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Abstract

Solid-state lighting (SSL) luminaires containing light emitting
diodes (LEDs) have the potential of seeing excessive
temperatures when being transported across country or being
stored in non-climate controlled warehouses. They are also
being used in outdoor applications in desert environments that
see little or no humidity but will experience extremely high
temperatures during the day. This makes it important to
increase our understanding of what effects high temperature
exposure for a prolonged period of time will have on the
usability and survivability of these devices. Traditional light
sources “burn out” at end-of-life. For an incandescent bulb,
the lamp life is defined by B50 life. However, the LEDs have
no filament to “burn”. The LEDs continually degrade and the
light output decreases eventually below useful levels causing
failure. Presently, the TM-21 test standard is used to predict
the L70 life of LEDs from LM-80 test data. Several failure
mechanisms may be active in a LED at a single time
causing lumen depreciation. The underlying TM-21 Model
may not capture the failure physics in presence of multiple
failure mechanisms. Correlation of lumen maintenance with
underlying physics of degradation at system-level is needed. In
this paper, Kalman Filter (KF) and Extended Kalman Filters
(EKF) have been used to develop a 70-percent Lumen
Maintenance Life Prediction Model for LEDs used in SSL
luminaires. Ten-thousand hour LM-80 test data for various
LEDs have been used for model development. System state
at each future time has been computed based on the state
space at preceding time step, system dynamics matrix,
control vector, control matrix, measurement matrix, measured
vector, process noise and measurement noise. The future state
of the lumen depreciation has been estimated based on a
second order Kalman Filter model and a Bayesian
Framework. The measured state variable has been related to
the underlying damage using physics-based models. Life
prediction of L70 life for the LEDs used in SSL luminaires
from KF and EKF based models have been compared with
the TM-21 model predictions and experimental data.

Introduction

The field of electric lighting is undergoing major revolution.
We are in the process of transition to solid state lighting from
the incandescent lighting that we have so grown used to and

fond off. The LEDs (Light Emitting Diodes) have been used
in a variety of applications including automotive headlights,
residential lighting, industrial lighting, televisions and
displays. Early indications are that LEDs will dominate the
lighting market because of the LEDs’ advantages compared to
the traditional fluorescent light in the light efficiency, energy
saving, improved physical robustness and long operating
hours. Energy is one of the major grand challenges facing us
in the 2lst century. Lighting accounts for 17% of the
worldwide electricity consumption. Non-OECD countries
presently account for 82% of the increase in global energy
usage. One possible way to address the growing demand for
energy is to reduce the energy consumption on lighting
[Baribeau 2012]. The U.S. Department of Energy has made a
long term commitment to advance the efficiency,
understanding and development of solid-state lighting (SSL)
and is making a strong push for the acceptance and use of
SSL products to reduce overall energy consumption
attributable to lighting.

The transition to solid state lighting poses certain
challenges. The industrial utilization of LEDs in extreme
environments requires the LEDs have a good survivability
under exposure to wide temperature excursions, humidity, and
vibration. Consistency and reliability of SSL needs to be
improved beyond the present generation. Challenging
applications  include:  Automotive,  Healthcare, and
Horticulture. SSL luminaires are complex systems consisting
of LEDs, Optics, Drive electronics, and Controls. Consumer
electronics applications expected to function for only 1-3
years. Currently, it is not possible to qualify SSL luminaire
lifetime of 10-years and beyond often necessary of high
reliability applications, primarily because of lack of
accelerated test techniques and comprehensive life prediction
models. SSL devices comprises of several length scales with
different failure modes at each level. There may be
interactions between optics, drive electronics, controls and
thermal design impact reliability. Accelerated testing for one
sub-system may be too harsh for another sub-system. New
methods are needed for predicting SSL reliability for new
and unknown failure modes. Presently, there is scarcity of life
distributions for LEDs and SSLs devices which are needed
to assess the promised lifetimes.

LED failure is often addressed by the L70 lifetime, which
is the time required for the LED lumen output to drop to
70- percent of the initial output or stated conversely, it
indicates 70-percent lumen maintenance time. L70 life
is presently
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computed based on a minimum 6000 hours of LED testing
using the LM-80 test method and TM-21 extrapolations of the
LM-80 data. The TM-21 model relies on an exponential model
of LED degradation for assessment of the L70 life. The
underlying TM-21 model may not capture the failure physics
in presence of multiple failure mechanisms. Since multiple
failure mechanisms may be active in an LED or an SSL, the
determination of single activation energy accurately may be
challenging if not impossible. Further, the weighted average
activation energy is based on large population statistics for a
particular LED or SSL design and may or may not be
applicable for the part of interest. In this paper, a new
methodology for the L70 life prediction of LEDs has been
developed based on the use of underlying physics based
damage propagation models in conjunction with the Kalman
Filter. Kalman filtering is a recursive algorithm that estimates
the true state of a system based on noisy measurements
[Kalman 1960, Zarchan 2000]. Previously, the Kalman Filter
has been used for navigation [Bar-Shalom 2001], economic
forecasting [Solomou 1998], and online system identification
[Banyasz 1992]. Typical navigation examples include
tracking [Herring 1974], ground navigation [Bevly 2007],
altitude and heading reference [Hayward 1997], auto pilots
[Gueler 1989], dynamic positioning [Balchen 1980],
GPS/INS/IMU guidance [Kim 2003]. Application domains
include GPS, missiles, satellites, aircraft, air traffic control,
and ships. The ability of a Kalman filter to smooth noisy data
measurements is utilized in gyros, accelerometers, radars, and
odometers. Prognostication of failure using Kalman filtering
has been demonstrated in steel bands and aircraft power
generators [Batzel 2009, Swanson 2000, 2001]. Numerous
applications in prognostics also exist for algorithms using more
advanced filtering algorithms, known as particle filters. The
state of charge of a battery was estimated and remaining useful
life was predicted in [Saha 2009*].

