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ABSTRACT 
This paper will show an investigation of off-the-shelf 

luminaires with the focus on the LED electronic drivers, 
specifically the aluminum electrolytic capacitors (AECs), that 
have been aged using high temperature shelf life (HTSL) testing 
of 135°C in order to prognosticate the remaining useful life of 
the luminaires. Luminaires have the potential of seeing 
excessive temperatures when being transported across country 
or being stored in non-climate controlled warehouses. They are 
also being used in outdoor applications in desert environments 
that see little or no humidity but will experience extremely 
high temperatures during the day. This makes it important to 
increase our understanding of what effects being stored at high 
temperatures for a prolonged period of time will have on the 
usability and survivability of these devices. The U.S. 
Department of Energy has made a long term commitment to 
advance the efficiency, understanding and development of 
solid-state lighting (SSL) and is making a strong push for the 
acceptance and use of SSL products. In this work, the four 
AECs of three different types inside each LED electronic driver 
were studied. The change in capacitance and the change in 
equivalent series resistance (ESR) of the AECs were measured 
and considered to be a leading indication of failure of the LED 
system. These indicators were used to make remaining useful 
life predictions to develop an algorithm to 

predict the end of life of the AECs. The luminous flux of a 
pristine downlight module was also monitored using each LED 
electronic driver that was subjected to HTSL through the 
progression of the testing to determine a correlation between 
the light output of the lamp and the failing components of the 
LED electronic driver. Prognostic and Health Management 
(PHM) is a useful tool for assessment of the remaining life of 
electrical components and is demonstrated for AECs in this 
work. 
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MOTIVATION 

The U.S. Department of Energy (DOE) has made a long- 
term commitment to advance R&D breakthroughs in efficiency 
and performance of solid-state lighting (SSL). SSL technology 
has the potential to reduce the U.S. lighting energy usage in 
half and produce large savings. The DOE has developed a 
comprehensive national strategy that encompasses Basic Energy 
Sciences, Core Technology Research, Product Development, 
Manufacturing Research and Development (R&D) Initiative, 
Market Development Support, SSL Partnerships, and Standards 
Development. [1] 
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INTRODUCTION 
Luminaires are beginning to replace today’s incandescent 

light bulbs and are becoming more prevalent in everyday 
applications. They are potentially being used in outdoor 
applications in dry desert environments that see little or no 
humidity and have the possibility of being transported across 
country and stored in non-climate controlled trucks and 
warehouses. Luminaires subjected to a high temperature shelf 
life for a prolonged period of time may see premature failure of 
the individual components, specifically that of an aluminum 
electrolytic capacitor (AEC). AEC degradation may cause the 
electrical drivers to fail completely due to a current surge or 
produce an undesirable light output of the light emitting diodes 
(LEDs). This can potentially erode a manufactures profit 
margin due to warrantied replacement of the luminaire. AECs 
are considered the “weakest link” out of all the components 
that make up the electrical driver studied in this work. 

An AEC is a type of capacitor that uses an electrolyte to 
achieve a larger capacitance per unit volume compared to 
traditional capacitors. They are used in high current and low 
frequency electrical circuits, such as an LED electrical driver, 
and are needed to help convert AC power to DC power [2]. An 
AEC is composed of a cathode aluminum foil, electrolytic paper, 
liquid electrolyte and a dielectric [3] [4]. The capacitance can 
be calculated by knowing the dielectric constant, surface area 
of the dielectric and the thickness of the dielectric [3] [4] [7]. 
The ESR can be found by summing the electrolytic resistance, 
dielectric loss and the electrode resistance using equations 
outlined in the literature [3] [5] [6] [7]. In this work, the ESR 
and capacitance were measured directly using a handheld LCR 
meter. 

The predominant failure mechanism of the AEC is the loss 
of the liquid electrolyte through dissipation and decomposition. 
Liquid electrolyte loss can be attributed to an elevated ambient 
temperature, electrochemical reactions at the dielectric layer or 
diffusion through the seal [5] [7]. This will lead to a drift of 
the electrical parameters of the AEC (i.e. capacitance and ESR). 
If an AEC is kept at an elevated ambient temperature for a 
prolonged period of time causing liquid electrolyte degradation, 
then the capacitance will decrease and the ESR will increase 
[3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [15]. 
Therefore, this makes capacitance and ESR excellent leading 
indicators to monitor the health of an AEC. This along with 
the luminous flux or light output of the LED gives great insight 
on the health of the entire luminaire system. 

