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Abstract 
Solid-state lighting (SSL) luminaires containing light emitting 
diodes (LEDs) have the potential of seeing excessive 
temperatures when being transported across country or being 
stored in non-climate controlled warehouses. They are also 
being used in outdoor applications in desert environments that 
see little or no humidity but will experience extremely high 
temperatures during the day. This makes it important to 
increase our understanding of what effects high temperature 
exposure for a prolonged period of time will have on the 
usability and survivability of these devices. Traditional light 
sources “burn out” at end-of-life. For an incandescent bulb, 
the lamp life is defined by B50 life. However, the LEDs have 
no filament to “burn”. The LEDs continually degrade and the 
light output decreases eventually below useful levels causing 
failure. Presently, the TM-21 test standard is used to predict 
the L70 life of LEDs from LM-80 test data. Several failure 
mechanisms may be active in a LED at a single time 
causing lumen depreciation. The underlying TM-21 Model 
may not capture the failure physics in presence of multiple 
failure mechanisms. Correlation of lumen maintenance with 
underlying physics of degradation at system-level is needed. In 
this paper, Kalman Filter (KF) and Extended Kalman Filters 
(EKF) have been used to develop a 70-percent Lumen 
Maintenance Life Prediction Model for LEDs used in SSL 
luminaires. Ten-thousand hour LM-80 test data for various 
LEDs have been used for model development. System state 
at each future time has been computed based on the state 
space at preceding time step, system dynamics matrix, 
control vector, control matrix, measurement matrix, measured 
vector, process noise and measurement noise.  The future state 
of the lumen depreciation has been estimated based on a 
second order Kalman Filter model and a Bayesian 
Framework. The measured state variable has been related to 
the underlying damage using physics-based models. Life 
prediction of L70 life for the LEDs used in SSL luminaires 
from KF and EKF based models have been compared with 
the TM-21 model predictions and experimental data. 

 

Introduction 
The field of electric lighting is undergoing major revolution. 
We are in the process of transition to solid state lighting from 
the incandescent lighting that we have so grown used to and 

fond off. The LEDs (Light Emitting Diodes) have been used 
in a variety of applications including automotive headlights, 
residential lighting, industrial lighting, televisions and 
displays. Early indications are that LEDs will dominate the 
lighting market because of the LEDs’ advantages compared to 
the traditional fluorescent light in the light efficiency, energy 
saving, improved physical robustness and long operating 
hours. Energy is one of the major grand challenges facing us 
in the 21st century. Lighting accounts for 17% of the 
worldwide electricity consumption. Non-OECD countries 
presently account for 82% of the increase in global energy 
usage. One possible way to address the growing demand for 
energy is to reduce the energy consumption on lighting 
[Baribeau 2012]. The U.S. Department of Energy has made a 
long term commitment to advance the efficiency, 
understanding and development of solid-state lighting (SSL) 
and is making a strong push for the acceptance and use of 
SSL products to reduce overall energy consumption 
attributable to lighting. 

The transition to solid state lighting poses certain 
challenges. The industrial utilization of LEDs in extreme 
environments requires the LEDs have a good survivability 
under exposure to wide temperature excursions, humidity, and 
vibration. Consistency and reliability of SSL needs to be 
improved beyond the present generation. Challenging 
applications include: Automotive, Healthcare, and 
Horticulture. SSL luminaires are complex systems consisting 
of LEDs, Optics, Drive electronics, and Controls. Consumer 
electronics applications expected to function for only 1-3 
years. Currently, it is not possible to qualify SSL luminaire 
lifetime of 10-years and beyond often necessary of high 
reliability applications, primarily because of lack of 
accelerated test techniques and comprehensive life prediction 
models. SSL devices comprises of several length scales with 
different failure modes at each level. There may be 
interactions between optics, drive electronics, controls and 
thermal design impact reliability. Accelerated testing for  one  
sub-system may be too harsh for another sub-system. New 
methods are needed for predicting SSL reliability for new 
and unknown failure modes. Presently, there is scarcity of life 
distributions for LEDs and SSLs devices which are needed 
to assess the promised lifetimes. 

LED failure is often addressed by the L70 lifetime, which 
is the time required for the LED lumen output t o  drop to 
70- percent of the initial output or stated conversely, it 
indicates 70-percent   lumen   maintenance time.      L70   life   
is   presently 
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Ambient Temperature Surface Temperature 
55°C 53°C 
85°C 83°C 

105°C 103°C 
120°C 118°C 

 

computed based on a minimum 6000 hours of LED testing 
using the LM-80 test method and TM-21 extrapolations of the 
LM-80 data. The TM-21 model relies on an exponential model 
of LED degradation for assessment of the L70 life. The 
underlying TM-21 model may not capture the failure physics 
in presence of multiple failure mechanisms. Since multiple 
failure mechanisms may be active in an LED or an SSL, the 
determination of single activation energy accurately may be 
challenging if not impossible. Further, the weighted average 
activation energy is based on large population statistics for a 
particular LED or SSL design and may or may not be 
applicable for the part of interest. In this paper, a new 
methodology for the L70 life prediction of LEDs has been 
developed based on the use of underlying physics based 
damage propagation models in conjunction with the Kalman 
Filter. Kalman filtering is a recursive algorithm that estimates 
the true state of a system based on noisy measurements 
[Kalman 1960, Zarchan 2000]. Previously, the Kalman Filter 
has been used for navigation [Bar-Shalom 2001], economic 
forecasting [Solomou 1998], and online system identification 
[Banyasz 1992]. Typical navigation examples include 
tracking [Herring 1974], ground navigation [Bevly 2007], 
altitude and heading reference [Hayward 1997], auto pilots 
[Gueler 1989], dynamic positioning [Balchen 1980], 
GPS/INS/IMU guidance [Kim 2003]. Application domains 
include GPS, missiles, satellites, aircraft, air traffic control, 
and ships. The ability of a Kalman filter to smooth noisy data 
measurements is utilized in gyros, accelerometers, radars, and 
odometers. Prognostication of failure using Kalman filtering 
has been demonstrated in steel bands and aircraft power 
generators [Batzel 2009, Swanson 2000, 2001]. Numerous 
applications in prognostics also exist for algorithms using more 
advanced filtering algorithms, known as particle filters. The 
state of charge of a battery was estimated and remaining useful 
life was predicted in [Saha 2009a,b]. 