Kalman Filter and Extended Kalman Filter Models have
been used to estimate the future lumen state of the LED system,
track the Lumen Maintenance degradation lines, and estimate
the L70 life for the specific part of interest and determine
remaining useful life. System state has been described in state
space form using the measurement of the feature vector,
velocity of feature vector change and the acceleration of the
feature vector change. This model can be used to calculate
acceleration factors, evaluate failure- probability and identify
ALT methodologies for reducing test time. It is anticipated that
the presented method could be used for health monitoring of
large deployments of LEDs and SSL devices whether in street
lighting or automotive applications and allow continual insight
into the anticipated downtime for repair and replacement.
Kalman Filter is used for linear- system tracking while the
Extended Kalman Filter can be used for case in the non-linear
system. Both algorithms can generate dynamic and updating
estimations at each data points of interest, and then we can get
the distribution of pseudo L70 life from those estimations.
Model predictions have been compared with TM21
calculator. Degradation models used to capture the underlying
physics of the LED and SSL system have been discussed.
The cumulative failure distribution has

been obtained, and the expected reliability computed with 95%
confidence bounds.

Test-Vehicle and Experimental Data

In this paper, 10,000 hour test data acquired by Philips on the
LUXEON Rebel LED has been used for model development.
The dataset is titled DR05-1-LM80 [Philips 2012]. Data was
acquired in accordance with the IES LM-80 standards, and
the correlated color temperature (CCT) of the testing units is
3000K. Data at ambient air temperature of 55°C, 85°C, 105°C,
and 120°C with LED currents in the range of 0.35A to 1A have
been used for model development. Table 1 shows the scope
of the input data set used for model development. A
representative sample of the test product, commercially known
as LUXEON LXM3-PW series LED, is shown in Figure 1.
The surface temperature measurement location is shown in
Figure 1. The surface temperature is lower than the ambient
temperature by approximately 2°C in most cases. Each test
condition has 25 samples. Lumen maintenance data has been
reported along with the u’ and v’ measurements versus
accelerated test time up to 10,000 hours of test time.

T, Measurement Point

Figure 1: LED Test Product [Philips 2012]

Table 1: Input Dataset Used for Model Development

[Philips 2012]
Current T, CCT
Testl 0.35A 55°C 3000K
Test2 0.35A 85°C 3000K
Test3 0.35A 105°C 3000K
Test4 0.35A 120°C 3000K
Test5 0.5A 55°C 3000K
Test6 0.5A 85°C 3000K
Test7 0.5A 105°C 3000K
Test8 0.5A 120°C 3000K
Test9 0.7A 55°C 3000K
Test10 0.7A 85°C 3000K
Testl1 0.7A 105°C 3000K
Test12 1A 55°C 3000K
Test13 1A 85°C 3000K
Test14 1A 105°C 3000K
Table 2: LED Surface Temperature for Various Ambient
Temperatures [Philips 2012]
Ambient Temperature Surface Temperature

55°C 53°C

85°C 83°C

105°C 103°C

120°C 118°C




Failure Mechanisms

The observed lumen degradation in the LEDs may
categorized into two main categories including, (1) wear-out
resulting from long term degradation, (2) catastrophic failure
of the LED resulting from short term degradation (Figure 2).
Catastrophic short term degradation may be caused by
manufacturing  problems, operation problems, harsh
environment exposure or other unpredicted elements in the
LED system. Long term degradation may be caused by long-
term exposure to harsh environments can be represented by a
simple ramp function decay, polynomial function family
decay, exponential family decay, or complicated and
combined functions to model statistical model family decay.
In this paper, we mainly focus on the long term degradation
of Lumen Maintenance, from which the wearing life of LEDs
is predicted.
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Figure 2: LEDs Failure Categories
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Figure 3: Distribution for the Experimental Dataset

Analysis of the variance in the lumen output from the LED
versus lifetime at high temperature shows that the variance in
the LED output increases with the increase in operating time
at high temperature. Simple regression of the test data versus
test time indicates that the lumen maintenance mean of the
tested distribution oscillates with respect to test time. However,
majority of the test data falls within the +95% confidence
limits.
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Figure 4: Simple Regression for the Experimental Dataset