Prognostic health management (PHM) is a useful tool to 
assess the remaining useful life of an electrical  component such 
as an AEC using leading indicators of failure. PHM research has 
been published on AECs and LED packages using a variety of 
techniques to determine the remaining useful life (RUL) for an 
assortment of test conditions. One publication studied the 
effects of electrical overstress accelerated aging on AECs. The 
ESR and capacitance values were estimated from the  capacitor  
impedance  frequency  response  and  a  lump 

parameter model, respectively, and used in conjunction with a 
Kalman filter to determine the RUL of the AECs [15]. 
Euclidean and Mahalanobis distance measuring techniques 
have been used to assess the RUL of a LED package subjected 
to accelerated voltage conditions based off the degradation in 
the luminous flux [16]. Three components of a  Switching Mode 
Power Supply: MOSFETs, diodes and AECs have been studied 
using the theory of Physics of Failure. The values of each 
component were estimated with the equations outlined in the 
literature and were used with a linear regression model to make 
RUL predictions [17]. The ESR and capacitance of AECs in an 
uninterruptible power supply has been studied. The values were 
estimated using current and voltage measurements of the power 
supply and used in conjunction with a Least Squares algorithm 
to extrapolate RUL of the AECs [18]. 

In this work, the ESR and capacitance has been measured 
directly for AECs subjected to a HTSL test of 135 °C. The 
ability to assess damage accrual in AECs before failure and 
prognosticate remaining useful life is essential to 
understanding the life time of the luminaire itself. A Kalman 
Filter was used as a recursive algorithm to estimate the true 
state of the AECs based off the collected data [19] [20] [21]. 
The luminous flux was also recorded to investigate possible 
leading indications of failure in the driver. 

 
TEST VEHICLE 

The test vehicle for this work was a Philips Fortimo LED 
DLM system which included a Philips Fortimo downlight lamp, 
a Philips Xitanium electrical driver and a cable to connect the 
lamp to the electrical driver. The power cords to connect the 
electrical driver to the main power supply were constructed 
in-house. The pristine assembly shown in Figure 1 was used to 
calculate the luminous flux of the downlight. 

 

 
Figure 1: The Philips Fortimo LED DLM System. 
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AEC 
# 

Endurance 
@ 105 °C 

[Hrs.] 

Temperature 
Range [°C] 

Rated 
Voltage 
[Vdc] 

Capacitance 
[μF] 

1 8k – 10k -40 – 105 35 220 
2 & 
3 

10k – 12k -40 – 105 350 33 

4 4k – 5k -40 – 105 50 22 
 

 

Each sample set of AECs were taken from a single Philips 
Xitanium electrical driver. These AECs were removed to 
directly measure the capacitance and ESR. Figure 2 depicts the 
circuit board of a single Xitanium driver with the four AECs 
removed. 

 

 
Figure 2: AECs Removed from the Philips Xitanium Driver. 

 
Each Xitanium electrical driver consisted of four AECs of 

three various types. The AEC characteristics are given in Table 
1. 

 
Table 1: AEC Characteristics. 

 

 
Figure 3: Luminous Flux Measurement Setup. 

 
IES LM-79-08 

The total spectral radiant flux, ϕtest(λ), of a SSL product 
under test is obtained by comparison to the total spectral radiant 
flux of a reference standard [22]. It can be found using the 
following equation: 

 

Φ test () = Φ m () ⊕〈CCF 
 

(1) 

 
 
 
 

TEST ENVIRONMENT 
The removed AECs and the remaining portion of the 

Philips Xitanium driver were kept in a Thermotron thermal 
chamber at 135 °C for the duration of the test. The components 
were removed from the chamber and allowed to cool to room 
temperature for approximately one hour before measurements 
were taken. The ESR and capacitance of each AEC was 
measured directly using an Agilent U1733C handheld LCR 
meter. 

Luminous flux calculations were also carried out for each 
sample set on the same pristine Philips Fortimo LED downlight 
following the IES LM-79-08 standard [22]. The AECs were 
connected to its Philips Xitanium driver through a 

The measured spectral radiant flux, ϕm(λ), of the test lamp 
is computed using the SpectraSuite software. The self- 
absorption factor, αCCF, can be found using an auxiliary lamp 
in conjunction with the test lamp and a reference lamp. It is 
determined using the spectrometer measurements of the 
auxiliary lamp with the test lamp and then with the reference 
lamp. The ratio of the measurements of the auxiliary lamp 
with the reference lamp divided by the auxiliary lamp with the 
test lamp will produce the self-absorption factor. 