Kalman Filter and Extended Kalman Filter Models have 
been used to estimate the future lumen state of the LED system, 
track the Lumen Maintenance degradation lines, and estimate 
the L70 life for the specific part of interest and determine 
remaining useful life. System state has been described in state 
space form using the measurement of the feature vector, 
velocity of feature vector change and the acceleration of the 
feature vector change. This model can be used to calculate 
acceleration factors, evaluate failure- probability and identify 
ALT methodologies for reducing test time. It is anticipated that 
the presented method could be used for health monitoring of 
large deployments of LEDs and SSL devices whether in street 
lighting or automotive applications and allow continual insight 
into the anticipated downtime for repair and replacement. 
Kalman Filter is used for linear- system tracking while the 
Extended Kalman Filter  can  be used for case in the non-linear 
system. Both algorithms can generate dynamic and updating 
estimations at each data points of interest, and then we can get 
the distribution of pseudo L70 life from those estimations. 
Model predictions have been compared with TM21 
calculator. Degradation models used to capture the underlying 
physics of the LED and SSL system have been discussed.  
The cumulative failure distribution has 

been obtained, and the expected reliability computed  with 95% 
confidence bounds. 

 

Test-Vehicle and Experimental Data 
In this paper, 10,000 hour test data acquired by Philips on the 
LUXEON Rebel LED has been used for model development. 
The dataset is titled DR05-1-LM80 [Philips 2012]. Data was 
acquired in accordance with the IES LM-80 standards, and 
the correlated color temperature (CCT) of the testing units is 
3000K. Data at ambient air temperature of 55°C, 85°C, 105°C, 
and 120°C with LED currents in the range of 0.35A to 1A have 
been used for model development. Table 1 shows the scope 
of the input data set used for model development. A 
representative sample of the test product, commercially known 
as LUXEON LXM3-PW series LED, is shown in Figure 1. 
The surface temperature measurement location is shown in 
Figure 1. The surface temperature is lower than the ambient 
temperature by approximately 2°C in most cases. Each test 
condition has 25 samples. Lumen maintenance data has been 
reported along with the u’ and v’ measurements versus 
accelerated test time up to 10,000 hours of test time. 

 
 
 
 
 
 
 
 
 
 

Figure 1: LED Test Product [Philips 2012] 
 

Table 1: Input Dataset Used for Model Development 
[Philips 2012] 

 Current Ts CCT 
Test1 0.35A 55°C 3000K 
Test2 0.35A 85°C 3000K 
Test3 0.35A 105°C 3000K 
Test4 0.35A 120°C 3000K 
Test5 0.5A 55°C 3000K 
Test6 0.5A 85°C 3000K 
Test7 0.5A 105°C 3000K 
Test8 0.5A 120°C 3000K 
Test9 0.7A 55°C 3000K 

Test10 0.7A 85°C 3000K 
Test11 0.7A 105°C 3000K 
Test12 1A 55°C 3000K 
Test13 1A 85°C 3000K 
Test14 1A 105°C 3000K 

 
Table 2: LED Surface Temperature for Various Ambient 

Temperatures [Philips 2012] 
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Failure Mechanisms 
The observed lumen degradation in the LEDs may 
categorized into two main categories including, (1) wear-out 
resulting from long term degradation, (2) catastrophic failure 
of the LED resulting from short term degradation (Figure 2). 
Catastrophic short term degradation may be caused by 
manufacturing problems, operation problems, harsh 
environment exposure or other unpredicted elements in the 
LED system. Long term degradation may be caused by long- 
term exposure to harsh environments can be represented by a 
simple ramp function decay, polynomial function family 
decay, exponential family decay, or complicated and 
combined functions to model statistical model family decay. 
In this paper, we mainly focus on the long term degradation 
of Lumen Maintenance, from which the wearing life of LEDs 
is predicted. 

 
Figure 2: LEDs Failure Categories 

 
Lumen Maintenance VS Aging Time 
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Figure 3: Distribution for the Experimental Dataset 

Analysis of the variance in the lumen output from the LED 
versus lifetime at high temperature shows that the variance in 
the LED output increases with the increase in operating time 
at high temperature. Simple regression of the test data versus 
test time indicates that the lumen maintenance mean of the 
tested distribution oscillates with respect to test time. However, 
majority of the test data falls within the ±95% confidence 
limits. 

 

 

Figure 4: Simple Regression for the Experimental Dataset 

Degradation in the LED after exposure to harsh environments 
may cause a shift in the correlated color temperature (CCT). 
The color may shift from blue to orange or from green to pink 
or vice-versa. There are a number of reasons for the color 
shift including (1) aging of the LEDs, or UV exposure may 
cause plastics to change color (2) operating conditions 
including contaminants in the atmosphere may cause 
luminaire changes (3) light engines may shift color over time 
with different engines shifting in color differently, (4) 
maintenance issues may cause the luminaires to look different 
over time due to a number of reasons including incorrect 
installation of parts. Nearly all the light engines have some 
type of color shift. Examples include (1) metal halide lamps 
which are notorious for color shift (2) incandescent bulbs color 
shift when they are dimmed (3) LEDs that will shift color 
over time. While, linear fluorescents may not color shift 
“much” however, improper maintenance practices can cause 
obvious luminaire color shift over time. The causes of color 
shift with LEDs are not well understood. The color shift in 
LEDs needs specific attention for a number of reasons. Prior 
testing has shown that the color shift with LED-based 
luminaires can be so great as to constitute a “failure” to an 
end user. In this paper, Extended Kalman Filter has been 
used to project color shift over an extended period of time. 