Degradation in the LED after exposure to harsh environments
may cause a shift in the correlated color temperature (CCT).
The color may shift from blue to orange or from green to pink
or vice-versa. There are a number of reasons for the color
shift including (1) aging of the LEDs, or UV exposure may
cause plastics to change color (2) operating conditions
including contaminants in the atmosphere may cause
luminaire changes (3) light engines may shift color over time
with different engines shifting in color differently, (4)
maintenance issues may cause the luminaires to look different
over time due to a number of reasons including incorrect
installation of parts. Nearly all the light engines have some
type of color shift. Examples include (1) metal halide lamps
which are notorious for color shift (2) incandescent bulbs color
shift when they are dimmed (3) LEDs that will shift color
over time. While, linear fluorescents may not color shift
“much” however, improper maintenance practices can cause
obvious luminaire color shift over time. The causes of color
shift with LEDs are not well understood. The color shift in
LEDs needs specific attention for a number of reasons. Prior
testing has shown that the color shift with LED-based
luminaires can be so great as to constitute a “failure” to an
end user. In this paper, Extended Kalman Filter has been
used to project color shift over an extended period of time.
Chromaticity specifies the quality of color regardless of
the luminance and is quantified by the hue and saturation.
The white point of the illuminant is the neutral reference. The
white point of an RGB display is the x,y chromaticity of [1/3,
1/3]. All other chromaticities are described in relation to this
white point reference using polar coordinates. Hue is the



angular component and saturation or purity is the radial
component. The outer curved boundary of the chromaticity
diagram is the spectral or monochromatic locus, with
wavelengths shown in nanometers. The “horseshoe” shape of
the chromaticity diagram consists of the (x,y) chromaticity
points of every color of light whose spectrum consists of only

a single wavelength. Chromaticities that lie along the horse
shoe are called spectral chromaticities. Colors along the horse

show range from violet, magenta, blue, cyan, green, yellow
and red. The dotted line at the bottom of the chromaticity
diagram completes the region “enclosed” by the horseshoe.
The chromaticities along the straight line are not “spectral”
and there is no light with only a single wavelength component
that exhibits a color with such a chromaticity. Colors along
the straight line are called the nonspectral purples.

Time(hours)

Figure 5: Yu'v' is a uniform luminance-chrominance space and
the visualized color of 3000K using 1976CIEUV and
Location of the 55°C, 0.35A dataset

Color space is a three-dimensional space in which the color is
specified by a set of three numbers such as the CIE
coordinates X, Y, and Z, which specify the color and
brightness. The CIE XYZ color space is designed so that the
Y parameter is a measure of the brightness or luminance of a
color. The chromaticity is a color projected into a two-
dimensional space that ignores brightness. The chromaticity
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Where, Y means luminance, Z is equal to blue stimulation, or
the S cone response, and X is a linear combination of cone
response curves chosen to be nonnegative. The XYZ
tristimulus values are derived parameters from the long-,
medium-, and short-wavelength cones. The Y luminance is
measured in foot-Lamberts or candelas/sq.m, and the x and y
co-ordinates are dimensionless. The derived color space is
specified by x, y, and Y and is known as the CIE xyY color
space and is widely used to specify colors in practice. The
Yu'v' is a uniform luminance-chrominance space. Yu'v' is
derived from XYZ space [CIE 1986; Poynton 2003],
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In the experimental data-set, the initial CCT of warm
LUXEON LED value is 3000K whose u’ and v’ location in
1976 CIE [Schanda 2007] is shown in the following Figure 5.
The vertical stack of points indicates the (u’, v’) coordinates
of all the data at 55°C, 85°C and 105°C from pristine state till
10,000 hours of testing.
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Figure 6: Planckian Locus in Yxy CIE1931XY Space
and Location of the 55°C, 0.35A dataset.

Planckian locus, also called the black body locus is the path
that the color of an incandescent black body would take in
a particular chromaticity space as the blackbody
temperature changes. The blackbody goes from deep red at
low temperatures through orange, yellowish white, white,
and finally bluish white at very high temperatures. Figure 6
shows the Planckian Locus in the Yxy space (Black Line).
The red- dot on the Planckian Locus indicates the location of
the 55°C



ambient air, 1A test data set. The data-set consists of 26-
samples and has a mean CCT of 2952K. The (u’, v’) data
from experiments has been converted to the (x, y) space and
plotted in Figure 6 [Poynton 2003].
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Figure 7: Variance of the CCT in the 55°C, 0.35A Dataset

Figure 8: Evolution of the CCT for the 55°C, 0.35A Data-set
along the Planckian Locus with Test Time up to 10,000 Hours
in Yxy CIE1931 Space

One can approximate the Planckian locus in order to calculate
the CCT in terms of chromaticity coordinates, if a narrow

range of color temperatures is considered, such as those
encapsulating daylight. The cubic approximation proposed
by McCamy [1992] has been used to construct the Planckian
Locus,

CCT(x, y)=—449n’ +3525n> ®)

~6823.3n +5520.33
)

Where, n is the inverse slope in the x-y space, x. = 0.3320,
and y. = 0.1858. Variance of the CCT in the experimental
data is shown in Figure 7. LEDs subjected to high
temperature exposure shift in the 1976CIEUV space with
accelerated test time. Figure 9 shows the u’ and v’ coordinates
for the data-set and the dataset mean versus operating hours.
The red line is the average of 55°C chromaticity, the blue line
is average of 85°C chromaticity, the green line is average of
105°C chromaticity and the pink line is average of 120°C
chromaticity. It is thus expected that the color would shift
with time of exposure at high temperature.
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Figure 9: Shift of the LED Chromaticity in the CIE1976UV
space. Plot depicts the change in (u’, v’) for the different
temperatures versus test time in hours. Plotted data
corresponds to current of 0.35A.