The total luminous flux, ϕtest, in lumens [lm] of the SSL 
product under test can now be found using the total spectral 
radiant flux found from equation (1) with equation (2) [22]. 

 
780 

Φ test  = Km ⊕ +Φ test () ⊕ V() ⊕ d 

bread board. The light output leads of the electrical driver were 
connected to another portion of the bread board which allowed 
easy  switching  between  drivers  to  record  the  radiant  flux 
values needed to calculate the luminous flux. An USB4000 

380 

Km  = 683lm W 
(2) 

Spectrometer from Ocean Optics, SpectraSuite software and a 
one meter integrating sphere were used to precisely obtain the 
radiant flux data of the downlight for each driver. Figure 3 
illustrates the luminous flux setup. 

The  spectral  luminous  efficiency  function  for  photopic 
vision, V(λ), is well documented in literature and Km  is the 
maximum spectral luminous efficiency [23]. 

 
KALMAN FILTERING 

The discrete Kalman filter estimates the instantaneous 
state of a linear dynamic system that is perturbed by noise [19] 
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[20] [21]. A Kalman filter was used to prognosticate the 
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x = F ⊕ x + G ⊕ u + w 
 

(3) 

 

x = Φ ⊕ x + G  ⊕ u + K  ⊕ (z   H ⊕ Φ ⊕ x 
 H ⊕ G  ⊕ u ) 

k k k 1 k k 1 k k k k 1 k k 1 

 
(4) 

 
zk  = H ⊕ xk  + vk 

 
(5) 

 Φ(t) = eF ⊕t  = I + F ⊕ t + 
(    ) 

+  + 
(    ) 2 n 

 
2! n! 

 
(10) 

 
1 0 0 0 1 0 0 0 1 
      t 2 

 

�0 0 1 �0 0 0 �0 0 0 

 
 
 

(11) 

 

   
  

remaining useful life (RUL) of aluminum electrolytic  
capacitors using two different leading indicators or feature 
vectors: the change in capacitance (ΔC) and the change in   
ESR (ΔESR). The RUL found from both feature vectors was 
compared to determine which leading indicator is best for 
investigating the health management of the system. The   
system state has been described in state space form using the 
measurement of the feature vector, the estimated velocity of the 
feature vector and the estimated acceleration of the feature 
vector. The system state at each future time has been computed 
based on the state space at the preceding time step, system 
dynamics matrix, control vector, control matrix, measurement 
matrix, measured vector, process noise and measurement   
noise. Figure 4 represents the data-flow through the system, 
where u is the control vector or input for the system, w is 
process noise, x is the state space vector, H is the measurement 
matrix, v is the measurement noise, z is the measured state, T  
is a time delay, and F is the system dynamics matrix. 

 
 
 
 
 
 
 
 
 
 
 

Figure 4: State Space Representation of a System. 
 

In order to apply the Kalman filter, the signal response 
must be described by a set of differential equations [20]. 
Therefore, the equivalent Kalman Filter equation for state 
space representation with the presence of process noise and 
measurement noise is shown in equation (3) with the final 

 

 
M  = Φ ⊕ P ⊕ Φ T + Q 

k k k1 k k 
(6) 

 
K  = M  ⊕ HT ⊕ (H ⊕ M  ⊕ HT + R  )1

 
k k k k 

 
(7) 

 
Pk  = (I  Kk ⊕ H) ⊕ Mk 

 
(8) 

 
The variable Mk is the covariance of errors in state 

estimates before update, ϕk is the fundamental matrix which 
represents the system dynamics, Qk is the discrete process  
noise matrix, Kk is the Kalman gain, H is the measurement 
matrix, and Pk is the covariance matrix representing errors in 
the state estimate after an update. Rk is the discrete 
measurement noise matrix and has been used as a device for 
telling the filter that we know that the filter’s model of the real 
world is not precise. The diagonal elements of Pk represent 
variance of the true state minus the estimated state. Mk is 
sometimes referred to as the a priori covariance matrix and Pk 
may be referred to as the posterior covariance matrix. 