Chromaticity specifies the quality of color regardless of 
the luminance and is quantified by the hue and saturation. 
The white point of the illuminant is the neutral reference.  The 
white point of an RGB display is the x,y chromaticity of [1/3, 
1/3]. All other chromaticities are described in relation to this 
white point reference using polar coordinates.   Hue is the 



angular component and saturation or purity is the radial 
component. The outer curved boundary of the chromaticity 
diagram is the spectral or monochromatic locus, with 
wavelengths shown in nanometers. The “horseshoe” shape of 
the chromaticity diagram consists of the (x,y) chromaticity 
points of every color of light whose spectrum consists of only 

x = X   X 
+ Y + Z 

y = Y   X 
+ Y + Z 

(1) 
 
 

(2) 

a single wavelength.  Chromaticities that lie along the horse 
shoe are called spectral chromaticities.  Colors along the horse 

z = Z 
X + Y + Z 

= 1 − x − y 
(3) 

show range from violet, magenta, blue, cyan, green, yellow 
and red. The dotted line at the bottom of the chromaticity 
diagram completes the region “enclosed” by the horseshoe. 
The chromaticities along the straight line are not “spectral” 
and there is no light with only a single wavelength component 
that exhibits a color with such a chromaticity. Colors along 
the straight line are called the nonspectral purples. 

Where, Y means luminance, Z is equal to blue stimulation, or 
the S cone response, and X is a linear combination of cone 
response curves chosen to be nonnegative. The XYZ 
tristimulus values are derived parameters from the long-, 
medium-, and short-wavelength cones. The Y luminance is 
measured in foot-Lamberts or candelas/sq.m, and the x and y 
co-ordinates are dimensionless. The derived color space is 
specified by x, y, and Y and is known as the CIE xyY color 
space and is widely used to specify colors in practice. The 
Yu'v' is a uniform luminance-chrominance space. Yu'v' is 
derived from XYZ space [CIE 1986; Poynton 2003], 

u' = 4X = 4x   (4) 

X +15Y + 3Z − 2x +12y + 3 

v' = 9Y = 9y   (5) 

X +15Y + 3Z − 2x +12y + 3 

In the experimental data-set, the initial CCT of warm 
LUXEON LED value is 3000K whose u’ and v’ location in 
1976 CIE [Schanda 2007] is shown in the following Figure 5. 
The vertical stack of points indicates the (u’, v’) coordinates 
of all the data at 55°C, 85°C and 105°C from pristine state till 
10,000 hours of testing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Yu'v' is a uniform luminance-chrominance space and 
the visualized color of 3000K using 1976CIEUV and 

Location of the 55°C, 0.35A dataset 
 

Color space is a three-dimensional space in which the color is 
specified by a set of three numbers such as the CIE 
coordinates X, Y, and Z, which specify the color and 
brightness. The CIE XYZ color space is designed so that the 
Y parameter is a measure of the brightness or luminance of a 
color. The chromaticity is a color projected into a two- 
dimensional space that ignores brightness. The chromaticity 

of a color is specified by the two derived parameters x and y, 
two of the three normalized values which are functions of all 
three tristimulus values X, Y, and Z: 



 
 
 
 
 

Figure 6: Planckian Locus in Yxy CIE1931XY Space 
and Location of the 55°C, 0.35A dataset. 

 

Planckian locus, also called the black body locus is the path 
that the color of an incandescent black body would take in 
a particular chromaticity space as the blackbody 
temperature changes. The blackbody goes from deep red at 
low temperatures through orange, yellowish white, white, 
and finally bluish white at very high temperatures. Figure 6 
shows the Planckian Locus in the Yxy space (Black Line). 
The red- dot on the Planckian Locus indicates the location of 
the 55°C 
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ambient air, 1A test data set. The data-set consists of 26- 
samples and has a mean CCT of 2952K. The (u’, v’) data 
from experiments has been converted to the (x, y) space and 
plotted in Figure 6 [Poynton 2003]. 

CCT(x, y) = −449n3  + 3525n2
 

−6823.3n + 5520.33 

n = x − x e 

(8) 
 
 
(9) 

x = 9u' (6) y − ye 

6u'−16v'+12 

y = 4v'   
6u'−16v'+12 

 
 
 
 
 

Initial CCT Distribution 

 
(7) 

Where, n is the inverse slope in the x-y space, xe = 0.3320, 
and ye = 0.1858. Variance of the CCT in the experimental 
data is shown in Figure 7. LEDs subjected to high 
temperature exposure shift in the 1976CIEUV space with 
accelerated test time. Figure 9 shows the u’ and v’ coordinates 
for the data-set and the dataset mean versus operating hours. 
The red line is the average of 55°C chromaticity, the blue line 
is average of 85°C chromaticity, the green line is average of 
105°C chromaticity and the pink line is average of 120°C 
chromaticity. It is thus expected that the color would shift 
with time of exposure at high temperature. 
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Figure 7: Variance of the CCT in the 55°C, 0.35A Dataset 

 
 
 
Figure 9: Shift of the LED Chromaticity in the CIE1976UV 
space. Plot depicts the change in (u’, v’) for the different 
temperatures versus test time in hours. Plotted data 
corresponds to current of 0.35A. 

 

Extended Kalman Filter Based Assessment of L70 Life 
In order to prognosticate the remaining useful life (RUL) of 
LEDs, the L70 lifetime has been used. The L70 life is defined 
as the time at which LED lumen output is 70 percent of the  
lumen output compared to the pristine LED at beginning of 
the test. 
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Figure 8: Evolution of the CCT for the 55°C, 0.35A Data-set 
along the Planckian Locus with Test Time up to 10,000 Hours 

in Yxy CIE1931 Space 
 

One can approximate the Planckian locus in order to calculate 
the CCT in terms of chromaticity coordinates, if a narrow 

Error 
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H + H + 

Error 
 

+ 

range of color temperatures is considered, such as those 
encapsulating daylight. The cubic approximation proposed 
by McCamy [1992] has been used to construct the Planckian 
Locus, 

Figure 10: Recursive Algorithm and Extended Kalman Filter 
 

The RUL is estimated by the using the Extended Kalman 
Filter with historic data. System damage state estimation in 
the  presence  of  measurement  noise  and  process  noise  has 



  