Extended Kalman Filter Based Assessment of L70 Life

In order to prognosticate the remaining useful life (RUL) of
LEDs, the L70 lifetime has been used. The L70 life is defined
as the time at which LED lumen output is 70 percent of the
lumen output compared to the pristine LED at beginning of
the test.
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Figure 10: Recursive Algorithm and Extended Kalman Filter

The RUL is estimated by the using the Extended Kalman
Filter with historic data. System damage state estimation in
the presence of measurement noise and process noise has



been achieved using the Extended Kalman Filter (EKF).

Previously, the Kalman Filter has been used in guidance and
tracking applications [Kalman 1960, Zarchan 2000]. System
state has been described in state space form using the
measurement of the feature vector, velocity of feature vector
change and the acceleration of the feature vector change. The
equivalent Extended Kalman Filter equation for state space

representation is in the presence of process noise and

measurement noise is:
(10)

(Imn

x=Fx+w
x=f(x)+w
Where the F is the system linear dynamic matrix; f(x) is non-

linear dynamic matrix; the G is measurement matrix; u is
measurement vector; and w is system white noise;

(12)
(13)

Z=H-x+V
Z =h(x)+V

Where H is the measurement matrix, z is the measurement
vector, h(x) is a measurement function,which is a nonlinear
function of states, v is zero-mean random process described
by the measurement noise matrix. The process noise can be
calculated by taking the expected value of white noise:

Q=E[ww'] (14)

Similarly, the measurement noise matrix is derived from the
measurement noise as following:

R=E[w"] (15)

Since the system-dynamics ‘F’ and measurement
equations are nonlinear, a first-order approximation is used in

the continuous Riccati equations for the systems dynamics
matrix F and the measurement matrix H. It is expected that
the progression of interconnect damage is nonlinear, and

therefore need to be linearized before it can be estimated. In
the Extended Kalman Filter, the problem of linearization is

addressed by calculating the Jacobian of the nonlinear
function of states (f) and the measurement function (h) around

the estimated state. System state at each future time has been

computed based on the state space at preceding time step,
system dynamics matrix, control vector, control matrix,

measurement matrix, measured vector, process noise and
measurement noise. The matrices are related to the nonlinear

system and measurement equations according to:

(16)
anfixl

The system dynamic matrix for the EKF is:

ox 0% 6_>ﬂ| (19)
oX  ox 6b|
Ox . ..
FEKF =l - @_X @_X
ox 0% ob
b &b abl
x ox o)
The system dynamic matrix for the KF is:
[0 1 0 (20)
Fy, o 0 1
Lo 0 0]
We use this Jacobin Matrix to linearize the non-linear

problem; therefore it can use the classical KF updates. This is
for the second order system, and thus we can find the transfer

function F to describe certain system, which it is the key to
find fundamental matrix d(¢). In this paper for the EKF, we

used the system model:
X :(x.eB't (2 1)
The state vector is:

Xk :LX X BJ

This is an exponential function. The ‘o

22)
and ‘B’ are two

coefficients that are decided by different systems. The first
derivation Xand the second derivation Xare from:

x =a-e” (23)
*=p-x (24)
=P %=p’ x (25)

Therefore the elements in system dynamic matrix will be
calculated as:
x ]

B 1
FEKF=@|2 [32[3x| |
0 ]

Usually, the fundamental matrix @®(#) can be obtained from

(26)

o o

two ways: the first way, we can get it from Laplace
Transform, simply as:

D(t) :E[_(ISI—F)’I] 27

Where the /  is inverse of the Laplace Transform; However,
the second way, known as the common way to find®(7),

derives from the Taylor Series expansion:



Hzahgx! (17

ox X=X

From the linear dynamic equations, we can clearly know that
the world is linear as we supposed, and once we made this
premise. All the problems can be simply solved through the
matrix calculation. Therefore, we can get the first and second
derivatives from the linear matrix calculation;

(18)

(FT)* , (FT)’ | . (28)

O(t) =I +FT +
2! 3!

Normally, we only use the first two terms for representing the
fundamental matrix (), because the adding more terms

cannot contribute much to the precision and filter
convergence.
The Fundamental Matrix in the Extended Kalman Filter is:
[1+4BT T xT | (29)
‘ BT  14pT
q)EKF(T)zl T = 2B-xT |
K 0 1|

The Fundamental Matrix in the Extended Kalman Filter is:



Nor 075" | (30)
Dy (T)=I +FeT50 1 T
00 1 J

In the Kalman Filter, the Fundamental Matrix will be directly

used to update the estimation from last time to the next.
Generally speaking, the process to find the ideal estimation

can be expressed as following steps: First of all, we make the
primary estimation, which should be approximate to the
initiate value in the dataset, and secondly, we can find the first
projection using the fundamental matrix d(r)and simply

calculate as:

x =D(t)-X (31)
For the KF the projection can be represented by:
[Af] To 1 0Tax] [o] (32)
Lelo o 1 lachlo!
] y
[ax] [0 0 ofat] [w]
For the EKF the projection can be represented by:
[Ax Ak AX] 9
[AX] |Ax A% Ab [Ax] [0
a2 A A Al !
1A & sl T
(86 ab b ablAd] |w]
lax m ab)

The next estimate could be obtained from the following
equation:

X =x+K(Z-H-x)" (34)

K is Kalman Gain

H is measurement matrix

7 is measurement.