Since the feature vectors used for prognostication of the 
system health are usually not constant nor a straight line, the 
zeroth and first order systems were ruled out and a second 
order system was used for the representation of the system state 
evolution with progression of underlying damage. The choice 
of the second order filter was also influenced by the general 
observation that feature vectors evolve non-linearly and 
generally accelerate towards the end of life. The rate of 
evolution of a second order system can be represented as 
follows: 

version of the Kalman Filter equation illustrated in equation 〉 x  〉x 0 1 0 〉x 
 (4). x = [F ]⊕ x = 0 0

 1 ⊕ x 

 (9) 

∫  ∫        ∫    

⌠x ⌠x
 

�0 0 0 ⌠x 

 
The fundamental matrix has been computed from the 

Taylor series expansion of the system dynamics matrix, F, as 
follows: 

 
 
 
 

The variable x̂ k is the Kalman Filter system state estimate at the kth time 
step, and xk is 

the 
actual 

system state 
at the kth 

time-step and Gk is 
the control matrix. 
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The Kalman gains are computed while the filter is operating 
from a set of recursive matrix equations called the Riccati 
equations [20]. The Riccati equations are represented as: 
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 

 
 
 
 

 
1 Ts 

 
 
 

Ts  
2  

f (t) = a ⊕ exp(b ⊕ t fn 

) 
a = x 

b = x 

 
 
 

(15) 

Φ(t) = 0 1 T  x (12) 

 s  
0 0 1  
�  

 
A model based on the accrued damage of the system has 

not been used because the inputs to the system are not always 
known or measurable and cannot be assumed to always be 
constant or known in advance. Therefore, the feature vectors 
based on ΔC and ΔESR have been used as system inputs to 
estimate the system state. The first and second derivatives of 
each feature vector from the direct measurement of each AEC 
have been computed to estimate the state of each feature vector 
at  future  time-steps.  The  system  state vector  is represented 

 
The variable x is the state variable in the state space, tfn is 

the estimate of the failure time at the time-step n and xf is the 
failure threshold for the state variable. The estimate of the 
failure time is updated during the evolution of the state-space 
vector with the underlying damage. The Kalman filter outlined 
above was used to prognosticate the remaining useful life of 
the AECs using both feature vectors. 

 
PHM 

The average of each capacitor’s ESR and capacitance at 
each time step has been used for the reliability analysis. The 
leading  indicators  of  failure  are  trending  in  the  correct 

as xk = [x x x]T , where x is ΔC or ΔESR, ẋ is the ramp 
direction. An ample amount of data has been collected and 
used to train the model to accurately make predictions of the 

rate of each feature vector and ẍ is the second derivative with 
respect  to  time  of  each  feature  vector.  The  state  vector 
evolution is represented as follows: 

feature vectors. The graphs of the ΔESR and ΔC of each 
capacitor are shown in Figure 5, Figure 6, Figure 7 and Figure 
8, respectively. The noise threshold has already been eliminated 
for each data set with the first datum point given a 

 
〉xk +   

1 Ts 
Ts   

 
〉xk  

value of one for 100%. 

1    
2    

∫xk +1  = 0 1 Ts  ⊕ ∫xk  (13) 

    
⌠xk +1  0 0 

� 
1  ⌠xk  

 

 

The uncertainty of each prediction was quantified using 
the posterior error covariance. The extrapolation of the 
estimated state into the future to determine the RUL was 
accomplished by using the state evolution equation to 
iteratively solve the intersection of the underlying physics 
models. The parameters are estimated from the Kalman filter. 
Two simple models were used to describe the collected data: a 
linear model for Δc and an exponential model for ΔESR. This 
is shown in equations (14) and (15), respectively. 

 
f (t) = a + b ⊕ t fn 

 
 
 
 
 
 

Figure 5: The Average ΔESR and ΔC for AEC One. 
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a = x 
b = x 

(14)  
 
 
 
 
 

Figure 6: The Average ΔESR and ΔC for AEC Two. 
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Figure 7: The Average ΔESR and ΔC for AEC Three. 

 

 
Figure 8: The Average ΔESR and ΔC for AEC Four. 

 
The failure threshold for the luminaire has been taken as 

70% of the luminous flux or the L70 value [22]. The pristine 
luminous flux value of the luminaire under test is 2000 lm ± 
10%. As of now, the L70 value of the luminaire has not been 
reached and the luminaire is still producing a pristine reading. 
The average luminous flux value for each measurement time is 
shown in Figure 9. 

 

 
Figure 9: Average Luminous Flux of the Luminaire. 