 1 

F = β  

been  achieved  using  the  Extended  Kalman  Filter  (EKF). The system dynamic matrix for the EKF is: 

Previously, the Kalman Filter has been used in guidance and 
tracking applications [Kalman 1960, Zarchan 2000]. System 
state has been described in state space form using the 
measurement of the feature vector, velocity of feature vector 
change and the acceleration of the feature vector change. The 
equivalent Extended Kalman Filter equation for state space 

 
 
 

FEKF 

 ∂x 
 ∂x  ∂x 

=  
 ∂x 
 ∂b 
 ∂x 

∂x 
∂x 
∂x 
∂x 
∂b 
∂x 

∂x  
∂b  
∂x  
∂b  
∂b  
∂b  

(19) 

representation  is  in  the  presence  of  process  noise  and The system dynamic matrix for the KF is: 

measurement noise is: 

x = Fx + w 
x = f (x) + w 

 
(10) 
(11) 

 
 

FKF 

0   1 
= 0   0 

0   0 

0 
 
 

0 

(20) 

Where the F is the system linear dynamic matrix; f(x) is non- 
linear dynamic matrix; the G is measurement matrix;  u  is 
measurement vector; and w is system white noise; 

We use this Jacobin Matrix to linearize the non-linear 
problem; therefore it can use the classical KF updates. This is 
for the second order system, and thus we can find the transfer 

Z = H ⋅ x + V 
Z = h(x) + V 

(12) 
(13) 

function F to describe certain system, which it is the key to 
find fundamental matrix Φ (t ) . In this paper for the EKF, we 

Where H is the measurement matrix, z is the measurement 
vector, h(x) is a measurement function,which is a nonlinear 
function of states, v is zero-mean random process described 
by the measurement noise matrix. The process noise can be 
calculated by taking the expected value of white noise: 

used the system model: 
x = α ⋅ eβ⋅t

 

The state vector is: 
x k  = x x β 

 
(21) 

 
 

(22) 

Q = E[wwT ] (14) This is an exponential function. The ‘ α ’ and ‘ β ’ are two 

Similarly, the measurement noise matrix is derived from the 
measurement noise as following: 

coefficients that are decided by different systems. The first 
derivation x and the second derivation x are from: 

R = E[vvT  ] (15) x = α ⋅ eβ⋅t
 (23) 

Since the system-dynamics ‘F’   and measurement 
equations are nonlinear, a first-order approximation is used in 

x = β ⋅ x 
x = β⋅ x = β2 ⋅ x 

(24) 
(25) 

the continuous Riccati equations for the systems dynamics 
matrix F and the measurement matrix H. It is expected that 
the  progression  of  interconnect  damage  is  nonlinear,  and 

Therefore  the  elements  in  system  dynamic  matrix  will  be 
calculated as: 

 β 1 x   (26) 
therefore need to be linearized before it can be estimated. In 
the Extended Kalman Filter, the problem of linearization is  2 

EKF  β 2βx 

addressed  by  calculating  the  Jacobian  of  the  nonlinear 
function of states (f) and the measurement function (h) around 

 0 0 0   

the estimated state. System state at each future time has been Usually, the fundamental matrix Φ(t) can be obtained from 

computed based on the state space at preceding time step, 
system  dynamics  matrix,  control  vector,  control  matrix, 

two  ways:  the  first  way,  we  can  get  it  from  Laplace 
Transform, simply as: 

measurement  matrix,  measured  vector,  process  noise  and 
measurement noise. The matrices are related to the nonlinear Φ(t) = [(SI − F)−1] 

−1 

(27) 

system and measurement equations according to: 

F = ∂f (x) 
 

(16) 
Where the  is inverse of the Laplace Transform; However, 
the second way, known as the common way to find Φ(t) , 
derives from the Taylor Series expansion: 



1+βT T xT  
 β2T  1+βT  

 

∂x x = x̂  
Φ (t) = I + FT + (FT )2

 (FT )3
 + +  (28) 

H = ∂h(x) (17) 2! 3! 

∂x x=x̂ 

From the linear dynamic equations, we can clearly know that 
the world is linear as we supposed, and once we made this 
premise. All the problems can be simply solved through the 
matrix calculation. Therefore, we can get the first and second 
derivatives from the linear matrix calculation; 

Normally, we only use the first two terms for representing the 
fundamental matrix Φ(t) , because the adding more terms 
cannot contribute much  to the  precision  and  filter 
convergence. 
The Fundamental Matrix in the Extended Kalman Filter is: 

(29) 

x  x (18) ΦEKF(T) ≈ I + FEKFT = 2β⋅ xT 

x = F ⋅ x   0 0 1    

    The Fundamental Matrix in the Extended Kalman Filter is: 

x x 



0 0 1 

1  T  
0.5Ts2   (30) the  H  is the unit measurement matrix and Ht  is transpose of 

ΦKF (T ) ≈ I + FKFT = 0   1 T     
  
  

In the Kalman Filter, the Fundamental Matrix will be directly 

it; the K is the Kalman Gain; Rk  represents the measurement 
noise according to the different system. We notice that those 
three  equations  run  like  in  the  recursions:    for  the  initial 

used  to  update  the  estimation  from  last  time  to  the  next. 
Generally speaking, the process to find the ideal estimation covariance  error P0,  we  can  find  variance  matrix Mk    that 

can be expressed as following steps: First of all, we make the 
primary estimation, which should be approximate to the 
initiate value in the dataset, and secondly, we can find the first 
projection  using  the  fundamental  matrix Φ (t ) and  simply 
calculate as: 

represents the current error in the first equation according to 
time. Then we use it in the second equation to find the Kalman 
Gain K , after that, we substitute the Estimate Kalman Gain K 
into the third equation to update last covariance error Pk , thus 
we obtain the ‘next’ covariance error Pk+1. Therefore, 

x = Φ(t) ⋅ x̂ (31) as we go back to the first equation, we can obtain the updated 

 
For the KF the projection can be represented by: Mk and  updated  Kalman  Gain K .In  the  EKF,  the  Euler 

∆x  0 1 0∆x  0  (32) integration has been introduced to instead the performance of 
the KF’s fundamental matrix, it can be found that: 

∆x = 0 0 1∆x +  0  x  = x̂ + x T (40) 

       k k k−1 

∆x  0 0 0∆x w x k  = x̂ k  + xk−1T (41) 

For the EKF the projection can be represented by: We   call   the   equation   above   is   the   update   equations, 

 ∆x  ∆x ∆x   
(33) x̂k  represents the projection from the last time k ; x̂k −1   

is the ˆ 

∆x   ∆x ∆x ∆b ∆x  0  first derivative at time k-1; x̂k is the estimation at time k, xk is 

∆x =  ∆x
 ∆x ∆x ∆x  +  0  the first derivative at time k; T is the sample time. 