Each time we update the Kalman Gain and Covariance
Matrix, which minimizes the errors and makes optimal
calculation during each step. Thus, the Kalman Gain mainly
conveys the information about how is our estimation close to
the observation. The way to obtain Kalman Gain (K) is from
three Riccati equations:

the H is the unit measurement matrix and H, is transpose of

it; the K is the Kalman Gain; R, represents the measurement

noise according to the different system. We notice that those
three equations run like in the recursions: for the initial

covariance errorF), we can find variance matrix M, that

represents the current error in the first equation according to
time. Then we use it in the second equation to find the Kalman
Gain K , after that, we substitute the Estimate Kalman Gain K

into the third equation to update last covariance error P,, thus

we obtain the ‘next’ covariance error P,,,. Therefore,

as we go back to the first equation, we can obtain the updated

M, and updated Kalman GainK .In the EKF, the Euler

integration has been introduced to instead the performance of
the KF’s fundamental matrix, it can be found that:

X =X +x T (40)

k k k-1

§k :;‘(k +5§1:1T (41)

We call the equation above is the update equations,

X, represents the projection from the last time k ; %, isathe

first derivative at time k-1; X, is the estimation at time k, X, is

the first derivative at time k; 7' is the sample time.

X, =X, +K,(Z-Hx,) (42)

X =% +K (Z-Hx ) (43)

The above equations are the basic Extended Kalman Filter
equations, which are to find the estimation and its ‘velocity’.
Also, in those equations, it uses the same three Riccati

Equations that expressed in the Kalman Filter to obtain the

Kalman Gain K,and K,. Thus, the Extended Kalman Filter

actually has turned the non-linear problem into a linear one
through integrating method. So at each step, the Extended
Kalman Filter made a small integration, and if the integrate
time is small enough, then the answer we get is becoming
more precise. However, the difficulty within the Extended
Kalman Filter is to find the dynamic non-linear model to
describe the system, which always contains the unknown
coefficients. Therefore, the better we know about the test



M, =0 P®, " +Qx (35)

K =M,H,(HM,H, +R,) (36)

P, =(1-KH)M, (37)
In the above equations, the M , is the covariance matrix; the
@is the fundamental matrix; the ®" is the transpose of that

matrix; P, is another covariance matrix that representing

error according to the time; the Q, Is the discrete process

noise matrix, which is calculated from:

[0 0 0] (38

|

0 0 1]
TS (39)

Q" =[@(1)Q(1)' dr

system, for example, the theories and functions in the
situation of LEDs failure, the better we can predict system

model in the Extended Kalman Filter, therefore, the prediction

of Remaining Useful Life (RUL) would be close to the real
RUL in our PHM.

Algorithm: Filtering and RUL prediction

1. Initiate X,
2. Make the projections:
Xy =Xy +X T

X, Z)Tik % T
3. Calculate error. covariance matrix before updata:
M, =@, P D, +Qx

4. Calculate the Kalman Gain:
K=M HHMH +R )"

5. Update the estimation with measurement:



%, =X, +K,(Z-H-x})
X =% +K (Z-Hx )

k k 2 k

6. Calculate error covariance after measurement update:
P, =(1-KH)M,
7. Extrapolate feature vector to threshold value:

— Bein
LM =Xpn € T AWy,

8. Report predicted RUL (and uncertainty);
9. Iterate to step 2 for next measurement (k =k +1);

The predictions are updated continually as more data becomes
available. The Figure 11 below shows the estimation of RUL

for L70. In the plot the blue line is raw experimental dataset,

the solid red line is Extended Kalman Filter Prediction, and
the dash red line is Extended Kalman Filter extrapolations for
L70, the green line is L70 criterion, and the green arrow shows
the Remaining Useful Life from the last evaluated

point.
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Figure 11 the Intuition of RUL for L70

Different failure models have been integrated with the
Extended Kalman Filter Algorithm to extrapolate the pseudo
decay curve, and calculate the Remaining Useful Life using

L70 criterion. The extrapolation function uses state vectors

from Extended Kalman Filter estimations. The state vectors
provide information about the migration of accrued damage in

the LED. Once all the state vectors converge at certain level,

the Extended Kalman Filter prediction of decay lines will
converge and remain within 95-percent Confidence Interval
level.

TM-21 Estimation of LED Life

log, ((1)) =log, (B) +(—a) -t (43)

(46)

O=p+o.t
Coefficients of regression have been computed to get the
optimal curve fit for the ‘slope’ and ’intercept’. The values of

cand Pwere determined for the lower case temperature T1,

and for the upper case temperature T2.