 
Based off of Figure 9, the calculated luminous flux of the 

luminaire is almost identical to that of the rated luminous flux 
value. Therefore, no correlation between ΔESR and ΔC can be 
made with the luminous flux calculations because the luminaire 
hasn’t deviated outside of the pristine range. Since the 
luminaire is still “pristine”, the AECs have not “failed” in the 
traditional sense even though there is some measured 
degradation occurring with the AECs. 

Figure 6 and Figure 7 shows no discernible change in the 
ΔESR and ΔC measurements of AECs #2 and #3. Both of these 

 

AECs are reading at approximately 100% at each collected ΔC 
value with only a slight change in ΔESR. Looking at Figure 5 
and Figure 8, it is observed that AECs #1 and #4 are trending 
almost identically. After careful study of the electrical driver’s 
circuit diagram, it has been determined that AEC #1 will have 
the greatest effect on the luminous flux output compared to 
AEC #4. By treating AEC #1 as the weakest link out of all four 
AECs, the overall health of the luminaire can be monitored 
and end of life can be predicted at any desired failure 
threshold. The ΔESR and ΔC of AEC #1 has been used to train 
a Kalman filter algorithm to show how robust the algorithm 
will work for this luminaire’s components. The collected data 
was also used to make end of life predictions for this 
luminaire. Since the final time till failure of AEC #1 is 
unknown, the extrapolations forward in time were carried out 
for ten times the final collected time value of 3057.6 hours. 
Figure 10 shows the collected ΔESR data, the filtered data and 
the forecasted predictions at each data point. 

 

 
Figure 10: Kalman Filter Plot of ΔESR for Capacitor One. 

 
The Kalman filter produced an output that mimics the 

collected ΔESR data reasonably well. The model forecasted the 
ΔESR towards the end of life at each collected data point. The 
extrapolations began to converge towards a common point at 
the last three data points. This shows that the model has been 
reasonably trained and has started to make what seem to be 
accurate predictions. The same graph has been produced for 
ΔC. Figure 11 shows the collected ΔC data, the filtered data 
and the forecasted predictions at each data point. 

 

 
Figure 11: Kalman Filter Plot of ΔC for Capacitor One. 
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The Kalman filter produced an output that is closer to the 
collected ΔC data when compared to that of the ΔESR filtered 
data in Figure 10. However, the model’s forecasted ΔC does 
not converge at any point in the extrapolations. This shows 
that more data is needed to train the model better to accurately 

The gray shaded area in the alpha-lambda graphs is called 
the alpha bounds. It provides a region to describe the accuracy 
of the algorithm and is taken at ± 20 % of the actual RUL. If 
the predicted RUL falls within the alpha bounds, then it is 
taken as a correct prediction. Lambda is defined as the 

predict the ΔC. normalized time and is calculated as  = t 
tEOL 

 

where t is 

PROGNOSTICS METRIC 
The experimental value of time to failure is typically known 

after the completion of accelerated testing. A comparison of 
the actual life of the component versus the predicted life can then 
be made to validate the model and show the robustness of the 
PHM algorithm. Since the collection for this test is ongoing, 
the actual end of life of the system is not known. Therefore, in 
order to validate this model, the collected data was used to show 
how well the algorithm has worked thus far with the last datum 
point used as a pseudo end of life. 

The validation process follows one of the algorithm 
assessment metrics proposed in literature [24] [25] [26] [27]. 
The alpha-lambda performance metric was used for both the 
ΔESR and ΔC to show how well the Kalman filter algorithm 
has predicted the RUL. The RUL of AEC #1 for both the ΔESR 
and ΔC data has been determined using the pseudo end of life. 
This compares the actual RUL against the predicted RUL. 
Figure 12 and Figure 13 illustrate the alpha-lambda performance 
metrics for ΔESR and ΔC, respectively. 

 

 
Figure 12: Alpha-Lambda Performance Metric for ΔESR. 

 

 

Figure 13: Alpha-Lambda Performance Metric for ΔC. 
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the present time, and tEOL is the time to the end of life. 
Normalized time is plotted on the x-axis. When lambda 
equals one, the part has “failed”. 

In Figure 12, the Kalman filter algorithm grossly under 
predicted the RUL in the beginning and never over predicts the 
RUL. Typically, it is better to under predict than to over 
predict. The predicted RUL starts to converge towards the 
actual RUL and stays within the alpha bounds at about half 
way through the collected data. This means that the algorithm 
has worked reasonably well at forecasting the ΔESR. This also 
shows that this leading indicator is useful for monitoring the 
health of the luminaire to predict failure. 