   ∆x ∆x ∆b     x̂ k  = xk + K1(Z− H⋅ xk ) (42) 

∆b   ∆b ∆b ∆b ∆b w  
x̂  = x 

 
+ K (Z−H⋅ x ) 

 
(43) 

 ∆x ∆x ∆b  k k 2 k 

 
The  next  estimate  could  be  obtained  from  the  following 
equation: 

The above equations are the basic Extended Kalman Filter 
equations, which are to find the estimation and its ‘velocity’. 
Also,  in  those  equations,  it  uses  the  same  three  Riccati 

x̂ = x + K(Z − H ⋅ x) (34) Equations that expressed in the Kalman Filter to obtain the 

K is Kalman Gain Kalman Gain K 1 and K 2 .  Thus, the Extended Kalman Filter 

H  is measurement matrix 
Z is measurement. 
Each  time  we  update  the  Kalman  Gain  and  Covariance 
Matrix, which minimizes the errors and makes optimal 
calculation during each step. Thus, the Kalman Gain mainly 
conveys the information about how is our estimation close to 
the observation. The way to obtain Kalman Gain (K) is from 
three Riccati equations: 

actually has turned the non-linear problem into a linear one 
through integrating method. So at each step, the Extended 
Kalman Filter made a small integration, and if the integrate 
time is small enough, then the answer we get is becoming 
more precise. However, the  difficulty within  the Extended 
Kalman Filter is to find the dynamic non-linear model to 
describe the system, which always contains the unknown 
coefficients.  Therefore,  the  better  we  know  about  the  test 



0 0 

k     t k     t k 

T 

−1 

s  

 

k 

Mk = ΦkPkΦk +QK (35) system,  for  example,  the  theories  and  functions  in  the 
situation of LEDs failure, the better we can predict system 

K = Mk Ht (HMk Ht  + R k ) 
Pk  = (I − KH)Mk 

(36) 
 

(37) 
model in the Extended Kalman Filter, therefore, the prediction 
of Remaining Useful Life (RUL) would be close to the real 
RUL in our PHM. 

In the above equations, the M k  is the covariance matrix; the 

Φ is the fundamental matrix; the ΦT  is the transpose of that 
 

Algorithm: Filtering and RUL prediction 

matrix;  Pk is  another  covariance  matrix  that  representing 1. Initiate x̂ 0 

error according to the time; the  Qk is the discrete process 2. Make the projections: 

noise matrix, which is calculated from: xk  = x̂ k  + x k−1T 

0 0 0 (38)  x k = x̂ k + x 
 
k−1T 

Q = Φ  0  
 

3. Calculate error covariance matrix before updata: 
T 

0 0 1 Mk  = Φk PkΦk + QK 

 
Ts 

Q  = ∫ Φ(τ) ⋅ Q ⋅ Φ(τ)T dτ 
0 

 

(39) 4. Calculate the Kalman Gain: 
K = M H (HM H + R )−1

 

5. Update the estimation with measurement: 



 N    N   N        . ∑t i .Φ(t)i  −  ∑t i  ⋅ ∑(Φ( t) )
 

i    
(47) 

 i=1   i=1        i=1   
 

 1 

2 

 

 1  

x̂ k  = xk + K1(Z− H⋅ xk ) loge (Φ(t)) = loge (β) + (−α) ⋅ t (45) 

x̂ = x + K (Z−H⋅ x ) (46) 
k k 2 k Φ = β + α ⋅ t 

6. Calculate error covariance after measurement update: 
Pk  = (I − KH)Mk 

7. Extrapolate feature vector to threshold value: 

Coefficients of regression have been computed to get the 
optimal curve fit for the ‘slope’ and ’intercept’. The values of 
α and β were determined for the lower case temperature T1, 

LM = xk+n ⋅ e βk +n + wk+n 
and for the upper case temperature T2. 

8. Report predicted RUL (and uncertainty); 
9. Iterate to step 2 for next measurement (k = k +1); 

N 
α = −α = 

 
 
 N       

2       N  

The predictions are updated continually as more data becomes 
available.  The Figure 11 below shows the estimation of RUL 

N ⋅ ∑t i 
i=1 

−  ∑t i  
 i=1       

 N         N  (48) 
for L70.  In the plot the blue line is raw experimental dataset,  ∑Φ(t)i  − α . ∑ t i  

the solid red line is Extended Kalman Filter Prediction, and 
the dash red line is Extended Kalman Filter extrapolations for 
L70, the green line is L70 criterion, and the green arrow shows  
the  Remaining  Useful  Life  from  the  last  evaluated 

β = log(β) =  i =1   i =1       
N 

Activation Energy was calculated using the decay rate from 
two different temperatures: 

point. 
k ⋅ log

 α 
 (49) 

 

Ea  =  1 
 α2   

1  

 
 T2 

−  
T1  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 the Intuition of RUL for L70 
 

Different failure models have been integrated with the 
Extended Kalman Filter Algorithm to extrapolate the pseudo 
decay curve, and calculate the Remaining Useful Life using 

 

 
 
 

Figure 12: TM-21 Degradation Curve 

L70 criterion. The extrapolation function uses state vectors Using the activation energy  Ea and the lower case α value 

from Extended Kalman Filter estimations.  The state vectors 
provide information about the migration of accrued damage in 

and   temperature,   the   Pre-Exponential   Factor   A,   was 
determined. 

the LED.  Once all the state vectors converge at certain level,  Ea    (50) 

the Extended Kalman Filter prediction  of  decay  lines will 
converge and remain within 95-percent Confidence Interval 
level. 