NS o, Y IS @ t))\ (47
&__a_ Ki:l )Ki:l )ki:l )
Sl AR LR
N-;ti —|g‘tiJ
(Nf A ) (48)
> o), ol Yt |
N Lzt ) G )
B=logB) = N

Activation Energy was calculated using the decay rate from
two different temperatures:

() 49
k-log| 1 | (49)
E = kaZ )
a ( 1 1 i
KTZ T1 )
TM21 calculator using curve-fit extrapolation
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Figure 12: TM-21 Degradation Curve

Using the activation energy E, and the lower case avalue

and temperature, the Pre-Exponential Factor A, was
determined.
(E, ) (50)
|
A=a-e "
With the Pre-Exponential Factor known, the In-Situ

temperature avalue was determined.



Computation method based on TM-21 includes four parts: the
first part uses the Least Squares Fit (LSF) to determine the

Projected Initial Constant otand Decay Rate Constant[3,
The governing function for the Lumen Maintenance

according to time:

D(t) =p-c (44)

The lumen maintenance, @(t), is known for about a dozen

datum points. In order to solve for cand B, the logarithm of
both sides was taken to produce a linear function.

(E_) (51)
e
oFA e &)
Next, the In-Situ temperature Bvalue was determined. (52)

—

Bo = Bi-B

Lastly, with the values of aand Bknown for the In-Situ
temperature, the L70 value in hours was determined.



(53)

(B
log ° |
\0.7)

A,

L70 =

The TM-21 extrapolation curve is shown in Figure 12. The
green dash lines are the extrapolations from the low
temperature to the high temperature. The red dash line shows
the overall lumen degradation. The L70 life of LED using
TM-21 is about 36871.4 hours for long-term degradation.
However there is a limitation to use this TM-21 Calculator,
we have to know at least three cases at different temperatures
in order to correctly calculate the Activate Energy Ratio.
Moreover, the TM-21 is single estimation value, which
cannot provide any insight into the Probability and
Distribution of L70 estimations.

E&%r%oﬂgﬁ%&?gé% Decay Life-Prediction functions are

plotted in Figure 13 and shown in Table 3. Potential failure
mechanisms in the LED system include: (1) Silicone

Encapsulate Degradation; (2) Chip Degradation; (3) Phosphor
Degradation; (4) Reflector Degradation; and (5) Glass

Degradation.
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Figure 13: LED Lumen Decay models

Table 3: Lumen Decay Models [TES TM-21 2011]

Model
Model-1 I =% K (t-t"
Model-2 =1 exp[k ( ~t°)]
Model-3 |(0 [ 2( )] k
I =1 xplk {t-t —+
T f k,
Model-4 [ =I"+k In| |
g
Model-5 L=+t J+k l?' 4
Co S
Model-6 . =IV0(—t OYS

Each failure mechanism may have different underlying failure

physics and a different unique function to describe it. The

following plot shows the possible decay models existing in
the LED systems. The overall degradation in LED Lumen

Maintenance may result from several combined long term
decay functions triggered by multiple failure mechanisms.
Thus, the true lumen degradation profile may be fairly
complicated. In this paper, we primarily focus on three failure
mechanisms. The first failure mechanism is the drift of
charged defects in chip, which may be described as the
ramp function [IES TM21 2011]. The second failure
mechanism is thermal decomposition of encapsulant, which is
represented as an exponential function. The third failure
mechanism is the combination of those previous two models.
Figure 14 shows the constant decay rate model for the
prediction of the Pseudo L70 life for the LEDs. The charge
drift model model is described by the function:

dL, /dt=C, (54)
L, =L, +C(T-T,) (53)
In this model, the decay rate is constant, which is
presented by the straight lines (Figure 14). Constant

degradation rate cannot truly describe the degradation in
operational environments, where the decay rate may not be
maintained constant throughout the LED Lifetime.
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Figure 14: Constant Decay Model with Kalman Filter for L70
Estimation of 105°C, 1A LEDs

Initial stages of lumen degradation in LEDs may result
from chip degradation or plastic degradation. However, as
the time elapses, the damage evolution in the system may
include additional failure mechanisms and thus additional
lumen degradation trends. It is feasible for several failure
mechanisms working together to accrue the damage and
accelerate failure of system. In order to allow evolution of
damage at a non-constant decay rate, a second order
polynomial function has been incorporated into the extended
Kalman filter algorithm to predict decay curve (Figure 15).
Figure 15 shows the accelerating degradation using the
polynomial function where the decay rate is not constant,
which expresses as:

dL, /dt=C, +C,T 2



, =L, +C,(T (56)
~T,)+0.5C, (57)
(T-T,)
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Figure 15: Polynomial Decay Model with Kalman Filter

for L70 Estimation of 105°C, 1A LEDs
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Figure 16: Exponential Decay Model with Kalman Filter for
L70 Estimation of 105°C, 1A LEDs

Further, the LED system may experience long-term
degradation in high temperature environments. In this case,
the main degradation in the system may result from thermal
decomposition of encapsulant in LEDs. In this case, the
exponential decay function is used to represent the decay curve
in the extended Kalman filter algorithm. This extrapolation is
presented in the Figure 16 and represented by,

dL, /dt=C, xL, (58)

L, =L xe ™™ (59)

