it is
taken as a correct prediction. Lambda is defined as the

normalized time and is calculated as |_= % where t is

EOL

Figure 13: Alpha-Lambda Performance Metric for AC.
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the present time, and tgor is the time to the end of life.
Normalized time is plotted on the x-axis. When lambda
equals one, the part has “failed”.

In Figure 12, the Kalman filter algorithm grossly under
predicted the RUL in the beginning and never over predicts the
RUL. Typically, it is better to under predict than to over
predict. The predicted RUL starts to converge towards the
actual RUL and stays within the alpha bounds at about half
way through the collected data. This means that the algorithm
has worked reasonably well at forecasting the AESR. This also
shows that this leading indicator is useful for monitoring the
health of the luminaire to predict failure.

Figure 13 shows oscillations in the prediction. The
Kalman filter algorithm under predicts and over predicts the
RUL. It also does not converge toward the actual RUL. The
algorithm used with the AC data needs more datum points to
possibly make accurate predictions. Therefore, this leading
indicator is not a good choice for monitoring the health of the
luminaire at this time.

SUMMARY AND CONCLUSIONS

This paper has shown an investigation of a Philips
Fortimo LED DLM system with the focus on the LED
electronic drivers, specifically the aluminum electrolytic
capacitors (AECs) inside the electrical drivers. The electrical
drivers were aged using high temperature shelf life (HTSL)
testing at 135°C. The collected data was used in conjunction
with a Kalman filter algorithm to determine the RUL of the
AEC in order to monitor the health of the luminaire.

The four AECs of three different types inside each LED
electronic driver were removed from the driver to obtain the
exact capacitance and ESR values using a handheld LCR
meter. They were then placed back into the electrical drivers to
calculate the luminous flux of the luminaire.

AESR and AC were considered leading indicators of
failure and were used to study the reliability of the luminaire
using a Kalman filtering algorithm. AEC #1 was determined to
be the weakest link compared to the other AECs and was used
to make remaining useful life predictions of the luminaire for
the collected data.

It was shown that the AESR and the Kalman filter
algorithm produced RUL predictions the converged towards
the same value. It was validated and proven acceptable using
the alpha-lambda performance metric. The AC data did not
converge towards the same end of life predictions using the
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collected data. Therefore, the AESR is a better leading
indicator for predicting the RUL compared with the AC.

The collection of AESR and AC data is ongoing and will
continue until complete failure. With the continued collection
of data, the Kalman filter algorithm can be better trained to
make RUL predictions and validated with other prognostics
metrics.

Additional testing will be completed to compile a larger
data set. This will help in fine tuning the Kalman filter
algorithm, as well as, the experimental setup. Also, the
Newton-Raphson’s method will be used to aid in the production
of a more robust underlying physics model for the calculation
of the remaining useful life.
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NOMENCLATURE

HTSL High Temperature Shelf Life
ESR Equivalent Series Resistance
RUL Remaining Useful Life
AEC Aluminum Electrolytic Capacitors
PHM Prognostics and Health Management
AC Change in Capacitance
AESR Change in Equivalent Series Resistance
Orest(M) Test Lamp Radiant Flux
Om(V) Test Lamp Measured Radiant Flux
Occk Self-Absorption Factor
Km Maximum Spectral Luminous Efficiency
N Spectral Luminous Efficiency Function
Grest Test Lamp Luminous Flux
X State Space Vector
F System Dynamics Matrix
u Control Vector
w Process Noise Vector
z Measurement Vector
H Measurement Matrix
v Measurement Noise Vector
I Identity Matrix
() Fundamental Matrix
T Sampling Time
Oy Discrete Fundamental Matrix
Xk Discrete State Space Vector
Zk Discrete Measurement Vector
Vi Discrete White Noise Measurement Vector
Ry Discrete Measurement Noise Vector
Gy Kalman Control Matrix
Mk Covariance Matrix
Kk Kalman Gain Matrix
Py Updated Covariance Matrix
Qx Discrete Process Noise Matrix
Xk State Space Vector Estimation
k Time Step
teol Time at End of Life
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