 
TM-21 Estimation of LED Life 

  

A = α ⋅ e k⋅T 
1 

With   the   Pre-Exponential   Factor   known,   the   In-Situ 
temperature α value was determined. 



0 

 E     (51) 
Computation method based on TM-21 includes four parts: the 
first part uses the Least Squares Fit (LSF) to determine the 

− a    

α = A ⋅ e  k⋅T1 
 

Projected Initial Constant  α and Decay Rate Constant β , 
The   governing   function   for   the   Lumen   Maintenance Next, the In-Situ temperature β value was determined. 

 
 (52) 

 
according to time: β0  = β1 ⋅ β2 

Φ(t) = β ⋅ e−α⋅t
 

The lumen maintenance, 

(44) 
 

Φ(t) , is known for about a dozen 

Lastly,  with  the values of α and β known  for  the  In-Situ 
temperature, the L70 value in hours was determined. 

datum points. In order to solve for α and β, the logarithm of 
both sides was taken to produce a linear function. 



 Model 
Model-1 I I0 K (t t0 ) 
Model-2 0 [ ( 0 )] 
Model-3  k   k 

I   =  I0  + 1  exp[k (t − t 0 )]− 1 

 2  2 

Model-4 I  = I0  + k  ln t  
v v 3  

t0    
Model-5 I  = I0 + k (t − t0 )+ k ln 

 
   

Model-6 
0 ( 0 )k5 

 

2 

 β  (53) Each failure mechanism may have different underlying failure 

log 0   physics and a different unique function to describe it.   The 

L70  =  0.7  
α0 

following plot shows the possible decay models existing in 
the LED systems.   The overall degradation in LED Lumen 

The TM-21 extrapolation curve is shown in Figure 12. The 
green dash lines are the extrapolations from the low 
temperature to the high temperature. The red dash line shows 
the overall lumen degradation. The L70 life of LED using 
TM-21 is about 36871.4 hours for long-term degradation. 
However there is a limitation to use this TM-21 Calculator, 
we have to know at least three cases at different temperatures 
in order to correctly calculate the Activate Energy Ratio. 
Moreover, the TM-21 is single estimation value, which 
cannot provide any insight into the Probability and 
Distribution of L70 estimations. 

 

EKF Model Analysis General  LED  Lumen  Decay  Life-Prediction  functions  are 

Maintenance  may  result  from  several  combined  long  term 
decay functions triggered by multiple failure mechanisms. 
Thus, the true lumen degradation profile may be fairly 
complicated. In this paper, we primarily focus on  three failure 
mechanisms. The first failure mechanism is the drift of 
charged defects in chip, which may be described as the 
ramp function [IES TM21 2011]. The second failure 
mechanism is thermal decomposition of encapsulant, which is 
represented as an exponential function. The third failure 
mechanism is the combination of those previous two models. 
Figure 14 shows the constant decay rate model for the 
prediction of the Pseudo L70 life for the LEDs. The charge 
drift model model is described by the function: 

 
plotted in Figure 13 and shown in Table 3.  Potential failure 
mechanisms   in   the   LED   system   include:   (1)   Silicone 

dLo / dt = C1 

Lo  = LI + C1(T − T0 ) 

(54) 
 

(55) 

Encapsulate Degradation; (2) Chip Degradation; (3) Phosphor 
Degradation;   (4)   Reflector   Degradation;   and   (5)   Glass 
Degradation. 

 
Figure 13: LED Lumen Decay models 

Table 3: Lumen Decay Models [IES TM-21 2011] 

v  = v + 1 − 

Iv  = Iv exp k 2  t − t 

In this model, the decay rate is constant, which is 
presented by the  straight lines (Figure 14). Constant 
degradation rate cannot truly describe the degradation in 
operational environments, where the decay rate may not be 
maintained constant throughout the LED Lifetime. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14: Constant Decay Model with Kalman Filter for L70 
Estimation of 105°C, 1A LEDs 

Initial stages of lumen degradation in LEDs may result 
from chip degradation or plastic degradation. However, as 
the time elapses, the damage evolution in the system may 
include  additional  failure  mechanisms  and  thus  additional 
lumen degradation trends.   It is feasible for several failure 

v  v k   
 
 
 
 
 
 

v v 1 

2 k 
 
 
 
 
 
 

3 
 t0  

 

mechanisms working together to accrue the damage and 
accelerate failure of system. In order to allow evolution of 
damage at a non-constant decay rate, a second order 
polynomial function has been incorporated into the extended 
Kalman filter algorithm to predict decay curve (Figure 15). 
Figure 15 shows the accelerating degradation using the 
polynomial function where the decay rate is not constant, 
which expresses as: 

Iv  = Iv  t − t dLo /dt = C1 +C2T L



o  = LI + C1(T 
− T0 ) + 0.5C2 

(T − T0 ) 

(56) 
 

(57) 



I o 

L70 life has been estimated using EKF in conjunction with 
the Newton Raphson Method. When Kalman Filter made a 
prediction about the state vectors in each evaluated time, and 
the remaining useful life could be estimated and calculated 
mathematically by solving the equation H(t) and find the time 
T-prediction: 

H(t) = x0 + x × t + x × t2 − f (EoL) (60) 

T(n +1) = T(n) − f (x) / f '(x) (61) 

Where, T(n) is the estimated root at time n; T(n + 1) is the 
estimated root  at  time (n+1); f '(x) is the derivation of 

target equation. The Predicted RUL (T-predicted) is known 
as the ‘L70’ End of Life (EoL) minus the sampling time (T- 
sample). So the algebra equations presents as following: 

 
Figure 15: Polynomial Decay Model with Kalman Filter 

RUL = L 70 EKF − T sample 
(62) 

for L70 Estimation of 105°C, 1A LEDs Coefficients  for  the  estimation  for  the  exponential  model 
( Φ = α ⋅ exp(−β ⋅ t) ) used with extended Kalman filter have 
been computed by training the EKF parameters in the prior 
acquired data. In this model, Φ is the Lumen Maintenance (%), 
α is the initial degradation factor,  β is the degradation 
rate. The  estimation  parameters 
Figure 18 and Figure 19. 