Figure 13 shows oscillations in the prediction. The 
Kalman filter algorithm under predicts and over predicts the 
RUL. It also does not converge toward the actual RUL. The 
algorithm used with the ΔC data needs more datum points to 
possibly make accurate predictions. Therefore, this leading 
indicator is not a good choice for monitoring the health of the 
luminaire at this time. 

 
SUMMARY AND CONCLUSIONS 

This paper has shown an investigation of a Philips 
Fortimo LED DLM system with the focus on the LED 
electronic drivers, specifically the aluminum electrolytic 
capacitors (AECs) inside the electrical drivers. The electrical 
drivers were aged using high temperature shelf life (HTSL) 
testing at 135°C. The collected data was used in conjunction 
with a Kalman filter algorithm to determine the RUL of the 
AEC in order to monitor the health of the luminaire. 

The four AECs of three different types inside each LED 
electronic driver were removed from the driver to obtain the 
exact capacitance and ESR values using a handheld LCR 
meter. They were then placed back into the electrical drivers to 
calculate the luminous flux of the luminaire. 

ΔESR and ΔC were considered leading indicators of 
failure and were used to study the reliability of the luminaire 
using a Kalman filtering algorithm. AEC #1 was determined to 
be the weakest link compared to the other AECs and was used 
to make remaining useful life predictions of the luminaire for 
the collected data. 

It was shown that the ΔESR and the Kalman filter 
algorithm produced RUL predictions the converged towards 
the same value. It was validated and proven acceptable using 
the alpha-lambda performance metric. The ΔC data did not 
converge towards the same end of life predictions using the 
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collected data. Therefore, the ΔESR is a better leading 
indicator for predicting the RUL compared with the ΔC. 

The collection of ΔESR and ΔC data is ongoing and will 
continue until complete failure. With the continued collection 
of data, the Kalman filter algorithm can be better trained to 
make RUL predictions and validated with other prognostics 
metrics. 

Additional testing will be completed to compile a larger 
data set. This will help in fine tuning the Kalman filter 
algorithm, as well as, the experimental setup. Also, the 
Newton-Raphson’s method will be used to aid in the production 
of a more robust underlying physics model for the calculation 
of the remaining useful life. 
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NOMENCLATURE 
HTSL High Temperature Shelf Life 
ESR Equivalent Series Resistance 
RUL Remaining Useful Life 
AEC Aluminum Electrolytic Capacitors 
PHM Prognostics and Health Management 
ΔC Change in Capacitance 
ΔESR Change in Equivalent Series Resistance 
ϕtest(λ) Test Lamp Radiant Flux 
ϕm(λ) Test Lamp Measured Radiant Flux 
αCCF Self-Absorption Factor 
Km Maximum Spectral Luminous Efficiency 
V(λ) Spectral Luminous Efficiency Function 
ϕtest Test Lamp Luminous Flux 
x State Space Vector 
F System Dynamics Matrix 
u Control Vector 
w Process Noise Vector 
z Measurement Vector 
H Measurement Matrix 
v Measurement Noise Vector 
I Identity Matrix 
Φ Fundamental Matrix 
Ts Sampling Time 
Φk Discrete Fundamental Matrix 
xk Discrete State Space Vector 
zk Discrete Measurement Vector 
vk Discrete White Noise Measurement Vector 
Rk Discrete Measurement Noise Vector 
Gk Kalman Control Matrix 
Mk Covariance Matrix 
Kk Kalman Gain Matrix 
Pk Updated Covariance Matrix 
Qk Discrete Process Noise Matrix 
x̂ k State Space Vector Estimation 
k Time Step 
teol Time at End of Life 

 


	Pradeep Lall
	Peter Sakalaukus
	Lynn Davis
	ABSTRACT
	KEY WORDS
	MOTIVATION
	INTRODUCTION
	TEST VEHICLE
	IES LM-79-08
	TEST ENVIRONMENT
	KALMAN FILTERING
	0 1
	0 1⋅x
	  
	0 0
	2 
	(t) 0 1 T 
	0 0 1 
	PHM

	
	  
	   
	
	
	PROGNOSTICS METRIC
	SUMMARY AND CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
	NOMENCLATURE