L70 Life Distribution Using KF and EKF

Exponential decay function (Model 3) has been used to
predict the L70 life. Extended Kalman filter has been used to
estimate the L70 life of each LED based on prior measured
values of lumen maintenance. Figure 17 shows the EKF
prediction of L70 life depicted by red-lines for each sample in
the 105°C, 1A experimental dataset. The degree of correlation

L70 life has been estimated using EKF in conjunction with
the Newton Raphson Method. When Kalman Filter made a
prediction about the state vectors in each evaluated time, and
the remaining useful life could be estimated and calculated
mathematically by solving the equation H(t) and find the time
T-prediction:

H(t) =x, +kxt +%xt> —f(EoL) (60)

T(n +1) =T(n) ~£(x)/ '(x) (61)

Where, T(n)is the estimated root at time n; T(n +1) is the

estimated root at time (n+1); f'(X) is the derivation of
target equation. The Predicted RUL (T-predicted) is known
as the ‘L70” End of Life (EoL) minus the sampling time (T-
sample). So the algebra equations presents as following:

RUL =L70 z; -T (62)

sample

Coefficients for the estimation for the exponential model
(®=a-exp(—-t)) used with extended Kalman filter have
been computed by training the EKF parameters in the prior
acquired data. In this model, ®@is the Lumen Maintenance (%),
auis the initial degradation factor, Pis the degradation

rate. The estimation parameters q;and B, are shown in

Figure 18 and Figure 19.
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Figure 18: Fitted Distribution for Decay Rate 3; after
8000 hours for 105°C, 1A dataset.



45

40

35+
301

0.91 0.92
Alpha Coefficients

0.83 0.94 0.95

Figure 19: Fitted Distribution for Decay Rate o; after 8000
hours for 105°C, 1A dataset.

Figure 20 shows the KF predictions of L70 life with the green
lines using exponential model. Those extrapolation lines have
been drawn by the coefficients estimated by the KF in the
above table. The blue line in the picture shows the true
estimation, which is the mean of the distribution; the red curve
shows the variance of the distribution.
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Figure 20 EKF Extrapolations and Mean Estimations

Lumen Estimation for 16,000 hours
1 T T T

o
©
£

T

Lumen Maintenance
o
©
T

TP

f
{
§
|
!
8

Lumen Distribution on
16,000 threshold line |

08 | 1 | 1 1
04 06 08 1 12 14 16

Time

x10*
Figure 21 Lumen Degradation Path for estimating lumen at
16,000 hours

Using the presented approach, the lumen degradation could
be predicted at future time. Figure 21 shows the prediction of
Lumen Maintenance at 16,000 hours using EKF. Normal
distribution has been assumed for the estimation of training
decay rates. Figure 21 shows the degradation path for
estimating the 16,000 hours life. The dots represent the lumen

maintenance estimations, and the blue line shows the 16,000
hours threshold.
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Figure 22 Lumen Estimation Summary for 16,000 hours

Figure 22 shows the lumen estimation at 16,000 hours. The
blue bar shows the counts of estimated lumen value, the red
line is fitted distribution. The mean value of 16,000 hours
lumen maintenance is 86.53%, and the mean value of 8000
hours is 92.21%. Therefore, the Ilumen maintenance
degradation from 8000 hours to 16,000 hours is 5.68 %. The
lumen maintenance variance at 8000 hours is 1.1196e-04, and
the lumen maintenance variance at 16,000 hours is 1.2863e-
04, so the variance increases 1.667e-5, which indicates the
distribution shape is wider than the distribution at 8000 hours.

KF Chromaticity Tracking Using EKF

The Chromaticity u” and v’ has also been tracked by the
Kalman Filtering Algorithm (Figure 23). Predictions of
Chromaticity shift along with lumen maintenance can provide
valuable insight in to the prior damage and the remaining
useful life of the LEDs.
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Figure 23 KF Chromaticity Tracking
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Figure 24 KF track with + 0.06 confident interval

Shift of the (u’, v’) coordinates could indicate a major color
shift which may render the LED unusable. The dash blue
line is the KF chromaticity tracking for u’ and v’ in 9000
hours operating hours. Figure 24 shows u’ v’ KF tracking in
2D 1976 CIE u’ v’ coordinate. The circle is + 0.06 confident
interval; the circle center is central point for 3000K.

Life Distribution Fit
Cumulative distribution function F(t) represents the
population fraction failing by age t. The reliability function
R(t) for a life distribution is the probability of survival beyond
age t, namely, the survivor or survivorship function can be
represented as:
R(t) =1-F(t) (63)
Normal distribution, Lognormal distribution and Weibull

distribution have been fit to the distribution of predicted L70
lifetimes from EKF.

Normal Distribution

Previously, the normal distribution has been used to describe
the life of incandescent lamp filaments in the field of lighting.
The Normal Cumulative Distribution Function is represented
by:

{1z
y Lyl 1
[ 2 .\
F(Y)ZI 2nc” e

(64)

/dx,-00<y <+00

Normal Probability Density. The probability density is:
e (65)

f(y) =(27t02)_1/2 ‘e[»(y»u) /(20)],-oo<y <400

Normal Reliability Function. The population fraction

surviving age t is:

R(t) =1 - [(t - p)/o] (66)

The KF prognostic pseudo L70 life follows the normal

distribution with expectation p (26118) and variance
O(8687.7).