α i and  β i are  shown  in 

 
 
 
 
 
 
 
 
 
 

Figure 16: Exponential Decay Model with Kalman Filter for 
L70 Estimation of 105°C, 1A LEDs 

 

Further, the LED system may experience long-term 
degradation in high temperature environments.  In this case, 
the main degradation in the system may result from thermal 
decomposition of encapsulant in LEDs. In this case, the 
exponential decay function is used to represent the decay curve 
in the extended Kalman filter algorithm. This extrapolation is 
presented in the Figure 16 and represented by, 

 
 
 
 
 
 
 
 

Figure 17: KF Estimations 

dLo / dt = C1 × L0 (58) 

L  = L × eC1×(T−T0 ) (59) 

 

L70 Life Distribution Using KF and EKF 
Exponential decay function (Model 3) has been used to 
predict the L70 life. Extended Kalman filter has been used to 
estimate the L70 life of each LED based on prior measured 
values of lumen maintenance. Figure 17 shows the EKF 
prediction of L70 life depicted by red-lines for each sample in 
the 105°C, 1A experimental dataset. The degree  of correlation 

between the measured data and the EKF predictions of state 
can be assessed by comparing the red- lines for EKF 
predictions with the actual measurements of lumen output 
indicated by the blue-dots for each of the 25 samples in the 
measured sample-set.  In each case, the pseudo 



 
 
 
 
 
 
 
 
 
 
 

Figure 18: Fitted Distribution for Decay Rate βi after 
8000 hours for 105°C, 1A dataset. 



 
Figure 19: Fitted Distribution for Decay Rate αi after 8000 

hours for 105°C, 1A dataset. 
 

Figure 20 shows the KF predictions of L70 life with the green 
lines using exponential model. Those extrapolation lines have 
been drawn by the coefficients estimated by the KF in the 
above table. The blue line in the picture shows the true 
estimation, which is the mean of the distribution; the  red curve 
shows the variance of the distribution. 

 
Figure 20 EKF Extrapolations and Mean Estimations 

 

 
Figure 21 Lumen Degradation Path for estimating lumen at 

16,000 hours 
 

Using the presented approach, the lumen degradation could 
be predicted at future time. Figure 21 shows the prediction of 
Lumen Maintenance at 16,000 hours using EKF. Normal 
distribution has been assumed for the estimation of training 
decay rates. Figure 21 shows the degradation path for 
estimating the 16,000 hours life. The dots represent the lumen 

maintenance estimations, and the blue line shows the 16,000 
hours threshold. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22 Lumen Estimation Summary for 16,000 hours 

Figure 22 shows the lumen estimation at 16,000 hours.  The 
blue bar shows the counts of estimated lumen value, the red 
line is fitted distribution. The mean value of 16,000 hours 
lumen maintenance is 86.53%, and the mean value of 8000 
hours is 92.21%. Therefore, the lumen maintenance 
degradation from 8000 hours to 16,000 hours is 5.68 %. The 
lumen maintenance variance at 8000 hours is 1.1196e-04, and 
the lumen maintenance variance at 16,000 hours is 1.2863e- 
04, so the variance increases 1.667e-5, which indicates the 
distribution shape is wider than the distribution at 8000 hours. 

 

KF Chromaticity Tracking Using EKF 
The Chromaticity u’ and v’ has also  been  tracked by  the 
Kalman Filtering Algorithm (Figure 23). Predictions of 
Chromaticity shift along with lumen maintenance can provide 
valuable insight in to the prior damage and the remaining 
useful life of the LEDs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 23 KF Chromaticity Tracking 



 

The EKF reliability function, R(t), can thereby be written by: 
R(t) = 1 - F(t) = 1 - Φ[(t - 43265)/ 2720.9] (70) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24 KF track with ± 0.06 confident interval 
 

Shift of the (u’, v’) coordinates could indicate a major color 
shift which may render the LED unusable.   The dash blue 
line is the KF chromaticity tracking for u’ and v’ in 9000 
hours operating hours.  Figure 24 shows u’ v’ KF tracking in 
2D 1976 CIE u’ v’ coordinate.  The circle is ± 0.06 confident 
interval; the circle center is central point for 3000K. 

 
Life Distribution Fit 
Cumulative distribution function F(t) represents the 
population fraction failing by age t. The reliability function 
R(t) for a life distribution is the probability of survival beyond 
age t, namely, the survivor or survivorship function can be 
represented as: 

 
 
 
 

Figure 25 KF Distribution of L70 

R(t) = 1- F(t) (63) 

Normal distribution, Lognormal distribution and Weibull 
distribution have been fit to the distribution of predicted L70 
lifetimes from EKF. 

 
Normal Distribution 
Previously, the normal distribution has been used to describe 
the life of incandescent lamp filaments in the field of lighting. 
The Normal Cumulative Distribution Function is represented 
by: 

 
 
 
 
 
 

Figure 26 EKF Distribution of L70 
 

Lognormal Distribution 
The Lognormal distribution is widely used for life data or 

 1  x -µ 
2  (64) semiconductor  failure  mechanisms. The  lognormal  and 

y  -      2 σ   

F(y) = ∫ 
-∞ 

2πσ2  ⋅ e
 

dx,-∞ < y < +∞ normal distributions are related; this fact is used to analyze 
lognormal   data   with   same   methods   for   normal   data. 

Normal Probability Density. The probability density is: Lognormal Cumulative Distribution is represented by: 
2 2 (65) F(t) = Φ{[log(t) - µ]/σ}, t > 0 (71) 

f (y) = (2πσ2 )-1/2 ⋅ e[-(y- u)  /(2σ )] ,-∞ < y < +∞ 
Normal Reliability Function. The population fraction 

 
Lognormal Probability Density function is represented by: 

surviving age t is: f (t)  = {0.4343/[( 2 π ) 1 / 2 tσ ]} ⋅ e {-[log(t)   - µ ] 2  /(2 σ 2  )} , t > 0 (72) 

R(t) = 1 - Φ[(t - µ)/σ] (66) Lognormal Reliability Function is represented by: 

The  KF  prognostic  pseudo  L70  life  follows  the  normal R(t) = 1 - Φ{[log(t) - µ]/σ} = Φ{-[log(t) - µ]/σ} (73) 

distribution   with   expectation   µ   (26118)   and   variance 
σ (8687.7). 

The KF cumulative distribution of LEDs’ L70 life would be 
written as the following function: 



F(t) = Φ [(t - 26118 )/ 8687 .7 ] (67) F (t) = Φ{[log(t / 10.122)] / 0.3045} (74) 

The KF reliability function, R(t), can thereby be written by: In the KF prognostic L70 distribution, we found that R(t) 

R(t) = 1 - F(t) = 1 - Φ [(t - 26118 )/ 8687 .7 ] (68) could be represented as: 
R(t) = 1 − Φ{[log(t /10.122)] / 0.3045} 

 
(75) 

The  EKF  prognostic  pseudo  L70  life  follows  the  normal 
distribution   with   expectation   µ   (43265)   and   variance 
σ (2720.9). 

 

= Φ{−[log(t) − 24877] / 0.3045} 
The EKF cumulative distribution of LEDs’ L70 life would be 

F(t) = Φ[(t - 43265)/ 2720.9] (69) written as the following function: 



Goodness-Fit Tests for Three Distributions 
Distributions Cramer-von 

Mises Criterion 
P-Value 

Normal 1.161 <0.010 
Lognormal 0.541 <0.005 

Weibull 1.050 <0.010 
 

Goodness-Fit Tests for Three Distributions 
Distributions Cramer-von 

Mises Criterion 
P-Value 

Normal 0.0968 <0.005 
   

F (t) = Φ{[log( t /10.7)] / 0.06} (76) criterion value, indicating that it is the best fitting distribution. 

In the LEDs’ L70 distribution, we found that R(t) could be 
represented as: 

The best fitted distribution for KF is lognormal distribution 
(Figure 25) with CMC value 0.541, and normal distribution 

R (t) = 1 − Φ{[log( t /10.7)] / 0.06} 
= Φ{−[log( t) − 44356 ] / 0.06} 

 
Weibull Distribution 

(77) (Figure 26) for EKF with CMC value 0.0968. 
 

Summary and Conclusions 
A life prediction methodology for L70 life of LEDs has been 
developed  based  on  Kalman  Filter  and  Extended  Kalman 

The  Weibull  distribution  is  often  used  for  product  life, 
because it models either increasing or decreasing failure rates 
simply. It is also used as the distribution for products 
properties such as strength (electrical or mechanical), 
elongation resistance (references), etc., in accelerated tests. It 
is used to describe the life of roller bearings, electronic 
components, ceramics, capacitors, and dielectrics in 
accelerated test. Weibull Cumulative Distribution. The 
population fraction failing by age t is: 

Filter Models. Both the lumen degradation and the 
chromaticity shift have been predicted. The estimated state- 
space parameters based on lumen degradation and 
chromaticity were used to extrapolate the feature vector into 
the future and predict the time-to-failure at which the feature 
vector will cross the failure threshold of 70-percent lumen 
output. This procedure was repeated recursively until the 
LED failed. Remaining useful life was calculated based on the 
evolution  of  the  state  space  feature  vector.    The  KF/EKF 

F(t) = 1- e-(t/α )β 

, t > 0 
Weibull Probability Density is given by: 

(78) estimations are range from 26,000 to 40,000 hours for the 
LEDs depending on the underlying degradation mechanism. 

 β β−  − α β (79) Model predictions correlate reasonably with the TM-21 which 

f (t) = (β / α )t 1 ⋅ e ( t / 
)  , t > 0 provides L70 life-prediction in the neighborhood of 36,000 

Weibull Reliability function is given by: 
R(t) = e-(t/α )β 

, t > 0 
 

(80) 
hours.  Since the proposed computation method based on KF 
and  EKF  is  recursive,  any  changes  in  underlying  damage 

The KF L70 life follows the Weibull distribution with the 
shape parameter β (3.11) and scale parameter α (29000). 

3.11 

acceleration  trigger  updates  to  Kalman  Gain  and  allow 
convergence of the model to measured lumen degradation.  It 
has  been  shown  that  the  KF  and  EKF  based  models  can 

F(t) = 1- e[-(t/29000 ) 
] , t > 0 (81) capture  the  underlying  failure  physics  of  multiple  failure 

The reliability function, R(t), can thereby be written by: 
3.11 

mechanisms  active  in  the  LEDs  including  (1)  Silicone 
Encapsulate Degradation; (2) Chip Degradation; (3) Phosphor 

R(t) = 1 - F(t) = e[-(t/29000   ) 
] , t > 0 (82) Degradation;   (4)   Reflector   Degradation;   and   (5)   Glass 

The L70 life follows the Weibull distribution with the shape 
parameter β (17.6) and scale parameter α (45000). 

Degradation.  Failure distributions of the L70 life have been 
constructed   based   on   normal,   lognormal   and   Weibull 

F(t) = 1 - e[-(t/45000  ) 
17.6 ] , t > 0 (83) distributions.   Normal distribution shows the best fit to the 

The reliability function, R(t), can thereby be written by: L70  histogram  for  the  EKF  model  and  the  lognormal 

 
R(t) 

 

= 1 - F(t) 
 

= e[-(t/45000  ) 
 

17.6 
 
] , t > 0 (84) distribution shows the best fit for the L70 histogram for the 

KF model. 
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Table 4 and Table 5 respectively shows the fitting statistics 
for the Normal distribution, Lognormal distribution and 
Weibull distribution. The lower value of Cramer-von Mises 
Criterion (CMC-Minimum Distance), indicates a better fit of 
distribution.  The lognormal distribution fitting shows lowest 
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