The EKF reliability function, R(t), can thereby be written by:

R(t) =1 - F(t) =1 - D[(t - 43265)/ 2720.9] (70)
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Figure 26 EKF Distribution of L70

Lognormal Distribution
The Lognormal distribution is widely used for life data or

semiconductor failure mechanisms. The lognormal and

normal distributions are related; this fact is used to analyze
lognormal data with same methods for normal data.

Lognormal Cumulative Distribution is represented by:

F(t) =D {[log(t) - p)/s}, t >0 (71)

Lognormal Probability Density function is represented by:

f£(t) ={0.4343/[(  2m) to]} e M0 WIeSN p 59 (72)
Lognormal Reliability Function is represented by:
R(t) =1-D{[log(t) - pnl/c} ={-[log(t) - nJ/c} (73)

The KF cumulative distribution of LEDs’ L70 life would be
written as the following function:



F(t) =D[(t -26118 )/8687 .7] (67)

The KF reliability function, R(t), can thereby be written by:

R(t) =1-Ft) =1-®[(t -26118 )/ 8687 .7] (68)
The EKF prognostic pseudo L70 life follows the normal
distribution with expectation p (43265) and variance

G(2720.9).
F(t) =[(t - 43265)/2720.9] (69)

F(t) =D{[log(t /10.122)]/ 0.3045} (74)

In the KF prognostic L70 distribution, we found that R(t)

could be represented as:
R(t) =1-®{[log(t/10.122)]/0.3045} (75)

=D {-{log(t) —24877]/0.3045}
The EKF cumulative distribution of LEDs’ L70 life would be

written as the following function:



F () =D {[log(z/10.7)]/0.06} (76)

In the LEDs’ L70 distribution, we found that R(t) could be
represented as:

R(t)=1-®{[log(t/10.7)]/0.06}
= {—[log(t)—44356]/0.06}

(77

Weibull Distribution

The Weibull distribution is often used for product life,
because it models either increasing or decreasing failure rates
simply. It is also used as the distribution for products
properties such as strength (electrical or mechanical),
elongation resistance (references), etc., in accelerated tests. It
is used to describe the life of roller bearings, electronic

components, ceramics, capacitors, and dielectrics in
accelerated test. Weibull Cumulative Distribution. The
population fraction failing by age t is:
F(t) =1-¢ ' t >0 (78)
Weibull Probability Density is given by:

pp- - (79)
f()=B/a)t 1., @ ) ,t>0
Weibull Reliability function is given by:
R(t) =, t >0 (30)

The KF L70 life follows the Weibull distribution with the
shape parameter $(3.11) and scale parameter a(29000).

3.11

F(t) =1- o l-(29000) ],t >0 1)
The reliability function, R(t), can thereby be written by:
R(t) =1-F(t) —e(v29000 ) ],t >0 (82)

The L70 life follows the Weibull distribution with the shape
parameter f(17.6) and scale parameter o(45000).

F(t) =1- o -(145000 ) e ],t >0 (83)
The reliability function, R(t), can thereby be written by:
R(t) =1-F(t) =e400) ™1 ¢ 50 (84)
Table 4 KF Distribution Fitted Statistic
Goodness-Fit Tests for Three Distributions
Distributions Cramer-von P-Value
Mises Criterion
Normal 1.161 <0.010
Lognormal 0.541 <0.005
Weibull 1.050 <0.010
Table 5 EKF Distribution Fitted Statistic
Goodness-Fit Tests for Three Distributions
Distributions Cramer-von P-Value
Mises Criterion
Normal 0.0968 <0.005

criterion value, indicating that it is the best fitting distribution.

The best fitted distribution for KF is lognormal distribution
(Figure 25) with CMC value 0.541, and normal distribution

(Figure 26) for EKF with CMC value 0.0968.

Summary and Conclusions
A life prediction methodology for L70 life of LEDs has been
developed based on Kalman Filter and Extended Kalman

Filter Models. Both the lumen degradation and the
chromaticity shift have been predicted. The estimated state-
space parameters based on lumen degradation and
chromaticity were used to extrapolate the feature vector into
the future and predict the time-to-failure at which the feature
vector will cross the failure threshold of 70-percent lumen
output. This procedure was repeated recursively until the
LED failed. Remaining useful life was calculated based on the
evolution of the state space feature vector. The KF/EKF

estimations are range from 26,000 to 40,000 hours for the
LEDs depending on the underlying degradation mechanism.

Model predictions correlate reasonably with the TM-21 which
provides L70 life-prediction in the neighborhood of 36,000

hours. Since the proposed computation method based on KF
and EKF is recursive, any changes in underlying damage

acceleration trigger updates to Kalman Gain and allow
convergence of the model to measured lumen degradation. It
has been shown that the KF and EKF based models can

capture the underlying failure physics of multiple failure
hani tive in t Ds _ inclydi ili
PEShATRS i 15 CER DA, (4) s

Degradation; (4) Reflector Degradation; and (5) Glass

Degradation. Failure distributions of the L70 life have been
constructed based on normal, lognormal and Weibull

distributions. Normal distribution shows the best fit to the

L70 histogram for the EKF model and the lognormal

distribution shows the best fit for the L70 histogram for the
KF model.
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